CN111690858A - Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material - Google Patents
Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material Download PDFInfo
- Publication number
- CN111690858A CN111690858A CN201910187861.8A CN201910187861A CN111690858A CN 111690858 A CN111690858 A CN 111690858A CN 201910187861 A CN201910187861 A CN 201910187861A CN 111690858 A CN111690858 A CN 111690858A
- Authority
- CN
- China
- Prior art keywords
- composite material
- wear
- self
- lubricating
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 239000011149 active material Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 229910009817 Ti3SiC2 Inorganic materials 0.000 abstract 2
- 239000013543 active substance Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 33
- 239000002245 particle Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004573 interface analysis Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229920000426 Microplastic Polymers 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Sliding-Contact Bearings (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种耐磨自润滑Ti3Al1-xSixC2-Mg基复合材料自身界面调控方法。The invention relates to a self-interface control method of a wear-resistant and self-lubricating Ti 3 Al 1-x Six C 2 -Mg matrix composite material.
背景技术Background technique
与Fe,Ti,Al等金属相比,低密度的镁(1.74g·cm-3)具备更高的比强度,比刚度,更优良的阻尼减震降噪和电磁干扰屏蔽性能以及良好的可回收性 (参考文献:Dey,A.andK.M.Pandey,Rev.Adv.Mater.Sci,2015.42(1):p. 58-67)。能源紧缺和温室效应等全球难题正激发出超轻量镁合金在汽车和航空航天领域方面巨大的应用潜力。其中,一些中低温部件需要镁合金具备优良的强度,刚度,耐冲击和耐磨自润滑性能(低磨损率低摩擦系数),如活塞环、轴套、轴瓦等部件。但是,镁合金本身的低刚度和低硬度,耐摩和高温抗蠕变性能差限制了其广泛地应用(参考文献:高崧and屈伟平,.金属世界,2011(2):p.27-32.)。Compared with Fe, Ti, Al and other metals, low-density magnesium (1.74g·cm -3 ) has higher specific strength, specific stiffness, better damping, shock absorption, noise reduction and electromagnetic interference shielding performance, as well as good reliability. Recyclability (Reference: Dey, A. and K. M. Pandey, Rev. Adv. Mater. Sci, 2015. 42(1): p. 58-67). Global challenges such as energy shortages and the greenhouse effect are stimulating the enormous potential of ultra-lightweight magnesium alloys in automotive and aerospace applications. Among them, some medium and low temperature components require magnesium alloys with excellent strength, stiffness, impact resistance and wear resistance and self-lubricating properties (low wear rate and low friction coefficient), such as piston rings, bushings, bearing bushes and other components. However, the low stiffness and low hardness of magnesium alloy itself, and poor wear resistance and high temperature creep resistance limit its wide application (Reference: Gao Song and Qu Weiping,. Metal World, 2011(2): p.27-32. ).
近年来,一种可机械加工具有纳米层状结构的三元化合物MAX相陶瓷受到越来越多地关注(参考文献:Barsoum,M.W.,Progress in Solid State Chemistry,2000.28:p.201-281;Barsoum,M.W.and T.El-Raghy,American Scientist,2001.89(4):p.336-345.)。MAX相的化学通式为Mn+1AXn(n=1、 2或3),M为过渡金属,A主要为IIIA和IVA族元素,C为C或N元素,密度为4g·cm-3左右。目前已合成有超过60种211、312和413相化合物及其固溶体,典型的有Ti3SiC2、Ti3AlC2、Ti2AlC、Ti2SnC、Nb2AlC等纯MAX 相和Ti3SiAlC2、Ti3AlSnC2和Ti2AlSnC等A位固溶MAX相。在具备高硬度 (3-9GPa)和高弹性模量(~300GPa)的前提下,MAX材料内部大量的位错移动允许其发生一定的塑性变形。与传统硬脆的SiC和TiC陶瓷不同,MAX 材料表现出优良的韧性和可加工性,如Ti2AlC的断裂韧性为 6.5-7.9±0.1MPa·m1/2。MAX(空间群P63/mmc)与Mg同属六方晶系,M 原子与X原子以强共价键形成八面体层并被A原子层隔开,X原子位于M6X 八面体中心。类似于层状石墨,M层与A层之间在剪切力的作用下容易发生滑动。因此,MAX材料具备优良的耐磨自润滑性能。例如,翟洪祥等(参考文献:Huang,Z.,et al.,Wear,2007.262(9):p.1079-1085.)报导Ti3SiC2与低碳钢在20m/s和0.8MPa干摩擦条件下对摩,其摩擦系数和摩擦率仅为 0.27和1.37×10-6mm3/(N·m)。Barsoum等(参考文献:Barsoum,M.W.,et al., Nature Materials,2003.2:p.107.)