CN111690145B - 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用 - Google Patents

一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用 Download PDF

Info

Publication number
CN111690145B
CN111690145B CN202010405657.1A CN202010405657A CN111690145B CN 111690145 B CN111690145 B CN 111690145B CN 202010405657 A CN202010405657 A CN 202010405657A CN 111690145 B CN111690145 B CN 111690145B
Authority
CN
China
Prior art keywords
organic framework
metal organic
crystal material
zinc
framework crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010405657.1A
Other languages
English (en)
Other versions
CN111690145A (zh
Inventor
史大斌
莫双铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zunyi Medical University
Original Assignee
Zunyi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zunyi Medical University filed Critical Zunyi Medical University
Priority to CN202010405657.1A priority Critical patent/CN111690145B/zh
Publication of CN111690145A publication Critical patent/CN111690145A/zh
Application granted granted Critical
Publication of CN111690145B publication Critical patent/CN111690145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • B01J35/617
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0252Salen ligands or analogues, e.g. derived from ethylenediamine and salicylaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明涉及一个吡啶型手性Cu(II)‑Salen配体金属有机框架晶体材料及其制备方法与应用。该材料具有下述化学式:{[Zn2(L)(BPDC)2]·DMF·5H2O}n,其中L是(R,R)‑N,N’‑二(5‑(4‑吡啶基)亚‑2‑羟基苯乙酮基)‑1,2‑二苯基乙二胺铜(II),BPDC是4,4'‑联苯二甲酸根二价阴离子,n为聚合度。本发明的金属有机框架晶体材料采用溶剂热合成法,操作简单,成本低,产率高,易于大规模工业化生产。所制备的金属有机框架晶体材料具有较高的比表面积(BET比表面积为752m2/g),1atm,273K下对CO2和N2的吸附量分别为3.47mmol/g和0.57mmol/g。以TEMPO为添加剂,在水相中催化苄醇的选择性氧化生成苯甲醛,产率达99%,催化剂循环使用五次,几乎无活性损失,是一个良好的非均相催化剂。

Description

一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及 其制备方法与应用
技术领域
本发明属于金属有机框架(MOFs)新材料的制备及应用领域,具体涉及吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料以(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)与4,4′-联苯二甲酸的金属有机框架的制备方法及在气体吸附和催化领域的应用。
背景技术
金属有机框架(MOFs)代表了一类杂化的有机-无机有序网络超分子材料,是通过有机桥连配体和无机金属离子的结合构成的有序网络结构,包括一维链状、二维层状和三维网状结构。这些材料由刚性的多齿桥连支柱和金属节点组成。高的微孔体积、大孔径,以及可能提供活性点的高含量金属是这类材料的重要特征。
近年来,金属有机框架由于其多孔性、大比表面积、结构多样化以及通过自组装所形成的特殊的主客体关系而引起了人们极大的兴趣。这类材料已经报道具有气体贮存及分离、催化、化学传感、导电和发光等性能。如:Champness N.R.,
Figure GDA0003491799070000011
M.science,1998,3:419-424;Yaghi O.M.,Li G.M.,Li H.L.Nature,1995,378:703-706;Li H.,EddaoudiM.,O’keeffe M.,et al.Nature,1999,402:276-279;Chui S.S.,Lo S.M.-F.,CharmantJ.P.H.,et al.Science,1999,283:1148-1150;Férey G.,Mellot-Draznieks C.,SerreC.,et al.Science,2005,309:2040-2042;Yoon,M.,Srirambalaji,R.,Kim,K.Chem.Rev.2012,112:1196–1231;Yin,Z.,Wang,Q.-X.,Zeng,M.-H.,J.Am.Chem.Soc.2012,134:4857-4863;Zeng,M.-H.,Wang,Q.-X.,Tan,Y.-X.,etal.J.Am.Chem.Soc.2010,132:2561–2563;Bloch,E.D.,Britt,D.,Lee,C.;Doonan.,etal.J.Am.Chem.Soc.2010,132:14382–14384.