发现MAX相与Mg,Ti,Zr和Zn等金属同属密排六方晶系,具备微塑变形机制,即内部形成的Incipient Kinking Bands(IKB),循环压缩过程可大大吸收外界的能量In recent years, a machinable ternary compound MAX phase ceramic with a nano-layered structure has received increasing attention (References: Barsoum, MW, Progress in Solid State Chemistry, 2000.28:p.201-281; Barsoum , MW and T. El-Raghy, American Scientist, 2001. 89(4): p.336-345.). The general chemical formula of the MAX phase is Mn + 1AXn ( n =1, 2 or 3), M is a transition metal, A is mainly IIIA and IVA group elements, C is C or N element, and the density is 4g·cm − 3 or so. At present, more than 60 kinds of 211, 312 and 413 phase compounds and their solid solutions have been synthesized, typical pure MAX phases such as Ti 3 SiC 2 , Ti 3 AlC 2 , Ti 2 AlC, Ti 2 SnC, Nb 2 AlC and Ti 3 SiAlC 2. A-site solid solution MAX phases such as Ti 3 AlSnC 2 and Ti 2 AlSnC. Under the premise of high hardness (3-9GPa) and high elastic modulus (~300GPa), a large number of dislocation movements inside the MAX material allow it to undergo a certain plastic deformation. Different from traditional hard and brittle SiC and TiC ceramics, MAX materials exhibit excellent toughness and machinability, such as Ti 2 AlC with a fracture toughness of 6.5-7.9±0.1MPa·m 1/2 . MAX (space group P63/mmc) and Mg belong to the same hexagonal crystal system, M atom and X atom form an octahedral layer with strong covalent bond and are separated by A atomic layer, and X atom is located in the center of M 6 X octahedron. Similar to layered graphite, sliding easily occurs between the M layer and the A layer under the action of shear force. Therefore, MAX materials have excellent wear-resistant and self-lubricating properties. For example, Zhai Hongxiang et al. (Reference: Huang, Z., et al., Wear, 2007.262(9): p.1079-1085.) reported that Ti 3 SiC 2 and low carbon steel were subjected to dry friction at 20 m/s and 0.8 MPa The friction coefficient and friction rate are only 0.27 and 1.37×10 -6 mm 3 /(N·m) under the friction. (Reference: Barsoum, MW, et al., Nature Materials, 2003.2: p.107.) found that the MAX phase and Mg, Ti, Zr and Zn belong to the same hexagonal close-packed crystal system, and have a microplastic deformation mechanism. That is, the Incipient Kinking Bands (IKB) formed internally, and the cyclic compression process can greatly absorb the energy of the outside world.
对于Ti2AlC-Mg复合材料摩擦磨损行为研究表明,层状的Ti2AlC颗粒和摩擦生热氧化形成纳米MgO颗粒赋予复合材料优良的自润滑特性(参考文献:Yu,W.,et al.,Journalof Materials Science&Technology,2019.35(3): p.275-284.)。研究表明,添加5%vol.Ti2AlC颗粒可明显地提高Mg合金基体的耐磨性。然而,增加Ti2AlC颗粒体积分数至10%,复合材料的耐磨性并没有继续提高。这是由于随Ti2AlC颗粒添加量的增加,复合材料界面处活性极高的纳米Mg晶粒和非晶Mg层含量也随之增多,摩擦过程极易氧化形成磨屑而造成材料磨损。Research on the friction and wear behavior of Ti 2 AlC-Mg composites shows that the layered Ti 2 AlC particles and the tribothermal oxidation to form nano-MgO particles endow the composite with excellent self-lubricating properties (Reference: Yu, W., et al. , Journal of Materials Science & Technology, 2019.35(3): p.275-284.). The research shows that adding 5%vol.Ti 2 AlC particles can obviously improve the wear resistance of Mg alloy matrix. However, increasing the Ti 2 AlC particle volume fraction to 10% did not continue to improve the wear resistance of the composites. This is because the content of nano-Mg grains and amorphous Mg layer with high activity at the interface of the composite material also increases with the increase of the Ti 2 AlC particle addition, and the material is easily oxidized to form wear debris during the friction process, resulting in material wear.