4,4′-联苯二甲酸作为有机配体具有强的配位能力、多种配位方式、易形成氢键以及芳环π-π堆积作用等特点。(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)具有N配位点。二者的组合能形成多种配位模式,作为有机配体可使配合物结构和性能多样化,并提高配合物的稳定性。此外(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)中配位有二价铜离子,可作为活性中心催化许多有机反应。
在已知的文献报道中,4,4′-联苯二甲酸是一种常用的配体,(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)则是一种新型的Salen配体,二者组合与金属离子配位形成金属有机框架材料尚无文献报道。
发明内容
本发明所要解决的第一个技术问题是,提供一种结构稳定、高比表面积的多微孔金属有机框架晶体材料。
第二个所要解决的技术问题是提供上述金属有机框架晶体材料的制备方法,该方法简单易行,对环境友好,成本低廉,产率高,易于大规模工业化生产。
第三个目的在于提供上述金属有机框架晶体材料在气体吸附和催化领域的应用。
本发明利用(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)和4,4′-联苯二甲酸具有较强的配位能力、多种配位方式、易形成氢键以及芳环堆积作用等特点,首次以上述两种配体与Zn2+配位形成一个结构新颖的金属有机框架晶体材料。这类材料通常具有多孔洞、大比表面积,在发光、催化,吸附、化学传感、高分子材料助剂等领域有很好的应用前景。
为了达到上述目的,本发明采用如下技术方案:
本发明所述的一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用具备下述化学式为{[Zn2(L)(BPDC)2]·DMF·5H2O}n,其中L是(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II),BPDC是4,4′-联苯二甲酸根二价阴离子,n为聚合度。其简化结构式为:
Figure GDA0003491799070000031
本发明所述的一个金属有机框架的晶体属三斜晶系,空间群为P-1。
本发明所述的一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用,包括下述步骤:
(1)二价锌盐化合物、(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)、4,4′-联苯二甲酸溶于溶剂中,搅拌均匀,然后加入具螺纹的透明耐高温玻璃小瓶中。
(2)加热升温,反应物在一定温度下反应一段时间后,逐步降低温度,冷却至室温,过滤,用DMF或DMA洗涤,干燥,制得金属有机框架晶体材料。
本发明所述的锌盐化合物为硝酸锌盐或氯化锌盐、硫酸锌盐、醋酸锌盐、高氯酸锌盐;所述的锌离子为+2价;
本发明所述的铜离子为+2价;
本发明所述的溶剂DMF或DMA;
本发明所述的锌盐化合物与(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)的摩尔比为2:0.8~2:1,锌盐化合物与4,4′-联苯二甲酸的摩尔比为1:0.8~1:1;锌盐化合物与溶剂的摩尔比为1:1000~1:5000;
本发明的反应温度为80℃~100℃;
本发明的反应时间1~120小时;
本发明的升温速率为1℃/h~5℃/h。
本发明的降温速率为1℃/h~10℃/h。
相对于现有技术,本发明具有如下优点和有益效果:
(1)本发明所合成的金属有机框架晶体材料结构新颖、独特。
(2)本发明采用(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)、4,4′-联苯二甲酸和Zn2+盐为原料,采用溶剂热合成法,简单易行,成本低,产率高,易于大规模工业化生产。
(3)本发明金属有机框架晶体材料具有三维网状结构和多孔性、高比表面积(BET比表面积为752m2/g)、稳定的特点(热稳定达350℃),273K,1atm下对CO2和N2的吸附量分别为3.47mmol/g和0.57mmol/g。以TEMPO为添加剂,在水相中催化苯甲醇选择性氧化生成苯甲醛,产率达99%,催化剂循环使用五次,几乎无活性损失。表明该材料在气体吸附、催化等领域具有很好的应用前景。
附图说明
图1本发明金属有机框架晶体材料Cu(II)-Salen(L)配体分子结构。
图2本发明金属有机框架晶体材料Cu(II)-Salen(L)的配位模式。
图3本发明金属有机框架晶体材料BPDC的配位模式。
图4本发明金属有机框架晶体材料沿b轴的透视图。
图5本发明金属有机框架晶体材料二重互穿topos结构图。
图6本发明金属有机框架晶体材料的红外光谱图。
图7本发明金属有机框架晶体材料的热重分析图。
图8本发明金属有机框架晶体材料在77K的N2吸附-脱附等温线图。
图9本发明金属有机框架晶体材料在273K时CO2和N2的吸附图。
图10本发明金属有机框架晶体材料催化苄醇氧化生成苯甲醛的1H NMR图。
图11本发明金属有机框架晶体材料催化苄醇氧化生成苯甲醛的13C NMR图。
具体实施方式
本发明的吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用,合成和表征步骤为:
将二价锌盐化合物、(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(II)、4,4′-联苯二甲酸溶于溶剂中,搅拌均匀,然后加入到具螺纹耐高温玻璃小瓶中,加热缓慢升温,反应物在一定温度下反应一段后,逐步降低温度,冷却至室温,过滤,用溶剂洗涤,干燥,得{[Zn2(L)(BPDC)2]·DMF·5H2O}n晶体材料。然后用Rigaku RAXIS~RAPID IPX-射线衍射仪测化合物的单晶结构,Nicolet Nexus 470 FTIR红外光谱仪测化合物红外光谱,样品的热重/差热分析在Q600 SDT热重分析仪上进行测试,粉末X-射线衍射在Bruker D8 X-射线衍射仪上进行测试,C、H、N元素分析在德国Vario EL III元素分析仪上测试,氮气吸附等温线在Quantachrome AS-1 MP仪器上进行测试,1H NMR和13C NMR在美国Agilent DD2-400核磁共振仪测试。
具体实施例如下:
{[Zn2(L)(BPDC)2]·DMF·5H2O}n的合成及表征
将吡啶型Cu(II)-Salen(L)配体(10mg,0.015mmol,1.0equiv)置于10mL具螺纹的透明耐高温玻璃小瓶中,依次加入六水合硝酸锌(9mg,0.030mmol,2.0equiv)、4,4′-联苯二甲酸(7.3mg,0.030mmol,2.0equiv)、2mL DMF,超声处理2分钟使其溶解,待完全溶解后,搅拌5分钟,然后旋紧瓶盖,置于自动程序控制升温箱内,以5℃/h升温速率升温至80℃,保温3天,再以5℃/h降温速率降至室温,过滤,得条形墨绿色晶体,用DMF洗涤,室温晾干,得14mg,产率为65%(按Cu-Salen计算)。按C71H65CuN5O17Zn计算的元素分析理论值(%)为:C,60.16;N,4.87;H,4.53;实验值:C,60.12;N,4.94;H,4.72。IR(4000-400cm-1):3433(vs),2925(w),1668(s),1600(vs),1400(vs),1224(m),827(w),771(m),702(w)。
所得化合物的单晶X-射线衍射数据是在Rigaku RAXIS~RAPID IPX-射线衍射仪上测定,在室温下进行单晶X-射线衍射数据的收集。衍射仪是用CuKα射线,波长为
Figure GDA0003491799070000061
90kV和50mA的工作电压和电流,以ω扫描方式收集进行Lp因子校正,吸收校正使用CrystalClear程序(Müller P.,Herbst-Irmer R.,Spek A.L.,et al.InternationalUnion of Crystallography Book Series,Oxford University Press:New York,2006,Chapter 7)。用直接法解析结构,然后用差值傅里叶法求出全部非氢原子坐标,有机氢原子采用理论加氢法得到,用最小二乘法对结构进行修正。计算工作在微机上用SHELXTL程序包完成(Sheldrick,G.M.:Crystal structure refnement with SHELXL.ActaCrystallogr.2015,C71:3–8.),所的化合物结构为{[Zn2(L)(BPDC)2]·DMF·5H2O}n。表1为该金属有机框架材料的主要晶体学数据。
表1
Figure GDA0003491799070000071
R1=Σ||Fo|-|Fc||/Σ|Fo|.wR2=[Σw(Fo2-Fc2)2/Σw(Fo2)2]1/2
图1为Cu(II)-Salen(L)的分子结构图。X-射线单晶衍射研究表明,化合物{[Zn2(L)(BPDC)2]·DMF·5H2O}n为三斜晶系,空间群P-1。每个不对称单元含有1个Cu(II)-Salen配体,2个4,4′-联苯二甲酸根离子,2个Zn离子。图2为Cu(II)-Salen的配位模式,图3为4,4′-联苯二甲酸根的配位模式。次级结构单元为典型的轮浆型结构[(Zn2(CO2)4],轴向与Cu(II)-Salen配体的N原子配位。每个Zn原子和4个羧基配位,4个羧基来自于4个不同的对苯二甲酸根离子。每个Zn原子均为5配位模式。每个次级结构单元连接4个4,4′-联苯二甲酸根阴离子配体,2个Cu(II)-Salen配体。4,4′-联苯二甲酸根的两个羧基阴离子均以(κ112)模式与次级结构单元的两个Zn原子配位,Cu(II)-Salen配体的N原子则分别与次级结构单元的1个Zn在轴向配位。{[Zn2(L)(BPDC)2]·DMF·5H2O}n的拓扑结构分析证实线x型的Cu(II)-Salen和BPDC均保持他们的二连接性,每个次级结构单元作为一个六连接的节点,Cu(II)-Salen和BPDC配体与次级结构单元首尾相连形成pcu格子。图4为{[Zn2(L)(BPDC)2]·DMF·5H2O}n沿b轴的透视图。BPDC与Zn离子配位形成平面正方形网格,Cu(II)-Salen配体的N原子再与平面正方形网格的Zn离子轴向配位形成二重互穿的3D网络,网络的拓扑
Figure GDA0003491799070000081
符号是(412.63)(图5)。