根据已经取得的工作结果,可通过Ti3(SixAl1-x)C2取代Ti2AlC,减少A 位活性Al元素含量和提高惰性Si元素含量来降低复合材料界面处活性物质的生成量。同时,由于Ti3(SixAl1-x)C2的弹性模量和硬度随Al含量减少呈现线性增加的现象(参考文献:Xu,X.,T.L.Ngai,and Y.Li,Ceramics International,2015.41(6):p.7626-7631.),可以预见Ti3(SixAl1-x)C2-Mg基复合材料在具有自润滑特性的同时,其耐磨性也会高于Ti2AlC-Mg基复合材料且可以调控。According to the obtained work results, the generation of active species at the interface of the composite material can be reduced by replacing Ti 2 AlC with Ti 3 (Six Al 1-x ) C 2 , reducing the content of active Al elements at the A site and increasing the content of inert Si elements . At the same time, since the elastic modulus and hardness of Ti 3 (Six Al 1-x ) C 2 increase linearly with the decrease of Al content (Reference: Xu, X., TLNgai, and Y. Li, Ceramics International, 2015.41 (6): p.7626-7631.), it can be predicted that Ti 3 (Six Al 1-x ) C 2 -Mg matrix composites have self-lubricating properties, and their wear resistance will be higher than that of Ti 2 AlC -Mg-based composites and can be tuned.
发明内容SUMMARY OF THE INVENTION
本发明通过Ti3(SixAl1-x)C2取代Ti2AlC和Ti3SiC2,合理控制A位活性 Al元素含量和惰性Si元素的含量来调控复合材料界面处活性物质Mg晶粒的生成量,协同提高耐磨和自润滑特性。In the invention, Ti 3 (Six Al 1-x ) C 2 is used to replace Ti 2 AlC and Ti 3 SiC 2 , and the content of active Al element and inert Si element at the A site is reasonably controlled to control the active material Mg crystal grains at the interface of the composite material. The amount of generation, synergistically improve the wear resistance and self-lubricating properties.
本发明的耐磨自润滑Ti3Al1-xSixC2-Mg基复合材料,其成分如下:The wear-resistant self-lubricating Ti 3 Al 1-x Si x C 2 -Mg-based composite material of the present invention has the following components:
Ti3Al1-xSixC2MAX材料,其余为Mg基合金。Ti 3 Al 1-x Si x C 2 MAX material, and the rest are Mg-based alloys.
本发明的Ti3Al1-xSixC2-Mg基复合材料,其特点如下:The Ti3Al1 - xSixC2 - Mg-based composite material of the present invention has the following characteristics:
通过调节Ti3Al1-xSixC2MAX材料内部x的数值(0-1),实现Ti3Al1-xSixC2与Mg基体界面结构的调控。By adjusting the value (0-1) of x inside the Ti 3 Al 1-x Si x C 2 MAX material, the interface structure between Ti 3 Al 1-x Si x C 2 and Mg matrix can be controlled.
该方法包括以下各步骤:The method includes the following steps:
步骤1,调控Ti3Al1-xSixC2材料中的x数值。Step 1, adjusting the value of x in the Ti 3 Al 1-x Si x C 2 material.
步骤2,将含有不同x值得Ti3Al1-xSixC2粉体添加到Mg基体中,包括粉末冶金法,鋳造法和浸渗法。Step 2, adding Ti 3 Al 1-x Si x C 2 powders with different x values to the Mg matrix, including powder metallurgy, smelting and infiltration.
本发明所具有的有益效果:The beneficial effects that the present invention has:
附图说明Description of drawings
图1是Ti2AlC-Mg透射电镜界面分析图Fig. 1 is the interface analysis diagram of Ti 2 AlC-Mg TEM interface
图2是Ti3SiC2-Mg透射电镜界面分析图Fig. 2 is the interface analysis diagram of Ti 3 SiC 2 -Mg TEM
图3是Ti3Si0.8Al0.2C2-Mg复合材料透射电镜界面分析图Fig. 3 is the interface analysis diagram of Ti 3 Si 0.8 Al 0.2 C 2 -Mg composite material by transmission electron microscope
具体实施方式Detailed ways
本发明提供了一种提供一种耐磨自润滑Ti3Al1-xSixC2-Mg基复合材料自身界面调控方法,以下结合附图和实施例对本发明进行详细地说明,但本发明并不限于此。The present invention provides a method for controlling the interface of a wear-resistant and self-lubricating Ti 3 Al 1-x Si x C 2 -Mg matrix composite material itself. Not limited to this.
实施例1Example 1
以常规镁基复合材料的制备方法,制备了Ti2AlC-Mg基复合材料。Ti2AlC颗粒间大量的纳米Mg晶粒,这起到了对镁基体晶粒细化强化的效果。发现纳米Mg晶与Ti2AlC颗粒之间有一层约0.5nm厚度的非晶Mg层。这起到了强的界面结合作用。Ti 2 AlC-Mg-based composites were prepared by the conventional preparation method of magnesium-based composites. There are a large number of nano-Mg grains between Ti 2 AlC particles, which have the effect of refining and strengthening the grains of the magnesium matrix. An amorphous Mg layer with a thickness of about 0.5 nm was found between the nano-Mg crystals and the Ti 2 AlC particles. This acts as a strong interfacial bond.
实施例2Example 2
以常规镁基复合材料的制备方法,制备了Ti3SiC2-Mg基复合材料。Ti3SiC2颗粒之间未发现纳米态的Mg晶粒。Ti 3 SiC 2 -Mg-based composites were prepared by the conventional preparation method of magnesium-based composites. No nanometer Mg grains were found between Ti 3 SiC 2 particles.
实施例3Example 3
以常规镁基复合材料的制备方法,制备了Ti3Si0.8Al0.2C2-Mg基复合材料。Ti3Si0.8Al0.2C2-Mg基复合材料颗粒之间出现纳米态的Mg晶粒,并且纳米Mg 晶粒尺寸和数量都分别明显高于和低于Ti2AlC2-Mg基复合材料中的纳米Mg 晶粒。Ti 3 Si 0.8 Al 0.2 C 2 -Mg-based composite materials were prepared by the conventional preparation method of magnesium-based composite materials. Nanoscale Mg grains appear between the Ti 3 Si 0.8 Al 0.2 C 2 -Mg matrix composite particles, and the size and number of nano-Mg grains are significantly higher and lower than those in the Ti 2 AlC 2 -Mg matrix composite material, respectively. of nano-Mg grains.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910187861.8A CN111690858A (en) | 2019-03-13 | 2019-03-13 | Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910187861.8A CN111690858A (en) | 2019-03-13 | 2019-03-13 | Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111690858A true CN111690858A (en) | 2020-09-22 |
Family
ID=72474919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910187861.8A Pending CN111690858A (en) | 2019-03-13 | 2019-03-13 | Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111690858A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113149653A (en) * | 2021-04-08 | 2021-07-23 | 中国科学院金属研究所 | MAX-phase ceramic-magnesium or magnesium alloy composite material and preparation method thereof |
CN113560542A (en) * | 2021-07-15 | 2021-10-29 | 北京交通大学 | Dual-continuous-phase Ti with controllable reinforced phase2AlN/Mg-based composite material and pressureless infiltration preparation method thereof |
CN114956835A (en) * | 2022-04-19 | 2022-08-30 | 郑州大学 | Ti 3 AlC 2 Preparation method of coated magnesia aggregate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209336A (en) * | 1995-01-31 | 1996-08-13 | Hitachi Tool Eng Ltd | Coated hard alloy |
KR20020026323A (en) * | 2002-03-06 | 2002-04-09 | (주)유니에코 | Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions. |
CN102766774A (en) * | 2012-07-10 | 2012-11-07 | 太原理工大学 | Method for strengthening magnesium alloy by doping SiC particles |
CN107119218A (en) * | 2017-04-11 | 2017-09-01 | 北京交通大学 | High-intensity high-damping Ti2AlC Mg based composites and its casting preparation method |
-
2019
- 2019-03-13 CN CN201910187861.8A patent/CN111690858A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209336A (en) * | 1995-01-31 | 1996-08-13 | Hitachi Tool Eng Ltd | Coated hard alloy |
KR20020026323A (en) * | 2002-03-06 | 2002-04-09 | (주)유니에코 | Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions. |
CN102766774A (en) * | 2012-07-10 | 2012-11-07 | 太原理工大学 | Method for strengthening magnesium alloy by doping SiC particles |
CN107119218A (en) * | 2017-04-11 | 2017-09-01 | 北京交通大学 | High-intensity high-damping Ti2AlC Mg based composites and its casting preparation method |
Non-Patent Citations (3)
Title |
---|
WENBO YU等: "Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases", 《JOURNAL OF MATERIALS SCIENCE&TECHNOLOGY》 * |
XIAOLONG XU等: "Synthesis and characterization of quarternary Ti3Si(1-x)AlxC2 MAX phase materials", 《CERAMICS INTERNATIONAL》 * |
王晓军等: "《颗粒增强镁基复合材料》", 30 April 2018, 国防工业出版社 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113149653A (en) * | 2021-04-08 | 2021-07-23 | 中国科学院金属研究所 | MAX-phase ceramic-magnesium or magnesium alloy composite material and preparation method thereof |
CN113560542A (en) * | 2021-07-15 | 2021-10-29 | 北京交通大学 | Dual-continuous-phase Ti with controllable reinforced phase2AlN/Mg-based composite material and pressureless infiltration preparation method thereof |
CN114956835A (en) * | 2022-04-19 | 2022-08-30 | 郑州大学 | Ti 3 AlC 2 Preparation method of coated magnesia aggregate |
CN114956835B (en) * | 2022-04-19 | 2023-03-07 | 郑州大学 | A kind of preparation method of Ti3AlC2 coated magnesia aggregate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications | |
Murugesan et al. | Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying | |
Dey et al. | Magnesium metal matrix composites-a review | |
CN104294073B (en) | A kind of preparation method of modified high manganese steel base TiC steel bonded carbide | |
CN104195407B (en) | A kind of preparation method of TiC high-manganese steel-base Steel Bond Hard Alloy | |
CN110592412B (en) | Nano-AlN particle reinforced mixed crystal heat-resistant aluminum matrix composite material and preparation method | |
CN111690858A (en) | Wear-resistant self-lubricating Ti3Al1-xSixC2Self-interface regulation and control method of-Mg-based composite material | |
CN111057958B (en) | Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof | |
Bose¹ et al. | A review on alloying in tungsten heavy alloys | |
CN110331325B (en) | Nano-alumina reinforced copper-based composite material and preparation method thereof | |
Lu et al. | Mechanical, tribological and electrochemical corrosion properties of in-situ synthesized Al2O3/TiAl composites | |
CN102925737A (en) | A kind of nano TiB2 particle reinforced metal matrix composite material and preparation method thereof | |
Zhao et al. | Fabrication of RGO/Cu composites based on electrostatic adsorption | |
CN112410601B (en) | A kind of preparation method of graphene-boron heterostructure titanium-based composite material | |
CN106834872A (en) | A kind of preparation method of tough high-wear resistant Ti N steel bonded carbide high | |
Bhaskar Raju et al. | Mechanical and Tribological Behaviour of Aluminium Metal Matrix Composites using Powder Metallurgy Technique—A Review. | |
CN106498211B (en) | The preparation method of the steady nanometer phase composite construction Al-Sn alloys of nano alumina particles In-sltu reinforcement high fever | |
Rao et al. | Recent progress in stir cast aluminum matrix hybrid composites: overview on processing, mechanical and tribological characteristics, and strengthening mechanisms | |
Yi et al. | Reinforcing effects of nano-WC in AlSi10Mg alloy assisted by in-situ surface modification approach | |
CN117363916A (en) | Ti reinforced phase bimodal distribution magnesium-based composite material and preparation method thereof | |
CN109321794B (en) | Al2Ca particle and carbon nano tube hybrid reinforced ultralight magnesium lithium-based composite material and preparation method thereof | |
CN115074593B (en) | Hard alloy with high elastic modulus and preparation method thereof | |
Kumar et al. | Dual matrix and reinforcement particle size (SPS and DPS) composites: Influence on mechanical behavior of particulate aluminum-SiC-Gr metal matrix composites | |
Ravichandran et al. | Mechanical properties of Fly ash reinforced Aluminium matrix composites | |
CN108374099A (en) | A kind of preparation method of long-periodic structure particle reinforced Mg-base/aluminum matrix composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200922 |
|
WD01 | Invention patent application deemed withdrawn after publication |