图6为该金属有机框架的红外光谱,在Nicolet Nexus 470 FTIR红外仪上进行测试,使用光谱纯的溴化钾压片,测试前将样品和溴化钾在紫外灯下干燥,以除去样品表面的水,测量范围4000-400cm-1。从红外光谱图可以看出在3433cm-1为水的O-H键的伸缩振动吸收峰。3059cm-1是芳环的υC-H振动;1668为C=N伸缩振动;1600cm-1和1400cm-1分别为羧基的υsC=O和υasC=O振动,1224cm-1吸收峰为配体芳环中的υ(C=C)的骨架振动。
图7为该金属有机框架的热重/差热分析在Q600SDT热重分析仪上进行测试,调零后,称量5~10mg样品放入陶瓷干锅中进行测量,在氮气气氛下进行,升温速率设为10℃/min,升至800℃。有两个明显的失重阶段,在30-200℃之间失重11.4%,对应于失去孔道中1个无序DMF分子和5个无序水分子(理论计算11.3%);350℃时有一个急剧的失重,有机配体开始分解,框架开始坍塌。失重结束于800℃,总共有大约64.9%的失重。
图8为该金属有机框架的氮气吸附等温线,在Quantachrome AS-1 MP仪器上进行测定,测试前样品在200℃真空活化24h,除去样品孔道内的客体分子。使用高纯N2(99.999%)在77K下10-6-1压力范围内测N2吸附量并计算BET比表面积。该物理吸附-脱附等温线为典型的微孔型吸附等温线(type I),且计算得到其BET比表面积为755m2/g。
图9为该金属有机框架在0.1-1atm、273K下对CO2和N2的吸附量,在QuantachromeAS-1MP仪器上进行测定,测试前样品在200℃真空活化24h,除去样品孔道内的客体分子。使用高纯CO2和N2(99.998%)。对CO2的吸附量是3.47mmol/g,对N2的吸附量是0.57mmol/g。
催化苯甲醇在TEMPO的作用下选择性氧化得到苯甲醛反应的步骤:在10mL的茄形瓶反应器中分别加入苯甲醇(2mmol)、TEMPO(0.4%mol)和{[Zn2(L)(BPDC)2]·DMF·5H2O}n催化剂(0.025mol%),70℃反应10小时,反应结束后,加入乙腈1.5mL,离心分离反应液和催化剂,如此萃取分离4次,上清液合并,浓缩,经硅胶柱层析分离纯化(洗脱剂为石油醚:乙酸乙酯=15:1),得苯甲醛0.21g,产率99%。通过Agilent DD2-400核磁共振仪,CDCl3为溶剂,TMS为内标。对目标产物结构进行表征,图10为苯甲醛的1H NMR谱图,图11为苯甲醛的13CNMR谱图。
循环催化实验以苯甲醇为反应底物,每次催化反应结束后,离心机离心分离催化剂,过滤,依次用二氯甲烷和丙酮洗涤催化剂,在150℃下真空加热活化24h,作为下一次循环催化时的催化剂。5轮循环催化的产物收率依次为99%、99%、97%、96%、94%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.吡啶型手性Cu(
Figure 285580DEST_PATH_IMAGE001
)-Salen配体金属有机框架晶体材料的制备方法,其特征在于:它包括以下步骤:
步骤一:将二价锌盐化合物、(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(
Figure 796196DEST_PATH_IMAGE001
)、4,4'-联苯二甲酸溶于溶剂中,搅拌均匀,然后加入具有螺纹的透明耐高温玻璃小瓶中;
步骤二:以升温速率1 °C/h ~5 °C/h缓慢加热升温至80 ℃~ 100 ℃,反应1 ~ 120 小时后,逐步降低温度,冷却至室温,降温速率1 °C/h ~10 °C/h,过滤,用溶剂洗涤,干燥,制得金属有机框架晶体材料;化学式如下:
{[Zn2(L)(BPDC)2]·DMF·5H2O}n,其中L 是(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(
Figure 44774DEST_PATH_IMAGE001
)的简写;
其中L的分子结构式为:
Figure DEST_PATH_IMAGE002
上述化学式中:
所述BPDC是4,4'-联苯二甲酸根二价阴离子;
所述n为聚合度。
2.根据权利要求1所述吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料的制备方法,其特征在于:所述金属有机框架的晶体属三斜晶系,空间群为P-1。
3.根据权利要求1所述吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料的制备方法,其特征在于:所述的锌盐化合物与(R,R)-N,N’-二(5-(4-吡啶基)亚-2-羟基苯乙酮基)-1,2-二苯基乙二胺铜(
Figure 984524DEST_PATH_IMAGE001
)的摩尔比为2 :0.8 ~2 :1,锌盐化合物与4,4'-联苯二甲酸的摩尔比为1:0.8 ~ 1:1;锌盐化合物与溶剂的摩尔比为1:1000~1 :5000。
4.根据权利要求1所述吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料的制备方法,其特征在于:所述的锌盐为硝酸锌盐、氯化锌盐、硫酸锌盐、醋酸锌盐和高氯酸锌盐其中之一。
5.根据权利要求1所述吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料的制备方法,其特征在于:所述步骤一和步骤二中的溶剂均为DMF或DMA。
6.如权利要求1-5任意一项所述制备方法得到的材料的应用,其特征在于:该金属有机框架晶体材料在气体吸附、催化中的应用。
CN202010405657.1A 2020-05-14 2020-05-14 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用 Active CN111690145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010405657.1A CN111690145B (zh) 2020-05-14 2020-05-14 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010405657.1A CN111690145B (zh) 2020-05-14 2020-05-14 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111690145A CN111690145A (zh) 2020-09-22
CN111690145B true CN111690145B (zh) 2022-03-04

Family

ID=72477285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010405657.1A Active CN111690145B (zh) 2020-05-14 2020-05-14 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111690145B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433025B (zh) * 2020-10-30 2023-08-18 上海科技大学 一种金属有机框架晶体材料及其合成方法
CN114249902B (zh) * 2021-12-24 2022-08-26 大连理工大学 具有可见光催化还原c-f键性能的吩噁嗪基金属有机框架的制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295062B (zh) * 2015-12-09 2018-02-02 哈尔滨工业大学 一种含有三核镉簇的手性配位聚合物及制备方法和应用
CN105601653A (zh) * 2015-12-14 2016-05-25 东南大学 一种基于(1R,2R)-3-bcpb配体的手性Cu(II)配位聚合物及其制备方法
CN105646900A (zh) * 2016-02-02 2016-06-08 遵义医学院 一个三配体Cd(Ⅱ)镉金属有机框架晶体材料及制备方法
CN109810125A (zh) * 2017-11-21 2019-05-28 中国科学技术大学 手性铜复合物及其制备方法、手性不饱和β-硝基α-羟基酯的制备方法
CN108503848B (zh) * 2018-03-06 2020-09-22 邯郸学院 一种Salen-Rh(Ⅱ)配位聚合物及其制备方法和应用
CN109665975A (zh) * 2018-11-20 2019-04-23 许昌学院 具有顺反异构的Salen配体的制备方法及其在Cu2+探针和pH探针中的应用

Also Published As

Publication number Publication date
CN111690145A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
Li et al. Novel cage-like MOF for gas separation, CO 2 conversion and selective adsorption of an organic dye
Wu et al. Copper (I) iodide cluster-based lanthanide organic frameworks: synthesis and application as efficient catalysts for carboxylative cyclization of propargyl alcohols with CO 2 under mild conditions
Zhao et al. Structural variation of transition metal–organic frameworks using deep eutectic solvents with different hydrogen bond donors
Li et al. Microporous 2D indium metal–organic frameworks for selective CO 2 capture and their application in the catalytic CO 2-cycloaddition of epoxides
Waitschat et al. Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit
Saha et al. Porous magnesium carboxylate framework: Synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction
He et al. A microporous metal–organic framework assembled from an aromatic tetracarboxylate for H 2 purification
Wang et al. Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d 10 coordination polymers based on the 5, 5′-(1 H-2, 3, 5-triazole-1, 4-diyl) diisophthalic acid ligand
Cheng et al. New multifunctional 3D porous metal–organic framework with selective gas adsorption, efficient chemical fixation of CO 2 and dye adsorption
Bhattacharya et al. Porous coordination polymers based on functionalized Schiff base linkers: enhanced CO 2 uptake by pore surface modification
Shi et al. A new three-dimensional metal–organic framework constructed from 9, 10-anthracene dibenzoate and Cd (ii) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes
Chen et al. Structure, adsorption and magnetic properties of chiral metal–organic frameworks bearing linear trinuclear secondary building blocks
Zhu et al. Two chelating-amino-functionalized lanthanide metal–organic frameworks for adsorption and catalysis
Cui et al. A microporous metal-organic framework of sql topology for C2H2/CO2 separation
CN111690145B (zh) 一个吡啶型手性Cu(II)-Salen配体金属有机框架晶体材料及其制备方法与应用
Wang et al. Rational construction of an ssa-type of MOF through pre-organizing the ligand's conformation and its exceptional gas adsorption properties
Gupta et al. A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO 2 capture
Jiao et al. A porous metal–organic framework based on an asymmetric angular diisophthalate for selective adsorption of C 2 H 2 and CO 2 over CH 4
Xu et al. Effect of arrangement of functional groups on stability and gas adsorption properties in two regioisomeric copper bent diisophthalate frameworks
Jacobsen et al. Ce-MIL-140: Expanding the synthesis routes for cerium (IV) metal–organic frameworks
Pachfule et al. Synthesis and structural comparisons of five new fluorinated metal organic frameworks (F-MOFs)
Kang et al. Solvent-dependent variations of both structure and catalytic performance in three manganese coordination polymers
Zhang et al. Diverse structures of metal–organic frameworks based on different metal ions: luminescence and gas adsorption properties
Gu et al. Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation
Wang et al. Triazine–polycarboxylic acid complexes: synthesis, structure and photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant