CN111684074A - 用于确定微生物浓度的方法 - Google Patents

用于确定微生物浓度的方法 Download PDF

Info

Publication number
CN111684074A
CN111684074A CN201980009378.9A CN201980009378A CN111684074A CN 111684074 A CN111684074 A CN 111684074A CN 201980009378 A CN201980009378 A CN 201980009378A CN 111684074 A CN111684074 A CN 111684074A
Authority
CN
China
Prior art keywords
microorganisms
concentration
suspension
sample
microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980009378.9A
Other languages
English (en)
Inventor
简·格雷维
马库斯·克林特斯特德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Q Linea AB
Original Assignee
Q Linea AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Q Linea AB filed Critical Q Linea AB
Publication of CN111684074A publication Critical patent/CN111684074A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了从包含微生物和哺乳动物细胞的样品制备完整微生物的悬浮液的方法,其包括使样品与pH为至少pH 6且小于pH 9的缓冲溶液、洗涤剂和一种或多种蛋白酶接触以允许哺乳动物细胞裂解;通过适合保留微生物的过滤器过滤混合物,以除去裂解的哺乳动物细胞;将过滤器保留的微生物重悬于液体中,以提供包含回收的完整微生物的悬浮液;以及通过以下方法确定悬浮液中微生物的浓度:i.将悬浮液的等分试样加热和/或与醇接触;ii.任选地在步骤(i)之前、期间和/或之后稀释悬浮液的一个或多个等分试样以提供一个或多个稀释的等分试样;iii.使步骤(i)或(ii)的等分试样的至少一部分与能够结合DNA的单一荧光染色剂接触;iv.将步骤(iii)的混合物在荧光染色剂的发射波长下成像,并确定成像混合物中对应于微生物的物体的数目的图像分析值;以及v.将图像分析值与预定的校准曲线进行比较,从而确定悬浮液中微生物的浓度。

Description

用于确定微生物浓度的方法
本发明一般地涉及样品中微生物的检测和表征。特别地,本发明提供了用于从包含微生物细胞和非微生物细胞二者的样品中回收微生物并快速测量从样品中回收的完整微生物的浓度的方法。完整微生物可能是活的。
传统上,通过测量样品的光学参数(例如它的浊度)来确定样品中的微生物生长和微生物的浓度。例如,McFarland标准在微生物学中用作样品浊度的参考,因此样品中的微生物(通常为细菌)的数目将在给定的浊度范围内,并且此类标准可用在浊度计中以确定样品中微生物的浓度。可以使用替代技术(包括分光光度法)来确定样品中微生物的浓度。然而,尽管快速且易于实施,但是这样的技术仅能够近似得到样品中的微生物数目。浊度或特定波长的光的吸光度与样品中微生物浓度之间的关系还随不同的微生物物种而变化,使得当不清楚所讨论的微生物的身份时,很难评估微生物的浓度。此外,这类技术仅能够测量样品的总浊度或吸光度,因此不能区分样品中的完整微生物或细胞或其他碎片。样品中微生物的浓度的浊度测量还具有低灵敏度,并且为了能够测量样品中微生物的浓度需要相对较高的微生物浓度。这阻止了以这种方式测量低浓度,并且在进行测量之前可能还需要延长的培养步骤。
也可以通过将样品的一部分(或稀释的部分)在固体生长培养基上铺板,孵育样品并对形成的菌落数目进行计数来更定量地估算样品中完整微生物的数目。经铺板的样品中菌落形成单位(CFU)的数目被认为对应于活微生物的数目。然而,这种技术的缺点在于,其需要漫长的孵育步骤以使得微生物生长进行足够的时间。因此,这样的经典技术可用于在特定的时间点测量样品中微生物的浓度,但是在快速需要完整微生物的浓度的情况下具有有限的用途,例如以对样品中的微生物进行测试或测定,其需要样品中存在的微生物数目的先验知识。
在微生物检测领域中周知,活的(即活)细胞也可以与死细胞区分开,并且许多技术可用于此目的。本领域已知的方法集中于核酸染色剂、膜电位、氧化还原指示剂或报道基因。通常,这些技术依赖于活的微生物的膜是完整的,而死亡的微生物的膜破裂和/或破坏的事实(Gregori等人.2001.Appl.Environ.Microbiol.67,4662-4670)。
允许将死细胞与活细胞分开的一种特定技术是活/死染色。通过使用不可透过膜的染料或染色剂,仅具有破损膜的细胞才被染色,而具有完整膜的细胞则不会。染料/染色剂因此用作死细胞的标志物,因为仅具有破损膜的那些细胞(即死细胞)才被这样的染料染色。以这种方式,可以检测死细胞,并且此外可以计算总死细胞的比例。该领域的进一步发展已导致开发使用两种不同的染色剂的技术:第一种是细胞可渗透的,并且可进入活细胞和死细胞二者;第二种是细胞不可渗透的,并且只能进入死细胞。因此,可以对活细胞和死细胞进行差异标记,并且从而可以进行区分。用于执行此技术的试剂盒的一个实例是LIVE/DEAD BacLight Bacterial Viability Kit(Invitrogen),其包含SYTO9(细胞可渗透的)染色剂和碘化丙啶(PI)(细胞不可渗透的)荧光染色剂。通过在这样的试剂盒中使用的第一染色剂和第二染色剂二者的发射波长处检测微生物细胞,这样的技术可特别用于区分活微生物和死微生物,从而确定样品中存在的活微生物的比例。
可以使用许多不同的检测技术来区分样品中差异染色的活微生物细胞和死微生物细胞。例如,可以对样品中被指示为活的和非活的微生物细胞的数目进行直接计数,例如在显微镜视野中,并且以这种方式确定样品中存在的活微生物的比例。但是,这样的技术是劳动和时间密集的,并且不能准确地确定活微生物的浓度。当与活/死染色技术结合使用时,诸如流式细胞术的自动化细胞计数方法也可以用于测量样品中活微生物的比例(Berney等人.2007.Applied and Environmental Microbiology 73,3283-3290)。但是,在流式细胞术方法中,需要复杂且高度专业的仪器以及定期校准(例如,在测量每个样品之前进行单独的校准)。因此,这样的技术通常不适合用于稳健的检测方法,例如常规临床实验室使用需要的,并且这样的技术的自动化可能是困难的。因此,需要用于测量样品中完整微生物的浓度,特别是用于临床使用的简单、快速和稳健的方法和仪器。
如上所述,当使用合适的染料时,具有完整细胞膜的微生物可以与具有受损或破坏的细胞膜的微生物差异染色。因此,通过活/死染色检测活细胞通常包括检测具有完整细胞膜的细胞,并且因此出于测量样品中活微生物细胞浓度的目的,具有完整细胞膜的细胞被认为代表活细胞。完整细胞和活细胞之间的相关性很好,并且检测完整细胞被认为是确定样品中活细胞数量或浓度的有效方法。
我们共同申请审理中的申请PCT/EP2018/077852涉及一种使用“活/死”染色剂和成像确定样品中完整微生物细胞浓度的方法。通过将这种方法的多个方面与从样品中回收微生物细胞并且对回收的细胞进行预处理的特定的温和方式相结合,本申请的发明人已经发明了一种仅使用单一染料或染色剂来确定从样品中回收的完整微生物细胞浓度的方法,其提供了改进的简化技术。
如上所述,在微生物学中的许多情况下,希望确定微生物、特别是完整微生物的浓度。可能希望允许提供适当浓度或数目的微生物以用于表征微生物的测定,使得可以正确进行所述测定,或者实际上确保样品适合用于特定测定。值得注意的是,这可以包括制备标准(或标准化)培养物或培养物的接种物。这特别包括制备用于抗生素敏感性测试(AST)的标准化接种物,出于检测和鉴定微生物感染的临床目的,其需要具有已知或预定或标准浓度的接种物。但是,可能还希望为其他测定而确定样品中微生物的浓度,或提供标准培养物,如下文更详细地讨论。
生物学和医学中的许多工艺都需要准确确定样品中微生物(特别是完整/活微生物)的数目,并根据所述确定来制备接种物。这些包括例如水和食品质量控制分析、环境样品中的微生物监测、医疗设备内或上或患者内的生物膜形成,以及实验室微生物研究。特别地,准确确定样品中活微生物细胞的浓度并由此制备包含期望浓度微生物的接种物可用于诊断微生物感染。
微生物感染是具有重大临床和经济影响的人类和动物疾病的主要类别。尽管可以使用多种类别和类型的抗微生物剂来治疗和/或预防微生物感染,但是抗微生物剂抗性在现代医学中是很大且日益严重的问题。因此,在治疗微生物感染的情况下,获取关于感染性微生物的性质及其抗微生物剂敏感性谱的信息可能是期望且非常重要的以便确保有效治疗并且还减少不必要或无效抗生素的使用,并且从而帮助控制抗生素或更普遍的抗微生物剂耐药性的传播。在其中快速有效治疗为至关重要的严重或威胁生命的感染中,尤其如此。
脓毒症,由严重感染引起的潜在致命的全身炎症,是美国花费最昂贵的病症且是医院成本的驱动因素,占总全国医院成本的5%。如果未合理治疗,严重脓毒症的死亡率每小时会增加7%,并且抗微生物剂耐药性的引起脓毒症的菌株(特别是细菌菌株)的日益流行使得对脓毒症的正确治疗的预测越来越难。当前用于诊断引起脓毒症或其他感染的微生物的金标准是基于表型和生化鉴定技术,其需要分离和培养感染性微生物的纯培养物。可能需要几天的时间来进行微生物鉴定(ID)和抗生素敏感性(AST)测试,以鉴定感染并确定可能对一种或多种抗生素具有耐药性的微生物的敏感性谱。AST测定对在微生物上测试的每种抗微生物剂提供了“最小抑菌浓度”或“MIC”值,并且因此可提供关于哪些抗微生物剂可能对抗微生物有效的信息。可以越快速提供这样的信息越好,因此快速的AST方法是期望的并且正在被开发。
一般而言,在不同方法和/或不同临床实验室之间,AST确定获得的结果应具有可比性。为此,习惯上使用规定和公认的条件进行AST测试。这可能涉及使用规定的培养基(例如Muller-Hinton(MH)培养基)和培养条件。特别地,习惯上还使用标准化的微生物滴度(即微生物细胞的标准化的(或标准)数目或量(例如浓度))来建立在AST测试中进行(即监测生长)的培养物,使得培养物中细菌的数目或量处于设定值。例如,常规上将McFarland标准用作调节微生物悬浮液(尤其是细菌悬浮液)的浊度的参考,以将在建立培养物中使用的培养制剂中的微生物数目在给定范围内以使AST测试标准化。基于参考悬浮液的浊度设置McFarland标准,并调节微生物悬浮液的浓度(或细菌数目)以匹配所选McFarland标准的浊度。
常规地(例如,如用于确定抗微生物剂的MIC的EUCAST标准方法所述(EuropeanCommittee for Antimicrobial Susceptibility Testing(EUCAST)of the EuropeanSociety of Clinical Microbiology and Infectious Diseases(ESCMID),ClinicalMicrobiology and Infection,Vol.9(8):ix–xv,2003)),将用于AST的微生物细胞(例如来自临床样品培养物)铺板并孵育以获得分离的菌落。然后可以收集菌落并用于制备微生物细胞悬浮液,以用作用于AST测定的接种物。通常,并且如上述指南中所述,将如此制备的悬浮液中的微生物浓度设定为标准和预定水平,例如0.5McFarland单位,以允许将标准浓度的微生物用于AST测定。在使用前,可以将微生物悬浮液的浊度调节至0.5McFarland单位。或者,可以使用分离的单个菌落以接种培养基,可以将其培养以提供接种物。在用作接种物之前,可允许培养物生长至期望的标准(0.5McFarland单位)和/或若需要可以调节至该标准。因此,在AST之前将细菌浓度标准化之前,通常使微生物培养物生长直至生长达到等于或大于0.5McFarland标准的浊度。如果需要,可以调节培养物以提供具有等于0.5McFarland标准的浊度的培养物。然后可以将其用作用于建立AST测定的接种物。将在该点获得的接种物(即约0.5McFarland单位的培养物或悬浮液)以肉汤稀释,以得到用于AST培养的期望的标准化终细胞数浓度。作为参考,0.5McFarland单位的微生物培养物/悬浮液包含约1x108CFU/ml的微生物浓度。当建立AST培养物时,通常将这样的微生物培养物/悬浮液以肉汤稀释~200倍,即每种AST培养条件通常会包含约5x105CFU/ml的起始微生物浓度。
对于某些微生物感染,例如脓毒症,通常将血液样品收集在血液培养瓶中,并允许微生物培养物(即临床样品培养物)生长直到在培养物监测系统中获得阳性培养结果。在自动培养物检测系统中,例如Bactec或Bact/Alert系统中,指示为阳性所需要的细菌浓度为108至109CFU/ml之间,对应于0.5到3.5McFarland单位(如果在盐溶液中测量)。易于检测到(通过肉眼或比浊法测量)的最低McFarland值为约0.5McFarland单位。
通常一旦获得了阳性培养结果,可以使用这样的临床样品培养物进行ID测试和AST确定。对于AST测试,通常从临床样品培养物(例如阳性培养物)制备进一步的培养物,以用作或用于制备AST测试培养物的接种物,并且在其用于接种AST测试培养物之前将这样的接种物标准化至预设微生物浓度或McFarland值(通常为0.5McFarland单位)。因此,通常使用或从0.5McFarland单位的培养物或微生物悬浮液制备AST的接种物。如上所述,这在本领域的方法中通常通过选择通过将临床样品培养物或从中分离的微生物铺板而获得的菌落来完成。
需要与McFarland标准进行比较以确定样品中微生物浓度的技术只能提供浓度的近似值,并且不能提供关于样品中活微生物细胞浓度的特定信息。此外,这样的技术依赖于样品中相对较高(例如0.5McFarland单位)的微生物浓度以便测量浓度。
因此特别需要改善确定样品中微生物浓度的速度和灵敏度,特别是在建立AST测定的情况下。特别地,需要允许进行快速、准确和灵敏的微生物浓度确定而无需复杂的仪器(例如包括流式细胞术的方法)的稳健且简单的方法。本发明通过以下解决了该需求:提供用于确定微生物浓度的改进的方法,所述方法可用于制备微生物接种物,并且进一步提供用于进行AST的改进的工作流程,并且其允许准确和快速地确定微生物悬浮液中微生物的浓度,更显著地微生物悬浮液中完整微生物的浓度。特别地,本发明的浓度确定方法的价值在于使得能够进行快速AST测定。因此,本发明提供了用于确定微生物制剂中微生物浓度、更显著地完整微生物浓度的快速、准确和精确的方法。如上所述,完整微生物的浓度可以用作活微生物的可靠指标。
特别地,本发明的方法基于以对使微生物细胞与非微生物细胞(特别是哺乳动物)分离特别有效的方式从样品中回收微生物细胞,通过以下实现:裂解非微生物细胞而使微生物保持完整(并且很大程度上或基本上是活的),对回收的微生物悬浮液中的完整微生物进行染色,并且对悬浮液进行成像以确定对应于样品中完整微生物的物体的数目的值,而不是对微生物进行直接计数或相对于预定标准通过比浊法估算微生物的浓度或通过对培养的菌落进行计数来对存在的活微生物的数目进行计数。通过使用预定的标准曲线,可以将通过成像检测到的物体数目的确定值与悬浮液中存在的微生物的浓度相关联。通过将这种温和的(保持活力的)分离(微生物分离)技术与在染色前用醇和/或加热对回收的微生物细胞进行预处理以辅助或协助染色过程的步骤相结合,出乎意料地发现,仅单一染色剂就可以可靠地用于检测和确定回收的微生物悬浮液中的微生物浓度。不希望受到理论的束缚,我们认为,分离步骤从样品中产生足够纯的微生物细胞制备物,其在很大程度上(例如,实质上或基本上)是活的(例如,只有很少比例的非活微生物细胞),其允许仅使用单一染色剂。对具有影响细胞渗透性的抗性机制并且因此影响微生物摄取和/或保持染色剂能力的微生物(尤其是细菌)的定量,与预处理一起的这种组合作用是特别有益的。不希望受到理论的束缚,相信预处理步骤可以破坏微生物中的外排泵(常见的抗微生物剂抗性机制)或使其不起作用,从而增强了耐药性微生物(特别或确实是具有强的或有效外排泵的任何微生物)的染色。换句话说,可以通过使用本文所述的预处理步骤将微生物(特别是抗微生物剂耐药性的微生物)的染色正常化。这点很重要,因为AST中对耐药性细菌的错误对于已经从其分离出细菌的患者尤其有害,因为这会增加错误治疗的风险。
因此,在第一方面,本发明提供了一种从包含微生物和哺乳动物细胞的样品制备完整微生物的悬浮液的方法,所述方法包括:
a.提供包含微生物和哺乳动物细胞的样品;
b.使所述样品与缓冲溶液、洗涤剂和一种或多种蛋白酶接触,其中所述缓冲溶液的pH为至少pH 6且小于pH 9以允许裂解存在于所述样品中的哺乳动物细胞;
c.通过适合保留完整微生物的过滤器过滤步骤(b)中获得的混合物,其中所述过滤从所述混合物中去除裂解的哺乳动物细胞;
d.回收步骤(c)中通过所述过滤器保留的微生物,其中所述回收包括将所述微生物重悬在液体中以提供包含回收的完整微生物的悬浮液;和
e.确定所述悬浮液中微生物的浓度,其中微生物的浓度通过包括以下的方法确定:
i.使所述悬浮液的等分试样与醇接触和/或加热所述悬浮液的等分试样;
ii.任选地稀释所述悬浮液的一个或多个等分试样以提供处于一个或多个稀释值的一个或多个稀释的等分试样,其中所述稀释在步骤(i)之前、期间和/或之后进行;
iii.使步骤(e)(i)或(e)(ii)的等分试样的至少一部分与能够结合DNA的单一荧光染色剂接触以提供悬浮液-染色剂混合物,其中所述染色剂具有发射波长;
iv.在所述荧光染色剂的发射波长下对步骤(e)(iii)的所述悬浮液-染色剂混合物进行成像,并且确定成像混合物中对应于微生物的物体数目的图像分析值;和
v.将用于步骤(e)(iii)的所述等分试样的步骤(e)(iv)中获得的图像分析值与预定的校准曲线进行比较,从而确定所述悬浮液中微生物的浓度。
从以上内容将理解,步骤(b)是选择性裂解样品中存在的非微生物细胞的步骤,使样品中的微生物细胞保持完整(或更特别地基本上完整)。因此,在步骤(b)中,洗涤剂以有效裂解(或用于裂解或能够裂解)非微生物细胞但不能有效裂解(或不能用于裂解或不能裂解)微生物细胞的量或浓度使用。
如上所述,用醇和/或加热预处理悬浮液中的微生物的步骤(e)(i)用于促进随后的染色。不希望受到理论的束缚,这可能至少部分地是由于预处理在以下中的作用:使微生物的细胞壁和/或膜透化,或以其他方式影响微生物结构的构象变化以促进染色剂的进入和/或保留,和/或使微生物失活,例如使得染色剂不会通过外排泵从微生物细胞中去除。如上所述,相信微生物中外排泵(当其存在时)的失活对该方法的有益作用具有重要贡献。因此,替代地表达,在步骤(e)(i)中预处理可用于使染色正常化。
尽管醇和/或加热提供了有效的这种预处理,但是这也可以通过其他方式来实现,例如使用洗涤剂,例如以能够对微生物产生类似(例如透化和/或失活)作用的浓度或量。
因此,在另一方面,本发明提供了一种从包含微生物和哺乳动物细胞的样品制备完整微生物的悬浮液的方法,所述方法包括:
a.提供包含微生物和哺乳动物细胞的样品;
b.使所述样品与缓冲溶液、洗涤剂和一种或多种蛋白酶接触,其中所述缓冲溶液的pH为至少pH 6且小于pH 9,以允许裂解存在于所述样品中的哺乳动物细胞;
c.通过适合保留微生物的过滤器过滤步骤(b)中获得的混合物,其中所述过滤从所述混合物中去除裂解的哺乳动物细胞;
d.回收步骤(c)中通过所述过滤器保留的微生物,其中所述回收包括将所述微生物重悬在液体中以提供包含回收的完整微生物的悬浮液;和
e.确定所述悬浮液中微生物的浓度,其中微生物的浓度通过包括以下的方法确定:
i.使所述悬浮液的等分试样与洗涤剂接触;
ii.任选地稀释所述悬浮液的一个或多个等分试样以提供处于一个或多个稀释值的一个或多个稀释的等分试样,其中所述稀释在步骤(i)之前、期间和/或之后进行;
iii.使步骤(e)(i)或(e)(ii)的等分试样的至少一部分与能够结合DNA的单一荧光染色剂接触以提供悬浮液-染色剂混合物,其中所述染色剂具有发射波长;
iv.在所述荧光染色剂的发射波长下对步骤(e)(iii)的所述悬浮液-染色剂混合物进行成像,并且确定成像混合物中对应于微生物的物体数目的图像分析值;和
v.将用于步骤(e)(iii)的所述等分试样的步骤(e)(iv)中获得的图像分析值与预定的校准曲线进行比较,从而确定所述悬浮液中微生物的浓度。
特别地,在步骤(b)中,洗涤剂有效地(或用于)实现(或能够实现)非微生物细胞的选择性裂解(即裂解样品中的非微生物细胞,但不裂解微生物细胞),而在步骤(e)(i)中,洗涤剂有效地(或用于)促进(或能够促进)例如增强或改善或允许或正常化微生物细胞、特别是抗微生物剂耐药性微生物细胞或具有强外排泵的微生物的染色。因此,虽然在步骤(b)和(e)(i)中可以使用相同或不同的洗涤剂,但是当洗涤剂相同时,与步骤(b)相比,在步骤(e)(i)中将以不同(更高)的量使用。
在上述方法中,荧光染色剂可以是细胞可渗透的或细胞不可渗透的,但是在优选的实施方案中,其是细胞可渗透的。
尽管预处理步骤可影响微生物的细胞膜和/或细胞壁的渗透性,并且因此可对细胞壁和/或膜的完整性产生影响,但我们已经发现这并没有减弱能够对微生物进行检测和成像以枚举对应于微生物的物体。因此,对应于微生物的物体可以被鉴定并且可以被成像。尽管在预处理步骤中细胞壁和/或膜的完整性可能会受到一定程度的破坏,但是可以将成像物体鉴定为对应于在步骤(d)中以完整回收的微生物。因此,可以将在步骤(e)(iv)中获得的图像分析值视为对应于(或代表)回收的完整微生物的成像混合物中物体数目的值。因此,在步骤(e)(v)中,比较步骤允许确定悬浮液(即步骤(d)中制备的悬浮液中)中完整微生物的浓度。
在步骤(e)(v)中检测到的物体数目的图像分析值与预定的校准曲线的比较使得能够更准确地测量待获得的悬浮液中微生物(或更特别地完整微生物)的数目。多种因素可影响染色和/或通过染色方法确定完整细胞。例如,在活/死染色的情况下,在一些情况下已经报道了虽然在活/死染色测定中被指示为“活”的微生物细胞的一部分可能包含完整的细胞膜,但其事实上可能是新陈代谢失活的或在其他方面不可培养的(Trevors 2012.JMicrobiol Meth90,25-8)。此外,在营养丰富的环境中快速指数生长期间,活微生物细胞的膜完整性可能降低,从而允许第二荧光染色剂进入细胞(Shi等人.2007.Cytom Part A71A,592-298)。因此,这样的细胞将在第二发射波长下发光,并且由于第二荧光染色剂具有淬灭第一荧光染色剂的荧光的能力,这样的细胞在第一发射波长下的荧光可能被降低。另外,诸如漂白和对第一(细胞可渗透的)荧光染色剂的高于预期的摄取问题可能会影响这样的方法的准确性(Stiefel等人.2015.BMC Microbiology 15:36)。本文公开的方法允许考虑这些可能不利地影响样品中完整细胞浓度的确定的因素(即“影响”任何这样的确定),从而导致更准确地测量微生物生存力。因此,为完整微生物细胞所确定的浓度可以用来表示、指示或对应于或近似于活微生物细胞的浓度。具体地,通过将步骤(e)(iv)中成像的物体的数目的图像分析值与预定的校准曲线进行比较,在试图计算悬浮液中存在的完整、尤其活的微生物的浓度时,可以考虑诸如上述活的和非活的微生物细胞的不正确染色等因素,从而允许更准确地确定待进行的悬浮液中完整的或活的微生物的浓度。
本发明提供了用于确定从样品(或,替代表达为回收的微生物的样品,“回收的微生物样品”)制备的悬浮液中的微生物浓度的快速和灵敏的方法。这可能具有许多用途,并且在多种情况下,其可能有利地提供用于确定回收的微生物样品中的微生物浓度的稳健且简单的方法。除了准确确定微生物的绝对浓度外,所述方法还可具有给出样品中微生物负荷的指示的用途,因此可用于希望知道或估计或想了解存在多少微生物细胞的任何方法或情况。因此,可以使用该方法的情况不受限制。实际上,鉴于该方法的检测的较低限制,该方法可用于确定样品中是否包含微生物。因此,一方面,本发明提供了用于确定样品中微生物的存在的方法,所述方法包括执行本文公开的上述方法中任一种的步骤(a)至(e),并确定样品中是否存在微生物。
本发明的方法可用于其中可能希望评估或确定微生物浓度的不同样品或悬浮液的情况。样品包含微生物和哺乳动物细胞二者,并且因此优选来自哺乳动物。样品特别可以是临床样品或兽医样品,如下文进一步讨论的。该方法可用于确定是否从样品回收了足够或适当浓度的细胞,以能够进行进一步的测试。这将在下面的AST测定的情况下进一步描述,但是该方法可用作后续分析样品中微生物的任何步骤之前的预备步骤。例如,该方法可用于在进行质谱测试和/或基于核酸的测试和/或对微生物的任何其他评估(例如,基于生长的研究)之前确定或评估样品中完整(或活)微生物的浓度。
一旦确定了回收的微生物的悬浮液中完整的(或活)微生物的浓度,就可以有利地使用该信息来准确地制备包含已知或期望数目或浓度的微生物的接种物。
因此,在另一方面,本发明提供了制备微生物接种物(或替代地表达,用于制备微生物培养物的接种物)的方法,所述方法包括使用本文中限定的方法回收并确定悬浮液中微生物的浓度,然后将悬浮液的至少等分试样或一部分中的微生物细胞的浓度调节至期望浓度,从而提供包含期望浓度的微生物的接种物。
一旦确定了包含从所述样品回收的微生物的悬浮液中的微生物浓度之后,本发明还提供了用于表征样品中微生物的方法。因此,本发明的回收和浓度确定方法可以与用于表征微生物的测定结合使用。特别地,这可以是需要已知或预定的微生物浓度或数目的测定。
因此,在另一方面,本发明提供了用于表征样品中微生物的方法,所述方法包括:
(i)提供包含微生物和哺乳动物细胞的样品;
(ii)对所述样品进行如上所限定的步骤(b)至(d),以产生完整(例如活)微生物的悬浮液;
(iii)进行如上所限定的步骤(e)以确定悬浮液中微生物细胞的浓度;
(iv)如果需要,将所述悬浮液中的微生物细胞浓度调节至期望或预定浓度;和
(v)表征悬浮液(以及因此样品)中的微生物。
因此,本发明允许在进行测定、特别是需要微生物的特定浓度或数目以表征所述微生物的测定之前,确定回收的微生物的制备物(悬浮液)中的微生物浓度。因此,这允许可以确定样品或更特别地由其制备的悬浮液是否适合用于给定的测定,并且如果不合适,则允许适当地调节微生物的浓度。
尽管可以通过对悬浮液中微生物所确定的浓度来有益地为本文阐述的任何方法中的浓度调节步骤提供信息,但是不需要浓度调节的所有步骤都在浓度确定已经完成之后进行(例如在上述方法的步骤(iii)之后)。在一个实施方案中,可以在已经确定浓度之后进行调节,例如在已经确定浓度之后进行一个或多个稀释步骤。然而,在另一些实施方案中,初始(即,初步)调节步骤可以在浓度确定步骤完成之前进行,或者独立地,例如在浓度确定步骤进行时或之前。例如,悬浮液或其一部分的初步稀释步骤可以在确定浓度之前进行(这与浓度确定方法中步骤(e)(ii)中等分试样的任选稀释步骤是分开的)。在这样的实施方案中,在已经确定浓度之后然后可以进行一个或多个另外的稀释步骤,以达到期望的浓度(即,可以进一步稀释由这样的初始(初步)稀释产生的稀释液)。通过确定的浓度来为这样的另外稀释提供信息。在这方面将理解,这样的初始(或初步)稀释步骤(其可以被视为“盲式”稀释步骤)将在悬浮液的一部分上进行,该部分不同于以其进行浓度确定的悬浮液等分试样。因此,可以在初步调节步骤中调节(例如稀释)悬浮液的剩余部分(即在已经取出用于浓度确定的等分试样之后剩余的悬浮液),或者可以对悬浮液(即剩余的悬浮液)的单独的部分或等分试样进行初步调节步骤。这可以加快整体方法。
在另一方面,本发明提供了一种用于确定样品中微生物的抗微生物剂敏感性的方法,所述方法包括:
(i)提供包含活微生物和哺乳动物细胞的样品;
(ii)对所述样品进行如上文所限定的步骤(b)至(d),以产生所述活微生物的悬浮液;
(iii)进行如上文所限定的步骤(e),以确定所述悬浮液中微生物细胞的浓度;
(iv)使用步骤(ii)的所述悬浮液接种一系列用于抗生素敏感性测试(AST)的测试微生物培养物,其中该系列测试微生物培养物包括至少两种不同的生长条件,其中所述不同的生长条件包括一种或多种不同的抗微生物剂,并且在两种或更多种不同的浓度下测试每种抗微生物剂;和
(v)评估每种生长条件下微生物的生长程度;
其中如果需要,将所述悬浮液或所述测试微生物培养物中微生物细胞的浓度调节至期望或预定浓度;和
其中使用每种生长条件下的微生物生长程度来确定指示所述样品中的微生物对至少一种抗微生物剂的敏感性的至少一个值。
在一个实施方案中,可以确定至少一个MIC和/或SIR值,从而确定所述样品中所述微生物的抗微生物剂敏感性。
SIR在本领域中是周知和理解为是指敏感的、中间的或耐药性的。尽管SIR比MIC具有更大的过程范围,但在许多情况下在临床上使用SIR。
因此,本发明提供了一种用于进行AST测定的更准确的方法,因为与测定样品的浊度(例如通过样品浊度与McFarland标准浊度的简单比较)相比,其允许更准确地确定微生物的浓度。该方法也比采用两种“活/死”染色剂的方法更简单,因为其仅使用了单一染色剂。本方法的另一优点在于能够确定耐药性微生物的浓度,并且在一个实施方案中,微生物是耐药性微生物,特别是耐药性细菌。如上所述,微生物、特别是细菌中对于抗微生物剂的耐药性机制可以包括更具抗性的细胞壁和/或膜,和/或从微生物细胞中去除抗微生物剂的外排泵。这样的机制还可用于阻止微生物摄取和/或保留染色剂。相信本发明的方法(特别包括预处理步骤)可以促进(或增强)染色过程(特别是抗微生物剂耐药性微生物细胞),以允许检测或测量这样的耐药性微生物。换句话说,本发明的方法、特别是预处理步骤可以使微生物染色正常化。我们在具有或不具有预处理的情况下比较了耐药性和非耐药性细菌以及不同类型的细菌,并且观察到不同细菌之间染色的增强相似性(即染色正常化)。因此,可以在不知道微生物身份的情况下进行本发明的染色和方法。
因此,以上公开的方法的浓度确定步骤可用于确定耐药性微生物、特别是耐药性细菌的浓度,并且可进一步具有确定微生物的任何悬浮液或制备物中的微生物浓度的更一般的适用性。
因此,本文还公开了用于确定微生物悬浮液中完整微生物的浓度的方法,所述方法包括:
(i)提供包含微生物的悬浮液;
(ii)使所述悬浮液的等分试样与醇和/或洗涤剂接触和/或加热所述悬浮液的等分试样;
(iii)任选地稀释所述悬浮液的一个或多个等分试样以提供处于一个或多个稀释值的一个或多个稀释的等分试样,其中所述稀释在步骤(i)之前、期间和/或之后进行;
(iv)使步骤(ii)或(iii)的等分试样的至少一部分与能够结合DNA的单一荧光染色剂接触,以提供悬浮液-染色剂混合物,其中所述染色剂具有发射波长;
(v)在所述荧光染色剂的发射波长下对步骤(iv)的所述悬浮液-染色剂混合物进行成像,并确定成像混合物中对应于微生物的物体的数目的图像分析值;和
(vi)将用于步骤(iv)的所述等分试样的步骤(v)中获得的图像分析值与预定的校准曲线进行比较,从而确定所述悬浮液中微生物的浓度。
关于上述方法,在步骤(v)中确定的图像分析值可以是用于对应于完整微生物的成像混合物中物体的数目,并且可以由此在步骤(vi)中确定悬浮液中完整微生物的浓度。
此外,如上所述,在该方法的一个实施方案中,微生物可以是耐药性微生物,更特别地是耐药性细菌。更进一步,这样的方法可以在AST测定的情况下使用,因此类似于上述方法,该方法可以用作确定样品中微生物的抗微生物剂敏感性的方法的方法的一部分。
如上所述,根据EUCAST或CLSI指南进行的标准AST测定通常需要一段时间以使微生物充分生长,以用于下一步建立AST测定。例如,在以上概述的方案中,需要一定的孵育时间,以允许临床样品培养物中的微生物浓度增加到将临床样品培养物视为“阳性”(即达到至少0.5McFarland单位)的点。在临床样品培养物铺板之后需要进一步的孵育步骤,以允许单个菌落生长,并且任选地,需要还进一步的孵育步骤,以在可以进行AST测定之前允许如上概述制备的微生物悬浮液达到0.5McFarland单位。
此外,在上文概述的用于制备AST测定的方案中,通常使用仅一个或少量菌落(相对于临床样品培养物中存在的微生物总数)来制备最终用于建立AST测定的接种物。因此,这样的方案依赖于所使用的代表引起感染的微生物的一个或多个菌落。如果不是这种情况,AST测定的结果可能无法真正反映出引起感染的微生物的抗微生物剂敏感性,并且因此基于这样的结果的任何临床干预措施可能无法充分治疗感染。
更广泛地讲,本发明提供了用于快速和准确地确定从样品中回收的悬浮液中完整微生物的浓度,以允许将合适浓度或数目的微生物细胞用于表征所述微生物的定性或定量测定。换句话说,可以在表征微生物的任何期望方法之前确定回收的悬浮液中完整微生物的浓度,以便为表征方法提供合适浓度或数目的微生物细胞。因此,这允许使用任何此类测定法来表征微生物。
对于其来说可以对确定从样品回收的微生物悬浮液中完整微生物的浓度特别有利的测定法包括,例如质谱法(包括MALDI-TOF、ESI-MS和CyTOF)、拉曼光谱法、基于核酸的测试(包括PCR、滚环扩增(RCA)、连接酶链反应(LCR)和基于核酸序列的扩增(NASBA),其在鉴定微生物和/或其中抗微生物剂耐药性的标志物中可能特别有用。如本文其他地方更详细地描述的,在进行AST测定之前确定从样品制备的悬浮液中完整微生物的浓度可以特别有益。
如本文所用,术语“微生物细胞”和“微生物”是可互换的,并且被认为具有等同的含义,即,微观生物体。该术语在本文中被广义地使用以包括微生物的所有类别,无论是否是单细胞的,并且包括细菌(包括分枝杆菌)、古细菌、真菌、原生生物(包括原生动物)和藻类,如下文更详细地讨论。当进行该方法时,微生物的身份可以是已知的或未知的。此外,样品可以包含微生物的一种类型或物种,或者多于一种类型或物种,即样品可以包含单一类型的微生物或可以包含多种微生物的混合物。
此外,提及“细胞可渗透的”和“细胞不可渗透的”染色剂是针对微生物细胞。换句话说,在本发明的方法中使用的染色剂的渗透性是微生物对所述染色剂的渗透性。
在本发明的上下文中,术语“活”是指能够生长和/或繁殖的微生物。样品中活微生物的浓度可以通过染色差异来确定样品中完整微生物的浓度来间接确定。因此,活微生物的浓度源自样品中完整细胞的浓度。本发明的方法提供了用于确定样品中完整微生物浓度的准确且快速的方法。当在步骤(a)中使用包含活微生物的样品时,根据本发明的完整微生物浓度的确定反映或提供了活微生物浓度的指示。
在存在于样品中以及从样品中回收并存在于所制备的悬浮液中的微生物的情况下,术语“完整”是指微生物的完整性没有实质性改变。这样的“完整”微生物通常具有未破裂的细胞膜,即半渗透性并保持膜电位(即具有蛋白质梯度)的细胞膜。但是,如上所述,用醇或加热(或洗涤剂)进行的预处理可以具有透化作用,并且因此在预处理之后,在上述定义的严格意义上,微生物可以不是完整的。尽管如此,这样预处理的微生物代表了存在于悬浮液中的完整微生物,并且因此在预处理的等分试样(步骤(e)(i)的)中其浓度的确定指示了悬浮液中完整微生物的浓度。此外,如果有的话,预处理的透化作用可以是相对温和的,并且不足以完全破坏微生物细胞。
如上所述,本发明提供了用于制备完整微生物的悬浮液的方法。本文使用的术语“悬浮液”具有本领域已知的一般含义,即,包含颗粒的混合物。在当前情况下,“颗粒”是微生物,并且本文方法中的微生物悬浮液简单地是在液体中包含微生物的制备物。详细地,从包含微生物和哺乳动物细胞的样品制备悬浮液。
可以在本发明的方法中分析包含一系列可能的微生物的一系列样品。如上所述,样品包含微生物和哺乳动物细胞。然而,需要理解,在进行本发明的方法之前,不可能确定感兴趣样品是否包含微生物。样品优选地分离自哺乳动物,但这不是必需的,并且样品可以来自其他地方,例如其可以是环境样品。可能已知样品包含哺乳动物细胞(例如,如果其源自哺乳动物),或者仅怀疑其包含哺乳动物细胞,或者可以认为样品可能包含哺乳动物细胞。因此,如本文所定义,“包含微生物和哺乳动物细胞的样品”可以是怀疑包含微生物和哺乳动物细胞的样品。
微生物可以是任何微生物(例如,任何细菌或真菌微生物或原生动物,特别是任何致病微生物或任何引起体内感染的微生物,并且因此,本发明的方法尤其可以用于在检测或诊断测试受试者身体的任何部位内或上的微生物感染(即任何微生物感染)的情况下确定微生物的浓度。一般来说,本发明涉及对包含(或怀疑包含)临床相关微生物的样品进行分析,但是微生物可能是致病性或非致病性的。
如本文所用,术语微生物包括可能属于“微生物”类别的任何生物体。尽管不是需要的,但是微生物可以是单细胞的,或者可以具有单细胞的生命阶段。微生物可以是原核的或真核的,并且通常包括细菌、古细菌、真菌、藻类和原生生物,尤其包括原生动物。特别感兴趣的是细菌,其可以是革兰氏阳性或革兰氏阴性,或革兰氏不确定的(Gram-indeterminate)或革兰氏非反应的(Gram-non-responsive),以及真菌,例如酵母。
细菌可以是需氧的或厌氧的。细菌可以是或可以包括分枝杆菌。
特别临床相关的细菌属包括葡萄球菌属(Staphylococcus)(包括凝固酶阴性葡萄球菌属)、梭菌属(Clostridium)、埃希菌属(Escherichia)、沙门菌属(Salmonella)、假单胞菌属(Pseudomonas)、丙酸杆菌属(Propionibacterium)、芽孢杆菌属(Bacillus)、乳杆菌属(Lactobacillus)、军团菌属(Legionella)、分枝杆菌属(Mycobacterium)、微球菌属(Micrococcus)、梭形杆菌属(Fusobacterium)、莫拉菌属(Moraxella)、变形杆菌属(Proteus)、埃希菌属(Escherichia)、克雷伯菌属(Klebsiella)、不动杆菌属(Acinetobacter)、伯克霍尔德菌属(Burkholderia)、肠球菌属(Enterococcus)、肠杆菌属(Enterobacter)、柠檬酸杆菌属(Citrobacter)、嗜血杆菌属(Haemophilus)、奈瑟菌属(Neisseria)、沙雷菌属(Serratia)、链球菌属(Streptococcus)(包括α-溶血性链球菌属和β-溶血性链球菌属)、拟杆菌属(Bacteriodes)、耶尔森菌属(Yersinia)和寡养单胞菌属(Stenotrophomonas),以及的确任何其他小肠菌群或大肠菌群。β-溶血性链球菌包括A组、B组、C组、D组、E组、F组、G组和H组链球菌属。
临床相关的革兰氏阳性细菌的非限制性实例包括金黄色葡萄球菌(Staphylococcus aureus)(包括耐甲氧西林金黄色葡萄球菌,MRSA)、溶血性葡萄球菌(Staphylococcus haemolyticus)、表皮葡萄球菌(Staphylococcus epidermidis)、腐生葡萄球菌(Staphylococcus saprophyticus)、路邓葡萄球菌(Staphylococcuslugdunensis)、施氏葡萄球菌(Staphylococcus schleiferi)、山羊葡萄球菌(Staphylococcus caprae)、唾液链球菌(Streptococcus salivarius)、无乳链球菌(Streptococcus agalactiae)、咽峡炎链球菌(Streptococcus anginosus)、肺炎链球菌(Streptococcus pneumoniae)、化脓性链球菌(Streptococcus pyogenes)、血链球菌(Streptococcus sanguinis)、轻型链球菌(Streptococcus mitis)、马肠链球菌(Streptococcus equinus)、牛链球菌(Streptococcus bovis)、产气荚膜梭菌(Clostridium perfringens)、索氏梭菌(Clostridium sordellii)、诺维梭菌(Clostridium novyi)、肉毒梭菌(Clostridium botulinum)、破伤风梭菌(Clostridiumtetani)、粪肠球菌(Enterococcus faecalis)和屎肠球菌(Enterococcus faecium)。临床相关革兰氏阴性细菌的非限制性实例包括大肠埃希菌(Escherichia coli)、邦戈沙门菌(Salmonella bongori)、肠道沙门菌(Salmonella enterica)、柯氏柠檬酸杆菌(Citrobacter koseri)、弗氏柠檬酸杆菌(Citrobacter freundii)、肺炎克雷伯菌(Klebsiella pneumoniae)、产酸克雷伯菌(Klebsiella oxytoca)、铜绿假单胞菌(Pseudomonas aeruginosa)、流感嗜血杆菌(Haemophilus influenzae)、脑膜炎奈瑟菌(Neisseria meningitidis)、阴沟肠杆菌(Enterobacter cloacae)、产气肠杆菌(Enterobacter aerogenes)、黏质沙雷菌(Serratia marcescens)、嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)、摩氏摩根菌(Morganella morganii)、脆弱拟杆菌(Bacteriodes fragilis)、鲍曼不动杆菌(Acinetobacter baumannii)和奇异变形杆菌(Proteus mirabilis)。
临床相关的真菌的非限制性实例包括酵母,尤其是念珠菌属(Candida)的真菌,以及曲霉属(Aspergillus)、镰刀菌属(Fusarium)、青霉属(Penicilium)、肺囊虫属(Pneumocystis)、隐球菌属(Cryptococcus)、球孢子菌属(Coccidiodes)、马拉色菌属(Malassezia)、毛孢子菌属(Trichosporon)、支顶孢属(Acremonium)、根霉属(Rhizopus)、毛霉属(Mucor)和犁头霉属(Absidia)的真菌。特别令人关注的是念珠菌属(Candida)和曲霉属(Aspergillus),包括烟曲霉(Aspergillus fumigatus)、白色念珠菌(Candidaalbicans)、热带念珠菌(Candida tropicalis)、光滑念珠菌(Candida glabrata)、都柏林念珠菌(Candida dubliensis)、近平滑念珠菌(Candida parapsilosis)和克鲁斯氏念珠菌(Candida krusei)。
临床相关的原生动物的非限制性实例包括溶组织内阿米巴(Entamoebahistolytica)、梨形鞭毛虫(Giardia lamblia)、布氏锥虫(Trypanosoma brucei)、贝氏贝诺孢子虫(Besnoitia besnoiti)、贝内特贝斯诺孢子虫(Besnoitia bennetti)、塔兰特贝斯诺孢子虫(Besnoitia tarandi)、犬等孢球虫(Isospora canis)、柔嫩艾美耳球虫(Eimeria tenella)、微小隐孢子虫(Cryptosporidium parvum)、海氏哈曼德球虫(Hammondia heydorni)、刚地弓形虫(Toxoplasmosa gondii)、犬新孢子虫(Neosporacaninum)、犬肝簇虫(Hepatozoon canis)、恶性疟原虫(Plasmodium falciparum)、间日疟原虫(Plasmodium vivax)、卵形疟原虫(Plasmodium ovale)、三日疟原虫(Plasmodiummalariae)和诺氏疟原虫(Plasmodium knowlesi)。
术语“哺乳动物细胞”涵盖哺乳动物来源的任何细胞。细胞可以源自任何哺乳动物,特别是人(即其可以是人细胞)。细胞可以源自家畜,例如农场动物,例如马、驴、绵羊、猪、山羊或牛,或通常作为宠物饲养的动物,例如猫、狗、小鼠、大鼠、兔、豚鼠或毛丝鼠。细胞可以是任何类型的细胞。在特定的实施方案中,细胞是血液细胞,例如红细胞(红血球,erythrocyte)或白细胞(白血球,leukocyte),例如嗜中性粒细胞、单核细胞或淋巴细胞。血小板在本文中被认为是血液细胞。
如上所述,包含微生物和哺乳动物细胞的样品可以是任何这样的样品,但是其是或来源于特别为临床样品或兽医样品。临床样品是从人获得的任何样品。因此,其可以是身体组织、细胞或体液的任何样品,或者是来源于身体的任何样品,例如拭子、洗涤液、抽出物或冲洗液等。合适的临床样品包括但不限于以下的样品:血液、血清或血浆、血液级分、关节液、尿液、精液、唾液、粪便、脑脊髓液、胃内容物、阴道分泌物、粘液、组织活检样品、组织匀浆、骨髓抽吸物、骨匀浆、痰、呼吸道样品、伤口渗出液、拭子和拭子冲洗液,例如鼻咽拭子,其他体液等。在一个优选的实施方案中,临床样品是血液或血液来源的样品,例如血清或血浆或血液级分。兽医样品是来源于非人动物(在这种情况下为非人哺乳动物)的等效样品。如下面进一步讨论的,样品还可以是临床样品或兽医样品的培养物,例如血液培养物。
可以根据感染或疑似感染的症状表现或受试者的一般临床状况来确定临床样品或兽医样品的性质。尽管包括任何微生物感染,但是本发明的方法在脓毒症的检测或诊断(或更一般地脓毒症的治疗)过程中或者在怀疑为脓毒症时有特别用途。因此,临床或兽医样品可以来自患有或怀疑患有脓毒症或有患脓毒症风险的受试者。在这种情况下,样品通常是血液或血液来源的样品。通常,对于脓毒症,样品将是血液或将包含血液,但是并不排除其他类型的样品,例如上面列出的那些。
可以将临床样品引入包含培养基的培养容器中。这是可以根据本领域周知的并且在文献中广泛描述的标准程序进行的标准步骤。因此可以对临床样品进行培养,并且因此在该方法中使用的样品可以是临床样品(或者相应地为兽医样品)的培养物。以下讨论是在临床样品的情况下进行的,但是应当理解,这可以类似地指兽医样品。
可以将临床样品收集到包含适合于培养微生物细胞的培养基的容器中。在一些实施方案中,可能期望将临床样品引入培养瓶中,并且立即或仅在短时间培养后从培养瓶中取出临床样品/培养基混合物的等分试样用于测试(例如,用于微生物ID),而在进一步测试(例如AST测试)之前,将培养瓶继续培养。这样的方法在WO 2015/189390中描述。
培养容器可包括适合于培养微生物细胞的任何容器或器皿,例如板、孔、管、瓶、烧瓶等。方便地,在临床样品是血液或血液来源的样品的情况下,培养容器是血液培养瓶,或者的确为已知用于血液采样、特别是用于培养以检测微生物目的的任何管、烧瓶或瓶。因此,样品可以是血液培养物样品。
方便地,培养容器可以提供有已经包含在其中的培养基。然而,可在添加临床样品之前、同时或之后,单独地提供培养基并将其引入培养容器。
培养基可以是任何合适的培养基,并且可以根据临床样品和/或怀疑的微生物的性质、和/或从其得到样品的受试者的临床状况等来选择。适合于此用途的许多不同的微生物培养基是已知的。如本领域中已知的,培养基通常可以包含足够的营养物以促进微生物的快速生长。在许多情况下,合适的培养基是复合生长培养基,包括诸如以下的培养基:Muller-Hinton(MH)培养基、MH-fastidious(MHF)、补充有裂解的马血液的Muller-Hinton培养基、Lysogeny肉汤(LB)、2X YT培养基、胰蛋白酶大豆肉汤(TSB)、Columbia肉汤、脑心浸液(BHI)肉汤和布鲁氏菌肉汤(Brucella broth)以及本领域已知的通用生长培养基,并且可以包括添加特定的生长因子或补充剂。培养物可以被搅拌或不搅拌。培养基可以以多种形式获得,包括液体、固体和悬浮液等,并且可以使用这些中的任何一种,但是方便地,培养基是液体培养基。在培养容器是如上所述的即用型血液培养瓶的情况下,这些容器可以包含经过特别修饰以允许宽范围的微生物生长的特定培养基。通常,由制造商提供在血液培养瓶中的培养基将包含试剂或添加剂,以中和存在于取自测试受试者的临床样品中的任何抗生素的存在。可以使用包含或不包含这种中和试剂的烧瓶,并且如果需要,可以向培养容器中添加中和试剂。
在本发明的特定方面,临床样品是血液或血液来源的样品,并收集在血液培养瓶(BCF)中。血液培养瓶的实例包括BacT/ALERT(Biomerieux)血液培养瓶、Bactec血液培养瓶(Becton Dickinson)或VersaTrek血液培养瓶(Thermo Fisher),或者的确为已知用于血液采样、特别是用于培养以检测微生物的目的的任何管、烧瓶或瓶。
这样的血液培养瓶等可以包含树脂,并且方法可以相应地包括从样品中去除树脂的步骤,例如通过过滤。例如,这样的树脂预过滤步骤可以在执行方法的步骤(b)之前进行。
根据本发明的样品可以相应地包括在培养基中的临床样品。此外,样品可以是临床样品培养物(即已经培养一段时间的临床样品)。在这方面可以看出,经受本发明方法的样品可以是收集或制备的复合样品的一部分。因此,在一个实施方案中,本发明方法的样品可以是从样品,例如从包含临床或其他样品的培养容器(烧瓶)的内容物(无论是在培养(即孵育)一段时间之前、期间还是之后)中取出或去除的等分试样(例如测试等分试样)。
因此,在一个实施方案中,步骤(a)中提供的样品可以是已被指定为微生物生长阳性的临床样品的培养物(例如在临床样品培养系统中的)。因此,其可以是阳性血液培养瓶。然而,根据本发明的方法,不必将临床样品培养物指定为阳性,并且可以在临床培养物样品被指定为阳性之前的阶段,例如当其已经培养了小于指定为阳性所必需的一段时间时使用这样的临床培养物样品。因此,样品可以是非阳性的血液培养瓶(例如,包含少于将烧瓶指定为阳性所需要的微生物细胞的血液培养瓶,或已经培养了较短时间的血液培养瓶)。实际上,在一些临床样品的情况下,可以在进行任何培养之前(例如,当建立临床样品培养物时)取出临床样品培养物的样品并用于本发明的方法中。
已知某些微生物难以培养,并且在临床情况下,可能无法以传统或常规方法基于培养步骤的临床检测或诊断方法中检测到这样的微生物。例如,某些细菌难以在通常用于诊断方法的固体培养基上生长。因此,临床上相关的微生物的数目可能远超过如今通常测试和分析的微生物的数目。可能无法使用标准培养方法的此类“不可培养的”微生物(例如细菌)可以在例如具有多种补充剂或添加剂(例如血清或其他血液成分或BHI等)的某些液体培养基中生长。但是,这样的补充剂或添加剂可能会干扰浓度确定方法,并且可能需要去除。本文公开的方法可以在这种情况下适用,并且样品可以相应地是这样的微生物的培养物的样品。微生物可以存在于已经进行培养(例如,在包含补充剂或添加剂的专门培养基中)的临床或兽医样品中。然而,在本文公开的另一个实施方案中,培养物可以是微生物的分离物(例如,来自另一种培养物的分离物),并且因此在这种情况下,样品可能未必包含哺乳动物细胞。这样的样品可以在如上所述的用于确定悬浮液中微生物浓度的方法(即,不包括提供包含微生物和哺乳动物细胞的样品以及从中回收微生物的步骤的方法)的情况下使用。
在包括从包含微生物和哺乳动物细胞的样品中回收微生物的方法中,使样品与缓冲溶液、洗涤剂和一种或多种蛋白酶接触。样品与这些试剂的接触引起样品中存在的哺乳动物细胞的裂解。试剂引起哺乳动物细胞的裂解,但不引起微生物细胞的裂解。特别地,试剂不引起细菌细胞的裂解。优选地,试剂也不引起真菌细胞的裂解;优选地,试剂也不引起非哺乳动物真核微生物细胞(例如原生生物)的裂解。试剂通常通过溶解哺乳动物细胞膜起作用。对非微生物细胞的选择性裂解允许微生物细胞与可能存在于样品中的其他组分分离。术语“裂解”是指细胞破裂。特别地,细胞破裂以释放细胞内容物。术语“选择性地裂解”或“选择性的裂解”是指裂解样品中存在的细胞的特定亚群。在当前情况下,希望仅选择性地裂解存在于临床或兽医学样品中的非微生物细胞,或更特别地来源于测试受试者的细胞(例如哺乳动物细胞),而基本上不裂解存在于临床或兽医学样品中的微生物细胞。另外,根据本发明的某些方法,希望从样品获得的微生物细胞能够生长和繁殖(需要生长以便确定抗微生物剂敏感性),因此希望微生物细胞具有生长和/或繁殖的能力(生存力)不受存在于样品中的非微生物细胞或测试受试者来源的细胞的选择性裂解的影响。
优选地,在选择性裂解哺乳动物细胞之后,样品中存在的所有(即100%)或基本上所有的微生物细胞保持完整,或更特别地,是活的,并且优选地在选择性裂解步骤之后,样品中至少99%、98%、97%、96%、95%、94%、93%、92%、91%或90%的微生物细胞保持完整或是活的。但是,由于本发明的方法需要确定回收的微生物样品中完整或活的微生物的浓度,因此在至少80%、70%、60%、50%、40%、30%、20%或10%的微生物细胞保持活的情况下,依然可以评估抗生素敏感性。因此,这样的方法不限于在哺乳动物细胞选择性裂解后的微生物活力的任何特定水平。
缓冲溶液的pH为至少pH 6,并且至多pH 9,即缓冲溶液的pH在pH 6至pH 9的范围。在特定的实施方案中,缓冲溶液的pH在pH 6.0至pH 8.5,pH 6至pH 8,pH 6.5至pH 8.0或pH7至pH 8的范围。最佳地,缓冲溶液的pH为约7.5。
缓冲溶液可包含离液剂或离液试剂以增加靶细胞(即哺乳动物细胞)的裂解,例如尿素、盐酸胍、高氯酸锂、乙酸锂、苯酚或硫脲。然而,在某些实施方案中,缓冲溶液不包含离液剂或离液试剂。在特定的实施方案中,可以在从样品中回收微生物的过程中不使用(并且更特别地在选择性裂解步骤期间不使用)和/或在本发明方法的浓度确定过程中不使用这样的试剂。
缓冲溶液优选不包含醇。缓冲溶液可进一步包含还原剂(例如2-巯基乙醇或二苏糖醇(DTT))、稳定剂(例如镁或丙酮酸)、保湿剂和/或螯合剂(例如乙二胺四乙酸(EDTA))。
另外,缓冲溶液可包含任何合适的盐,包括NaCl、KCl、MgCl2、KH2PO4、K2HPO4、Na2HPO4和NaH2PO4。这样的盐可能有助于哺乳动物细胞裂解或微生物细胞的后续处理。如果存在,盐可以以任何合适的浓度存在,例如至少0.01M、0.02M、0.05M、0.1M、0.2M、0.5M、1M、2M或5M,这取决于诸如使用的缓冲液和样品的体积等因素。
在一个特定的实施方案中,缓冲溶液是PBS缓冲液(磷酸盐缓冲盐水)。PBS包含磷酸氢二钠(Na2HPO4)、NaCl和任选的KCl和/或磷酸二氢钾(KH2PO4)。PBS可以从制造商(例如Sigma-Aldrich或Thermo Fisher Scientific)获得,或者可以容易地由其组成部分制备。1x PBS的示例性配方是NaCl 137mM,KCl 2.7mM,Na2HPO4 10mM,KH2HPO4 1.8mM;pH可以分别用NaOH或HCl上下调节。
添加到样品中的缓冲溶液的浓度可以高于其使用浓度,例如,添加的缓冲溶液可以是5x或10x浓度,以便在与样品混合时将其稀释至其使用浓度。
洗涤剂可以是离子洗涤剂、非离子洗涤剂或两性离子洗涤剂。离子洗涤剂带有电荷,其可以带正电荷(阳离子洗涤剂)或带负电荷(阴离子洗涤剂)。两性离子洗涤剂具有多个带电基团;通常,两性离子洗涤剂具有相同数目的正电荷和负电荷,并且因此具有净零电荷。非离子洗涤剂具有不带电荷的亲水性头基。
可以使用的示例性离子洗涤剂包括烷基苯磺酸盐、N-月桂酰肌氨酸、脱氧胆酸(或其盐,例如脱氧胆酸钠)、西曲溴铵(CTAB)和十二烷基硫酸钠(SDS)。
可以使用的示例性两性离子洗涤剂包括CHAPS、磺基甜菜碱(例如SB 3-10和SB 3-12)、氨基磺基甜菜碱(例如ASB-14和ASB-16)和C7BzO。
优选地,洗涤剂是非离子洗涤剂。可以使用的示例性非离子洗涤剂包括Triton洗涤剂系列(例如Triton X100-R和Triton X-114)、NP-40、Genapol C-100、Genapol X-100、Igepal CA630、Arlasolve 200、Brij洗涤剂系列(例如Brij-O10、Brij-97、Brij-98、Brij-58和Brij-35)、辛基β-D-吡喃葡萄糖苷、聚山梨酯(例如聚山梨酯20和聚山梨酯80),以及Pluronic洗涤剂系列,例如Pluronic L64和Pluronic P84。在一个实施方案中,可以使用聚氧乙烯洗涤剂。聚氧乙烯洗涤剂可包含结构C12-18/E9-10,其中C12-18表示碳链长度为12至18个碳原子,并且E9-10表示9至10个氧乙烯亲水性头基。在一个特定的实施方案中,洗涤剂是Brij-O10,其可以获自例如Sigma-Aldrich(产品P6136)。Brij-O10具有以下化学式:
Figure BDA0002593973430000201
其中n为约10,优选为10。
添加洗涤剂至合适的所得浓度。这样的浓度是技术人员已知的,或者对于任何选择的洗涤剂可以通过常规优化来确定。在一个特定的实施方案中,洗涤剂以0.1%至5%w/v,例如0.1%至1%w/v之间的浓度(即在将洗涤剂添加至样品之后的所得浓度)与样品接触。在一个特定的实施方案中,洗涤剂以约0.45%w/v的浓度与样品接触。
蛋白酶可以是任何合适的蛋白酶。其可以是内肽酶或外肽酶,并且其可以使用任何蛋白水解机制,例如其可以是丝氨酸蛋白酶、半胱氨酸蛋白酶、天冬氨酰蛋白酶、金属蛋白酶等。可用于本发明方法的示例性蛋白酶包括XXIII型蛋白酶、蛋白酶K、胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶、木瓜蛋白酶、弹性蛋白酶和组织蛋白酶。优选地,蛋白酶是内肽酶。在一个特定的实施方案中,蛋白酶是蛋白酶K。技术人员能够根据样品、所用的蛋白酶等确定用于本发明方法的蛋白酶的合适浓度。例如,蛋白酶K可以以20至200μg/ml(例如50至150μg/ml或50至100μg/ml)范围的终浓度使用。优选地,蛋白酶K以约50至80μg/ml的终浓度使用。
样品也可以与另外的酶接触以帮助在步骤(b)中哺乳动物细胞裂解,例如核酸酶(例如DNase或RNase)、脂肪酶、糖苷水解酶(例如神经氨酸酶)、淀粉酶等。
在步骤(b)中,样品可以分别与缓冲溶液、洗涤剂和至少一种蛋白酶接触。或者,在与样品接触之前,三种组分(缓冲液、洗涤剂、蛋白酶)可以以一种或多种组合制备(例如,作为组合的组合物预制备,或在使用时制备)。术语“接触”在本文中以广义使用,以包括以任何顺序使样品与试剂接触的任何方式。因此,可以将样品添加至组分(例如,已经存在于反应容器中的组分)或可以将组分添加至样品(例如,已经存在于反应容器中的样品)。可以将三种组分中的三种或任何两种预制备为待与样品接触的组合的组合物,或者可以在与样品接触之前顺序地添加组分(例如至反应容器中)。在一个优选的实施方案中,在裂解缓冲液中提供洗涤剂,其包含溶解在上述缓冲液中的洗涤剂。然后可以将至少一种蛋白酶添加到裂解缓冲液中,并且将所得的组合物添加到样品中(反之亦然),使得样品同时与缓冲溶液、洗涤剂和蛋白酶接触。在一个具体的实施方案中,裂解缓冲液包含PBS pH 7.5、0.45%w/vBrij-O10。在一个特定的实施方案中,样品与包含以下的组合物接触:(i)包含PBS pH 7.5和0.45%w/v Brij-O10的裂解缓冲液和(ii)蛋白酶K。
将步骤(b)的接触(即样品与缓冲溶液、洗涤剂和一种或多种蛋白酶接触(或孵育))进行适当的时间。例如,接触可以进行长至1小时,例如长至30分钟,长至20分钟或长至10分钟。接触在合适的温度下进行,在至少4℃,例如20-40℃,例如25-37℃。可以将等分试样加热5-20分钟,优选5-10分钟。
将步骤(b)中获得的混合物过滤。过滤过程允许使完整的微生物细胞与哺乳动物细胞裂解产物和任选的样品中存在的任何其他碎片或物质分离。完整微生物细胞被捕获在过滤器中,而哺乳动物细胞裂解产物通过以丢弃,从而从悬浮液中去除了裂解的哺乳动物细胞。使用包括合适孔径的过滤器进行过滤以捕获任何微生物细胞。过滤器的孔径可以为0.5μm或更小;优选地,过滤器的孔径为0.25μm或更小。过滤器可以由任何合适的材料制成,例如许多合适的过滤器由PTFE(聚四氟乙烯)制成。合适的过滤器可以商购自例如默克公司(Merck)。在一些实施方案中,相对于通过其过滤的样品的体积,所使用的过滤器具有较大的表面积,以防止过滤器被微生物堵塞。例如,过滤器的尺寸范围可以是30-100、30-80mm或30-75mm(例如50mm)。但是,可以使用任何尺寸的过滤器,例如在4-100、4-80或4-75mm的范围。这可能取决于样品的性质和样品中微生物的量。例如,阳性血液培养物可比临床尿样品包含更多的微生物,并且可以有利地使用更大过滤器尺寸。可以通过常规试错法来确定适当的过滤器尺寸。
过滤后,可以洗涤分离的微生物细胞(即,捕获在过滤器上或内部的那些)以去除残留的裂解缓冲液、哺乳动物细胞碎片等。如果进行,则在步骤(c)和(d)之间进行洗涤。可以通过将洗涤缓冲液冲洗通过过滤器来进行洗涤。如技术人员已知的,可以用任何合适的洗涤缓冲液洗涤过滤器。合适的洗涤缓冲液包括例如如上所述的缓冲溶液,例如PBS。在一个特定的实施方案中,洗涤缓冲液可以是如上所述的缓冲溶液,并且在某些实施方案中,可以与步骤(b)中使用的缓冲溶液相同。然而,在另一些实施方案中,洗涤缓冲液可包含蛋白酶(并且任选地不包含洗涤剂)或洗涤剂(并且任选地不包含蛋白酶)。在某些实施方案中,洗涤缓冲液可以包含离液剂,而在另一些实施方案中,其可以不包含离液剂,例如如上所述。在另外的实施方案中,洗涤缓冲液可以是如上所述的培养基。在一个特定的实施方案中,洗涤缓冲液是阳离子调节的Mueller Hinton肉汤(CAMHB),其可购自例如Sigma-Aldrich。CAMHB也可称为Mueller Hinton肉汤2。根据需要可以将过滤器(包含分离的微生物细胞)洗涤一次或多次,以从过滤器中去除哺乳动物细胞碎片,例如可以将过滤器洗涤2、3、4或5次或更多次。
在过滤和任选的洗涤之后,从过滤器中回收微生物细胞。微生物细胞的回收包括将细胞重悬在液体中,从而提供回收的微生物的悬浮液。可使用液体通过重复吸液将来自过滤器表面的细胞重悬。在本发明的一个优选实施方案中,将液体反冲通过过滤器(即,沿与过滤滤液相反的方向),以使微生物细胞重悬。在另一个实施方案中,以最后部分的洗涤溶液抽回通过过滤器来回收微生物。替代地,可以通过使用整个过滤器,例如通过将液体添加到过滤器或使过滤器与容器中的液体接触来回收微生物细胞。
将微生物细胞重悬于其中的液体可以是任何合适的液体,例如缓冲液或培养基。在一个优选的实施方案中,将微生物细胞重悬于培养基(即,适合于培养微生物的液体生长培养基)中。当使用培养基重悬微生物细胞时,一般而言,培养基是经批准或认可用于AST测定的培养基。在一个实施方案中,其是Muller-Hinton(MH)培养基或Muller-HintonFastidious(MHF)培养基,或阳离子调节的Mueller Hinton培养基(CAMHB)。对于非标准AST,本发明可以使用任何其他通常已知的培养基。可以将通过使用“非标准”培养基进行AST测定而获得的MIC值进行调整(关联)以得出标准AST结果。在另一些实施方案中,重悬液体可以是PBS或其他缓冲液。在另一些实施方案中,重悬液体不是水(例如自来水、地下水或无菌水)。此外,在特定的实施方案中,微生物细胞重悬于其中的液体可以不包含蛋白水解酶,例如木瓜蛋白酶、胰蛋白酶、中性蛋白酶、枯草杆菌蛋白酶或枯草杆菌蛋白酶样酶或Rhozyme。
一旦已经回收了微生物细胞并且已经获得了回收的微生物样品,就根据本发明的方法确定回收的微生物样品中存在的微生物细胞的浓度。如上所述,在一个特定的实施方案中,这尤其是出于进行AST测定的目的,即,可以在进行AST测定之前确定微生物的浓度。
有利地,使用回收的微生物样品进行AST测定可以允许进行更快的AST测定。特别地,通过直接从临床样品或临床样品培养物中回收微生物细胞,从而获得回收的微生物样品,提供了没有任何污染物的均质样品。
某些样品(例如特别是食品或环境样品)可能包含颗粒物质,可能希望在确定样品中完整微生物的浓度之前将其去除。另外,某些市售培养容器(例如血液培养瓶)提供有树脂珠粒,所述树脂中和存在于临床样品中的任何抗微生物剂(即已施用于测试受试者的那些)的作用,以促进培养物中微生物细胞的生长。因此,在一个优选的实施方案中,可以过滤样品以去除可能存在于样品中的任何大颗粒。优选地,该过滤步骤将利用具有基本上不会从测试等分试样中去除任何细胞物质但是可以除去颗粒的孔径(例如100、200或300μm,但可以高至1000μm)的过滤器进行。这样的过滤步骤可以在本发明方法中的任何点进行。在特定的实施方案中,该步骤可以在对步骤(e)(iv)中的悬浮液-染色剂混合物成像之前进行,以避免任何这样的颗粒被成像。因此,这样的步骤可以在步骤(e)(iii)或步骤(e)(i)之前进行,并且更特别地可以在步骤(e)之前进行。更特别地,这样的步骤可以在步骤(c)或步骤(b)之前进行,并且还更特别地,可以在步骤(a)之前进行。在某些实施方案中,步骤(a)中提供的样品可能已经经历了这样的过滤步骤以去除颗粒物质。为了确定悬浮液中完整微生物细胞的浓度,首先将悬浮液取等分试样,即将其分成一个或多个较小的部分/样品。首先处理(在步骤(e)(i)中)悬浮液的等分试样(即部分)以增强染色过程。处理(或“预处理”)步骤可包括使等分试样与醇(例如乙醇)接触。其他合适的醇包括甲醇、丙醇、异丙醇、丁醇(任何异构形式)等。本领域技术人员能够选择合适的醇。在一个优选的实施方案中,使等分试样与乙醇接触。在某些实施方案中,使等分试样与醇接触以提供包含25-45%v/v醇,例如25-35%v/v醇、30-40%v/v醇或30-35%v/v醇(例如乙醇)的混合物。在一个特定的实施方案中,使等分试样与醇接触以提供包含30%v/v醇(例如乙醇)的混合物。在另一个特定的实施方案中,使等分试样与醇接触以提供包含35%v/v的醇(例如乙醇)的混合物。
在一个替代实施方案中,处理步骤包括加热悬浮液的等分试样。可以将等分试样加热到50-90℃的范围,例如60-80℃或65-75℃的温度。在一个特定的实施方案中,将等分试样加热至约70℃的温度。可以将等分试样加热适合于所用温度的时间量,即,选择的温度越高,所需的加热时间越短(反之亦然)。在一个实施方案中,将等分试样加热30秒长至20分钟,或长至10分钟。因此可以将等分试样加热0.5-20或0.5-15或0.5-10分钟(测量的时间是相关温度下的时间,即不是升温时间)。技术人员能够选择用于给定加热温度的合适的加热时间。加热可以在例如孵育箱、加热块、烘箱、热循环仪或任何其他合适的装置中进行。
在某些实施方案中,可以将醇处理与热处理步骤同时或分开地(例如顺序地)组合。
在另一个替代实施方案中,处理步骤包括使悬浮液的等分试样与洗涤剂接触。上面关于步骤(b)的裂解缓冲液方面描述了合适的洗涤剂。当在步骤(e)(i)中使微生物细胞的悬浮液与洗涤剂接触时,可以使用步骤(b)中所述的洗涤剂,但是其浓度比步骤(b)中使用的高得多。因此,尽管步骤(b)的缓冲溶液中的洗涤剂可以如上所述以例如0.1%至5%w/v,例如0.1%至1%w/v之间的浓度存在,但是步骤(e)(i)中使用的洗涤剂以比其高得多的浓度使用,优选5-20倍,例如10倍。可以在步骤(e)(i)中以0.5%至50%w/v,优选1%至10%w/v,例如约5%w/v的浓度使用洗涤剂。
在用醇或洗涤剂处理悬浮液的等分试样的实施方案中,该处理可以在室温或室温附近进行,例如该处理可以在20-37℃范围,例如20-30℃、25-30℃或30-35℃的温度进行。替代地,如上所述,这可以与加热步骤组合。可以通过在选定的温度下以选定浓度的醇或洗涤剂孵育来进行接触。孵育可以持续30秒至长至1小时,例如长至30分钟、长至20分钟、长至10分钟或长至5分钟。精确的时间将取决于样品、样品中存在的微生物和/或是否包括加热处理步骤。在一个优选的实施方案中,孵育持续5至10分钟,优选约5分钟。
在某些实施方案中,处理步骤不包括使样品与醛或酮接触。特别地,处理步骤可以不包括使样品与甲醛、乙醇、丙醛、丙酮、丁醛或丁酮接触。在另外的实施方案中,处理步骤不包括使样品与羧酸接触,例如甲酸、乙酸、草酸、丙酸、丙二酸、丁酸或琥珀酸。在另外的特定实施方案中,处理步骤不包括样品与醛、酮或羧酸(例如,如上所列)接触与热处理步骤组合,和/或与样品与醇和/或洗涤剂接触组合。在另外的实施方案中,处理步骤不包括使样品与抗生素接触,特别是可以允许细菌生长但可以抑制细胞分裂的抗生素,例如氯霉素和青霉素,例如氨苄青霉素、benzyme青霉素(benzyme penicillin)、氯唑西林(cloxacillin)、双氯西林(dicloxacillin)或其组合。
通过本发明方法分析的样品可以包含宽范围的可能不同浓度的微生物,并且不可能制作单一校准曲线以允许精确确定这样的浓度范围。因此,可能有益的是在执行本发明方法的过程中稀释包含微生物的样品的等分试样,以使步骤(e)(iv)中确定的物体数目的图像分析值落在预定的校准曲线的范围。
此外,根据悬浮液和/或处理的性质,可能期望稀释样品(即取来以允许在步骤(e)中进行浓度确定的悬浮液的等分试样)以允许进行浓度确定,例如将可能会干扰浓度确定方法的污染物或组分稀释(或最小化或减少其量)。例如,某些培养基(例如Muller Hinton培养基)包含可能会干扰荧光测定的组分,并且如果样品是包含这样的培养基的培养物样品,或者如果回收的微生物重悬在这样的培养基中,则可能期望稀释步骤。同样,如果使用醇或洗涤剂进行处理,则可能期望稀释步骤。替代地,如果将微生物从过滤器重悬于缓冲液(例如PBS)中,则稀释步骤或更特别地初始稀释步骤可能不是必要的。可能与之相关的是在其中微生物以低浓度(低量)存在于悬浮液中的方法的情况,其中在这种情况下,可能期望将回收的微生物重悬在缓冲液(例如PBS)中。
当进行稀释时,即在步骤(e)(ii)中稀释样品的等分试样以提供处于稀释值的稀释的等分试样时,这样的稀释可以在步骤(i)之前、期间或之后进行。因此,可以在与染色剂接触之前,在步骤(e)(i)中的处理之前、期间或之后将样品的等分试样稀释。在这种情况下,稀释介质可以是缓冲液,或盐水或水或其他水性溶液等,如将在下面进一步详细讨论的。
在一个实施方案中,步骤(e)(i)之前不进行稀释(即在与醇(或洗涤剂)接触或加热之前没有稀释)。换句话说,稀释可以在步骤(e)(i)期间或之后进行。
在另一个实施方案中,在步骤(e)(i)的“预处理”涉及与醇或洗涤剂接触的情况下,接触本身可以提供稀释步骤。这可以看作是步骤(e)(i)期间的稀释步骤。
在另一些实施方案中,本文的方法可以包括在步骤(e)(i)的接触/加热之后的稀释步骤,例如在与醇接触之后进行。
在一个特定的实施方案中,该方法可以包括在步骤(e)(i)期间和之后进行步骤(e)(ii)的稀释。例如,可以在步骤(e)(i)期间在与醇接触期间进行等分试样的稀释,并且可以在与醇接触之后进行进一步的稀释。
可以制备两个或更多个等分试样,使得每个等分试样被稀释至不同程度。换句话说,可以以不同的稀释因子或稀释值稀释每个等分试样。在这样的实施方案中,第一等分试样(即处于第一稀释值)可以是样品的等分试样,并且第二等分试样(或后续等分试样)可以是处于第二(或后续)稀释值的稀释的等分试样。替代地,可以进行两种单独的稀释。可以通过系列稀释来稀释一个或多个稀释的等分试样。因此,可以根据需要通过一系列顺序、分开或同时的步骤来制备稀释系列。
当在步骤(e)(i)中使用加热处理等分试样时,如果需要对悬浮液进行稀释,可以在加热之前、期间或之后进行稀释(即,可以在(e)(i)的处理步骤之前、期间或之后进行步骤(e)(ii)的稀释)。然而,如果使用醇或洗涤剂来处理等分试样,则在一个实施方案中,优选在(e)(i)的处理步骤之后进行等分试样的稀释,以稀释醇或洗涤剂并且从而增强染色/成像过程。特别地,乙醇可能会干扰所要求保护的方法的染色过程,因此优选的是,如果使用乙醇处理悬浮液的等分试样,则在成像之前将其稀释以降低乙醇浓度。
在本发明的某些实施方案中,当制备两个或更多个等分试样时,可以在与染色剂接触的步骤(e)(iii)之前同时(或基本同时地,包括通过顺序或连续步骤)制备每个所述等分试样。在这种情况下,可以对每个等分试样同时(即平行)或顺序进行步骤(e)(iv)和(e)(v)。换句话说,每个等分试样可以同时(即平行)或顺序地成像,并且可以将从每个等分试样获得的各个图像分析值与预定的校准曲线进行比较。替代地,可以对第一等分试样进行步骤(e)(iv)和(e)(v),并且如果从所述等分试样获得的图像分析值落在预定标准校准曲线的范围内,则对于第二或另外的等分试样可以省略步骤(e)(iv)和(e)(v)。等分试样可以是步骤(e)(i)的处理的悬浮液的等分试样,或步骤(e)(ii)的稀释的等分试样。
然而,在替代实施方案中,可以仅在对第一等分试样(其可以是步骤(e)(i)的处理的悬浮液的等分试样,或步骤(e)(ii)的稀释的等分试样)进行本方法的步骤之后,才制备稀释的等分试样(或者第二或另外的稀释的等分试样)。如果例如图像分析值不落在预定的校准曲线的范围内,则这样的实施方案可能是期望的。在这样的实施方案中,可能有必要在处于不同稀释值的第二(或另外)等分试样上重复本发明的方法。在这种情况下,将看到两个(或另外的)等分试样中的每一个是按顺序制备的,即在对例如第一等分试样已经进行了步骤(e)(iv)和/或(e)(v)之后。
因此,即使制备了多于一个等分试样,(e)(iv)和/或(e)(v)也可以是对一个等分试样(其可以是预处理的,但是稀释或未稀释的等分试样)进行,或者对两个或更多个等分试样(其可以是稀释的等分试样,或可以包括未稀释的等分试样)进行。
因此,可以对两个或更多个等分试样的每个等分试样进行步骤(e)(iii)和(e)(iv),从而确定每个等分试样中对应于活微生物的物体的数目的图像分析值。当已获得针对两个或更多个等分试样中的每一个的两个或更多个图像分析值时,步骤(e)(v)可包括鉴定包含处于预定的校准曲线范围内的图像分析值的等分试样,并将所述等分试样的图像分析值与预定的校准曲线进行,从而确定所述样品中微生物的浓度。在这种情况下,可以顺序地或同时对每个等分试样进行步骤(e)(iii)和(e)(iv)。如上所述,等分试样可以是稀释的等分试样,或者其可以包括未稀释的等分试样。
稀释可包括使样品的等分试样与一定体积的合适的无菌缓冲液或水性溶液(例如盐水或盐溶液)或几乎任何合适的稀释剂接触。可以使用与步骤(d)中用于形成微生物悬浮液的相同液体(例如培养基)来稀释等分试样。优选地,使用缓冲液来稀释悬浮液的等分试样。缓冲液可以是本领域已知的任何缓冲液,例如PBS、HBS(HEPES缓冲盐水)、Tris缓冲液(例如Tris-HCl)或TBS(Tris缓冲盐水)或MOPS缓冲液。在一个优选的实施方案中,用PBS稀释悬浮液的等分试样。
如果在步骤(e)(i)中用加热或醇处理等分试样,则稀释剂可包含洗涤剂。就洗涤剂的种类和浓度而言,洗涤剂可如上文关于步骤(b)的裂解缓冲液所述。在稀释剂中使用低浓度的洗涤剂有助于通过分离细菌簇来计算微生物的浓度,从而有助于图像分析。
然后将处理且任选稀释的悬浮液等分试样与染色剂接触,从而提供悬浮液-染色剂混合物。在本发明的方法中使用的染色剂是能够结合DNA的荧光染色剂。染色剂可以是细胞可渗透的或细胞不可渗透的。“细胞可渗透的”是指能够穿过活细胞的完整膜的试剂。“细胞不可渗透的”是指不能穿过活细胞的完整膜的试剂。不受理论的束缚,据信在步骤(e)(i)中对细胞的处理破坏了其细胞膜(以及相关时的细胞壁),而不裂解细胞。因此,在处理之后,细胞不可渗透的染色剂能够进入并染色细胞,当然,细胞可渗透的染色剂也是如此。荧光染色剂具有可以使用荧光检测器检测到的发射波长,从而能够鉴定染色的细胞。
与在溶液中游离存在时相比,某些能够与DNA结合的染色剂在与DNA结合时还已知具有增强的荧光。优选地,所选择的荧光染色剂显示出该特性。换句话说,在优选的实施方式中,当染色剂与DNA结合时,染色剂的荧光强度增强。选择具有此特性的染色剂可能有助于降低在检测过程中在发射波长处产生的背景信号的水平。特别地,可以选择当不与DNA结合时(即,当在溶液中游离时)具有低荧光的染色剂。例如,与在与DNA结合时显示的荧光相比,当在溶液中游离时,染色剂可表现出小于50%,更优选小于40%、30%、20%或10%的荧光,或更优选小于10%的荧光,例如小于9%、8%、7%、6%、5%、4%、3%,2%或1%荧光,或小于0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.3%、0.2%或0.1%的荧光。
染色剂可具有350-700nm波长的激发波长和发射波长。具有在该范围内的发射波长的一系列合适的荧光染色剂是本领域公知的,并且下面描述了示例性荧光染色剂。荧光染色剂可以是绿色荧光染色剂,即在波长为510nm的光处或附近具有峰值荧光发射强度。在一个优选的实施方案中,染色剂是细胞可渗透的染色剂。
具有上述所有期望特性的特别优选的染色剂包括SYTO绿色荧光核酸染色剂(Molecular Probes)。SYTO染色剂是不对称花青染料的实例,因此,不对称花青染料可优选用作本发明方法中的染色剂。在US US5658751、US6291203、US5863753、US5534416和US5658751中提供了可用的SYTO染料的结构。可获得许多不同的SYTO染色剂,包括SYTO 9、SYTO11、SYTO 12、SYTO 13、SYTO 14、SYTO 16、SYTO 21和SYTO 24,其可用于本发明的方法。特别优选的是SYTO 9和/或SYTO 13或SYTO BC(多种染料的混合物)。SYTO BC染色剂混合物的激发波长为473-491nm,发射波长为502-561nm。
替代地,荧光染色剂可以是细胞不可渗透的染色剂,其可以是红色荧光的,即在波长为650nm的光处或附近具有峰值荧光发射强度。适用于本发明方法的优选的红色荧光染色剂是碘化丙啶(PI)。
但是,染色剂可以是能够对核酸染色的任何荧光染色剂。这些可以包括SYBRGreen、SYBR Gold、SYBR Green II、PicoGreen、RiboGreen、DAPI、Hoechst 3342、Vybrant染料等,或者几乎任何可从Thermo Fisher商购的染料。参见例如Thermo Fisher网站(https://www.thermofisher.com/se/en/home/references/molecular-probes-the- handbook/nucleic-acid-detection-and-genomics-technology/nucleic-acid- stains.html)上可获得的技术参考库中Molecular Probes Handbook的Section 8.1(Nucleic Acid Stains)中提到的染料,其通过引用并入本文。
可以在对悬浮液-染色剂混合物中的细胞无害并允许发生染色的温度下使等分试样与染色剂接触。可以例如基于样品的性质、其中的微生物的身份或所使用的染色剂的性质来选择合适的温度。然而,为了避免损坏样品中的微生物,通常使用37℃或更低的温度。因此,可以使用35℃、30℃或25℃或更低的温度。还优选使用4℃或更高的温度,例如5℃、10℃或15℃或更高。在一个优选的实施方案中,样品在20-30℃,更特别地在20℃-25℃下与染色剂接触。在某些实施方案中,样品因此可以在室温下与染色剂接触。
通过检测在染色剂的发射波长处的荧光信号,将物体鉴定为对应于完整微生物。因此,对应于完整微生物细胞的物体具有与样品中其他物体不同的荧光特性,并且可以与样品中的其他物体(例如,对应于样品中存在的非完整微生物、细胞碎片或其他颗粒的物体)区分开来,从而允许确定对应于完整微生物细胞的物体的数目。优选地,仅对应于样品中完整微生物的经染色微生物是荧光的,并且在荧光成像期间没有检测到其他物体。
通过视觉检测手段进行悬浮液-染色剂混合物的成像。获得悬浮液-染色剂混合物的放大图像并进行分析以检测对应于完整微生物的物体。
尽管对应于完整微生物的物体可以是微生物细胞,其在预处理后可以是完整的或不完整的,但是其也可以是两个或更多个细胞的簇,例如生长为簇的克隆和/或非克隆细胞的聚集体。因此,物体可以是微生物细胞或细胞簇。不同的微生物可能以不同的方式生长,例如聚集或非聚集,或具有不同的模式或形态,并且对于给定的微生物,这也可能根据生长条件(例如抗微生物剂的存在或量)而变化。通过分析图像并对物体计数,然后将物体的数目与微生物浓度相关联,可以考虑这样的不同生长模式和/或形态等。因此,可以通过对物体的数目进行计数并基于例如物体的尺寸和/或强度(例如,考虑细胞簇或细胞聚集体)来调整数目来分析图像,以提供物体数目的图像分析值,然后可以使用校准曲线将其与完整微生物的浓度相关联。如上所述,可以将低浓度的洗涤剂添加到样品等分试样中以减少聚集。
悬浮液-染色体混合物的成像可以在对微生物无害的温度下进行。典型地,这将在室温或20-25℃下进行,尽管还可以使用其他温度,例如至少4℃至37℃(即37℃或更低)的温度。
在染色剂的发射波长处进行成像,即检测被荧光染色剂染色的物体。如上所述,这提供了足够的信息以允许将对应于完整微生物的物体与样品中可能存在的其他物体区分开。
除了荧光之外,成像可以包括使用显微术,包括明场、倾斜场、暗场、分散体染色、相差、微分干涉相差、共聚焦显微术、单平面照明、光片和/或宽视野多光子显微术。
可以允许微生物接触、结合、缔合或吸附到用于成像的检测表面上。但是,在一个优选的实施方案中,成像是在微生物的悬浮液上进行的,即在合适的培养基或缓冲液中的微生物,而不是附着在表面或固定在表面上或处的微生物。换句话说,可以对一定体积的悬浮液-染色剂混合物成像。在对微生物的悬浮液进行成像的情况下,可以在通过悬浮液的一个或多个焦平面处获得图像。可能优选的是在通过悬浮液的两个或更多个(不同的)焦平面(例如,在通过悬浮液-染色剂混合物的不同深度或横截面)处获得图像。换句话说,可以对待成像的体积的单独的子体积进行成像(即,可以获得悬浮液-染色剂混合物体积的单独的子体积的图像)。替代地,可以在不同位置获得图像,例如在样品室中的不同位置,例如在具有低高度的样品室中的不同的X-Y位置处获得图像。在这样的布置中,大多数微生物将在每个位置处的单个焦平面中。因此,可以获得多个(即,两个或更多个)不重叠的图像。这样的多个图像可以包括至少5、10、20、30、40、50、60、70、80、90或100个或更多个图像。分析图像以检测和/或鉴定对应于微生物的物体,如上所述,可以采用其来表示或指示悬浮液中存在的完整微生物。由此获得针对物体数目的图像分析值。获得的悬浮液的所有图像中检测到的物体可以提供悬浮液中物体的总数目。
为了进行成像步骤,将步骤(e)(iii)的悬浮液-染色剂混合物或其一部分或等分试样提供在(例如转移到)可以在其中进行成像的容器或器皿中,例如适于成像的板的孔或载体的隔室中。这样的孔或隔室将具有光学观察区域或空间,即显微镜(或更具体地,其物镜)可接近的观察(或可观察)区域或空间,并且具有允许显微镜观察和成像的光学质量。孔/隔室的几何形状可给出限定或期望尺寸(例如,至少2mm乘2mm)的可观察区域,其具有合适或期望的液体高度以允许对体积成像(例如,至少2mm的液体高度)。物镜可聚焦在孔或隔室内部的平面上,例如平行于底部,并与底部保持一定距离(例如,距底部约0.1-0.5,例如0.2mm),并且可以将显微镜配置为在成像期间使焦平面连续移动通过液体(例如,通过悬浮液向上移动),例如在图像采集期间(例如,10-60或20-30秒)移动总共1-3mm(例如,1.5mm)。
在一个特别优选的实施方案中,成像可以包括沿着光轴获得一系列的2-D图像,其中每个图像在沿着通过悬浮液体积的光轴的不同位置获得。在某些实施方案中,每个图像可以垂直于光轴对齐(在此称为xy对齐)。等分试样-样品混合物的特定区域被覆盖在单个xy对齐图像中,该图像的尺寸取决于成像设备的光学特性。对于xy空间中的每个位置,可以沿光轴或z轴以不同的间隔收集一个或多个2D图像。因此,可以生成2D图像的系列或堆栈,在一个实施方案中,其可以用于提供样品体积的3D信息。替代地,可以使用提供2D信息的多个单独图像。从样品提取3D信息的替代方法是Unisensor采用的方法(例如,参见US8780181),其中光轴相对于xy平面倾斜,并且样品或检测器沿x或y平面移动。在此,除了xy空间外,还获取了一系列延伸到z空间的图像。通过图像数据的后续转换,也可以使用此方法实现对齐垂直于xy平面的2D图像堆栈。以此方式,图像系列中的每个图像是单独区域(单独横截面)的图像,或者可以替代地被认为是单独的体积(横截面具有在z方向上的限定体积,因此可以为每个图像提供包含深度为z的xy空间的体积)。
一旦提取,则可以利用2D图像堆栈中固有的3D信息来鉴定样品中对应于完整微生物的物体。在一个实施方案中,可以通过例如将z堆栈投影到一个2D图像(投影的2D图像)中来从3-D信息生成2-D图像。然后可以使用所得的2-D图像进行分析。替代地,可以对通过悬浮液的体积获得的每个图像进行分析,并且可以将分析结果跨越对样品获得的所有2D图像进行积分。作为另一种替代,可以对获得的各个2-D图像中的每个图像分别进行分析(即,可以分别确定每个2-D图像中的物体),并且可以将从其收集的信息进行合并。可以将物体确定为荧光强度的点或区域,其指示在所研究的视野中、例如在图像或投影的2D图像中的完整微生物。可以对荧光图像进行分析,并且对于此的许多替代算法存在于例如Cellprofiler以及大多数商业图像分析系统中。
在另一个实施方案中,记录在xy空间中的每个位置上延伸的z空间中的强度变化,其指示在特定位置中的微生物质量。在整个xy空间中积分,这给出了对总微生物体积的测量。用于该程序的算法也存在于通常可用的图像分析软件中,例如免费软件Cellprofiler中。
替代地,显微镜可以被配置成在例如悬浮液-染色剂混合物(或视场)中的不同位置(例如将物镜移动至),例如在X方向(与Z方向相反)上拍摄图像(例如,将物镜移动到)。
一旦已经通过成像检测到对应于完整微生物的物体(即,在荧光染色剂的发射波长处检测到的物体),则由此获得的信息可用于生成等分试样的图像分析值。可以分析图像用于物体(例如,每个物体)的荧光强度和/或尺寸,以及任选地物体(例如,每个物体)的形态。可以确定诸如物体的圆形度、物体荧光强度的均匀性或最大荧光强度(例如其中像素的最大强度)、物体中的模态荧光强度、中值或平均荧光强度和/或通过成像检测到的每个物体的面积等因素。在某些实施方案中,仅具有在给定范围内的这些参数中的一个或多个的那些物体可以被包括在分析中(例如,被计数或枚举),从而生成图像分析值。图像分析值可以是在代表或对应于物体数目(即计数)的意义上鉴定的物体的组合值。可以基于每个物体中包含的连续像素的数目来确定物体面积,并且仅包含至少或超过一定数目的像素的那些物体可以被包括在分析中。在某些实施方案中,可以基于针对物体面积×强度的导出值来鉴定和检测物体,并且可以仅对具有落入参数的特定范围内的性质的那些物体进行计数或枚举,从而生成图像分析值。换句话说,图像分析值表示具有落入特定参数范围内的特征的对应于完整微生物的物体数目,或者换句话说,对应于完整微生物的物体的校正(或调整)数目。
为每个物体确定的因素(例如上述任何因素)或所有物体的诸如物体面积×强度的导出值也可以被组合以提供关于成像物体的群体(即关于物体的总数)的信息。以这种方式,可以确定例如成像物体(或更特别地,成像物体的集合或组)的最大、众数或中值荧光强度。替代地,可以确定成像物体的荧光强度的分布,或者成像物体的诸如物体面积×强度的导出值。因此,每个物体可以具有分配给它的值(例如,面积、最大荧光强度、总强度、中值或平均强度),并且可以为成像物体群体确定所述因素中一个或多个的中值或平均值或方差或标准差。如以下更详细描述的,这样的信息可以指示悬浮液中微生物的性质,并且可以用于选择合适的校准曲线以用于确定其中完整微生物的浓度。此外,这样的信息可以提供关于悬浮液中微生物的染色效率的信息,并且可以用于确定荧光强度低于检测极限的微生物的比例。
可以任选地对图像进行背景减去或归一化步骤作为初始步骤,即在本文所述的任何后续图像分析步骤之前。这可以使用任何方便的已知标准方法(例如滚球减法(rollingball subtraction))来进行。
可以在已经进行了阈值化之后确定图像分析值。换句话说,可以设置阈值以确定是否已经检测到物体。可以执行阈值化以设置针对悬浮液的图像获得的信号的强度下限,低于该下限的物体不予考虑。在本发明方法的情况下,阈值化允许在未来的任何分析中放弃在发射波长处具有低荧光强度的物体(即,没有被染色剂强烈染色的物体)。可以在至少一个或多个水平设置阈值,并且可以在不同的阈值对物体进行计数。
在某些实施方案中,可以执行全局阈值化,即,可以为整个图像(或图像集)设置单个阈值。然而,在替代实施方案中,可以执行局部阈值化(例如,如果整个图像上的照度和/或背景信号不均匀)。局部阈值化根据邻近像素的灰度信息来评估给定像素的阈值。
此外,在确定图像分析值之前,可以根据本领域中已知的技术执行其他图像分析操作,例如以将图像转换为灰度(其中,荧光强度可以被读取为灰度水平),和/或减去背景(例如使用滚球法)等。
可以基于从成像获得的信息来表征悬浮液,例如,微生物是否是聚集的或非聚集的微生物。有利地,可以仅基于悬浮液中物体的外观(例如,在悬浮液中检测到的特定比例的物体是否具有特定的面积和/或最大强度)来选择用于该过程的合适的校准曲线,并且在可以通过本发明的方法确定完整微生物的浓度之前不需要知道所述悬浮液中微生物的身份。因此,可以针对聚集的或非聚集的微生物选择预定的校准曲线。
悬浮液中完整微生物的浓度与图像分析值之间的关系可能取决于关于所述悬浮液中的微生物的许多参数,例如微生物的尺寸和形态,和/或微生物形成簇或生物膜的趋势。因此,悬浮液中物体的数目不能直接用于确定悬浮液中完整微生物的浓度,因为每个物体可能对应两个或更多个微生物。此外,在其中在两个或更多个焦平面处进行成像的本发明实施方案中,如果在不同的焦平面处拍摄,则微生物或微生物簇可能出现在两个单独的图像中,并且因此可能被检测为两个单独的物体。因此,悬浮液中微生物的身份可能影响悬浮液中微生物的浓度与在本发明方法的步骤(e)(iv)中成像的物体数目之间的关系。
在本发明的方法中,通过使用校准曲线可以克服诸如这些和那些在本领域中先前已确定为影响确定悬浮液中活微生物浓度的方法的准确性(例如,通过对完整微生物的不完全染色)的因素。
可以通过对含有已知浓度微生物的一系列样品(例如制备物)(或替代地称为“参考悬浮液”)(即通过替代方法确定或已经确定微生物浓度的样品(悬浮液))进行本发明的浓度确定方法的步骤(e)(iii)和(e)(iv)来制作校准曲线。因此,可以针对包含不同浓度的微生物的每个样品来确定对应于完整微生物的物体的数目,并且因此可以建立所述物体的数目与微生物浓度之间的关系。
从在进行本发明的浓度确定方法之前制作校准曲线的意义上来说,校准曲线是预定的。因此,在确定从给定(即每个)样品获得的悬浮液中的微生物浓度之前,可以单独制作校准曲线。然而,优选地,可以制作校准曲线并用于确定多个悬浮液中完整微生物的浓度,或者换句话说,可以使用相同的校准曲线确定多个悬浮液中完整微生物的浓度。换句话说,该方法不必包括校准曲线的产生;可以使用预先制作的校准曲线,并且无需为每个样品/悬浮液产生单独的校准曲线。可以周期性地制备新的或新鲜的校准曲线,例如每天、每周或每月,或者可以按批次制作,例如在使用新的染色剂批次之前,并且所述新的校准曲线可用于确定完整微生物的浓度,直到需要制作新的校准曲线为止。
然而,当进行本发明的方法时,可以提供适合于确定给定微生物或微生物类型的浓度的校准曲线,并且因此可能优选的是为具有不同特征(例如不同生长模式)的微生物或微生物类型制作单独的校准曲线。因此,这不必需要一定处于特定的微生物属或物种的水平,而是可以取决于例如微生物的形态和/或生长模式。
在一些情况下,校准曲线用于确定悬浮液中完整微生物浓度的适用性可能取决于所述微生物的身份,并且将决定校准曲线允许从图像分析值确定完整微生物浓度的精确度。例如,可能的是,使用特定微生物产生的单个校准曲线可能适用于确定一系列不同微生物(例如单一科或属内的微生物)的浓度,并且以这种方式,可能仅需制作单个校准曲线以用于本发明的方法。替代地,可以使用从不同科、属、种或菌株的微生物和/或具有相似特征和/或形态的不同微生物获得的成像数据来制作用于该目的的校准曲线,并且可以将从其获得的数据组合以提供单个校准曲线。
例如,可以从不同物种的非聚集革兰氏阴性细菌收集数据,从而制作校准曲线。因此,由此制作的校准曲线可用于确定许多不同的(合适的)微生物的浓度,即在成像物体的数目与悬浮液中的微生物的浓度之间具有令人满意的(即代表性的)相关性的微生物。
替代地,如果特定的微生物表现出不规则或不寻常的特性,则可能有必要为该特定的微生物产生单独的校准曲线,以便确定悬浮液中该微生物的浓度。
因此,可以提供(即,在进行本发明的浓度确定方法之前制作)许多不同的校准曲线,每个适用于确定不同选择的微生物的浓度。因此,例如,可以为非聚集革兰氏阴性细菌、非聚集革兰氏阳性细菌、聚集革兰氏阴性细菌或酵母提供单独的校准曲线。因此,可以选择合适的校准曲线以便确定样品中特定微生物的浓度。因此,可以制作2、3、4、5或6个或更多不同的校准曲线,并且一旦进行了微生物成像,就可以从中选择合适的校准曲线。
在本发明的一个优选实施方案中,在成像步骤(e)(iv)中获得的信息可以为选择使用哪个校准曲线提供信息,以便确定从特定样品制备的微生物悬浮液中的活微生物的浓度。可以为步骤(e)(iv)中检测到的物体确定上述物体的一个或多个参数(即,如上所述的物体的最大强度、众数强度和/或面积或导出值),任选地在背景减去和/或阈值化步骤之后,并且这样的信息可用于为该样品选择合适的校准曲线。优选地,使用为聚集或非聚集微生物预定的校准曲线。
诸如样品或悬浮液的性质、微生物重悬于其中的培养基以及样品和/或悬浮液的存储或孵育条件等因素也都可能影响悬浮液中微生物浓度与在本方法的步骤(e)(iv)中成像的物体的数目之间的关系,并且因此优选在与对悬浮液-染色剂混合物成像的条件相似或相同的条件下制作校准曲线。
如上所述,本发明的浓度测定方法在进行AST测定的情况下,特别是在确定其接种物中微生物的浓度的情况下,在测定由样品制备的悬浮液中完整(并因此活的)微生物的浓度方面特别有用。因此,本发明提供了用于确定微生物的抗微生物剂敏感性的方法,所述方法包括从样品制备微生物的悬浮液并如上所述确定悬浮液中的活微生物的浓度,并进行AST测定。
有利地,本发明提供了一种方法,其从临床样品或临床样品培养物开始,并且包括从临床样品或临床样品培养物中回收(或分离)活微生物,确定回收的微生物的悬浮液中完整(并因此指示活的)微生物的浓度,以及任选地从悬浮液制备接种物(其可以包括调节悬浮液或其一部分或等分试样中微生物的浓度)。回收的微生物的悬浮液或由其制备的接种物可用作在AST测定中制备的AST微生物测试培养物的接种物。
如以下进一步描述的,AST测定可以以任何方便或期望的方式进行。因此,可以在存在不同的抗微生物剂(例如抗生素)和/或多个量或浓度的抗微生物剂(例如抗生素)的情况下评估(或确定)微生物的生长。可以直接地或通过评估(确定)生长标志物来评估生长。
一般而言,通过监测抗微生物剂对微生物生长的影响来进行AST测定。包含微生物的样品用于接种一系列至少两个培养容器中的培养基(即建立至少两个AST微生物测试培养物),每个容器包含不同浓度的抗微生物剂,并且将微生物培养一段时间。以这种方式,测试了一系列至少两种不同浓度的抗微生物剂,以便确定防止微生物生长所需的试剂的量(例如最小抑制浓度(MIC))。由此获得的抗微生物剂敏感性值(例如MIC值和/或SIR值)提供了微生物是否对单个抗微生物剂是耐药性或敏感性的指示。
除了接种包含不同浓度抗微生物剂的至少两个AST微生物测试培养物外,AST测定还将具有阳性对照条件(不包含抗微生物剂的培养基),以确认微生物是活的并且能够在为AST测定提供的生长培养基中生长,以及阴性对照条件(未接种微生物培养物且不含抗微生物剂的培养基),以确认生长培养基未受到不是从临床样品获得的微生物的污染。因此,除了至少两种不同的生长条件外,用于确定样品中微生物的抗微生物剂敏感性的方法的步骤(iii)通常将包括建立合适的阳性和阴性对照条件。
在一些实施方案中,可以将阳性对照样品视为提供第一浓度的抗微生物剂(即,浓度为0M),并且可以建立仅包含抗微生物剂的第二条件。在这样的实施方案中,可以评估阳性对照条件和包含抗微生物剂的条件中的生长,以确定抗微生物剂敏感性。因此,“至少两种不同的生长条件,其中……在两种或更多种不同的浓度下进行测试每种抗微生物剂”可以被视为涵盖其中将抗微生物剂添加到仅单一生长条件,并且阳性对照条件代表第二浓度的抗微生物剂的实施方案。
在一个优选的方面,测试了多于一种(即两种或更多种)不同的抗微生物剂,从而提供了抗生素敏感性的两个或更多个不同的值(例如MIC值和/或SIR值),每种不同的抗微生物剂一个值。不同值(例如,不同的MIC和/或SIR)值的组合提供了给定微生物的抗微生物剂敏感性谱,即,微生物对一组抗微生物剂中的哪一种具有耐药性,以及微生物对一组抗微生物剂中哪一种具有敏感性。如果需要,可以为每种测试的抗微生物剂设置单独的阳性和阴性对照条件,但是在测试多种不同的抗微生物剂的情况下,单个阳性和单个阴性对照条件就足够了。
AST方法中的微生物生长可以通过任何期望的或合适的方式,包括通过本领域已知的任何方式来评估。更特别地,可以通过确定微生物和/或微生物菌落或聚集体的量和/或数目和/或尺寸来评估微生物的生长。如将在下面更详细地讨论的,在某些优选的实施方案中,通过成像或替代表达为通过微生物的可视化来评估(确定)微生物生长。因此,可以将微生物细胞(其可能包括细胞的聚集体或团块(簇))或微生物菌落)可视化或成像,作为确定(或评估或监测)生长的手段。这可能包括对细胞或菌落进行计数,但不限于这样的方法,并且包括通过评估微生物细胞、菌落或聚集体(术语“聚集体”包括物理上邻近的任何细胞集合,例如团块或簇;这可包括聚集或缠在一起的细胞的非克隆团块/簇(例如已聚集的相邻细胞)以及克隆菌落)的尺寸、面积、形状、形态和/或数目来可视化评估(或确定)微生物生长量的任何方式。
用于测量微生物生长的参数可以但不必根据微生物的身份和所使用的抗微生物剂而变化。实际上,取决于生物体和所使用的抗微生物剂,细胞的形态或生长模式可能会受到影响,并且这可能会从“正常”或“典型”形态或生长模式(例如,在没有抗微生物剂的情况下)改变或变化。尽管某些AST生长监测方法可能依赖于检测这样的变化,但是根据本发明不必考虑这样的变化,并且可以确定微生物生长或生物质的量(例如面积)而不考虑形态和/或生长模式。因此,可以使用相同的生长监测方法,而不管微生物细胞和/或所使用抗微生物剂。下文进一步描述了进行AST测定的方法。
本发明提供了确定悬浮液中完整的或活的微生物的浓度的方法,并且该信息可以用于准确地提供测试微生物培养物中微生物细胞的特定浓度。一旦确定了浓度,就可以调节悬浮液的至少一部分中的微生物浓度,以提供用于接种步骤(iii)中的测试微生物培养物的接种物。但是,如上所述,这并不排除在确定浓度之前进行额外的初步调节。因此,悬浮液中微生物细胞的浓度可以任选地或者如果需要的话进行调节,以落入适合用于AST测定的范围内。这种调节可能并非在每种情况下都需要,即可以将悬浮液直接用于接种在步骤(iii)中建立的测试微生物培养物系列(即悬浮液可以直接使用,即没有进行任何进一步调节)。替代地,可以将悬浮液(或其等分试样)调节至期望或预定浓度。还进一步替代地,悬浮液可以直接(即不进行调节)用于接种测试微生物培养物系列,并且如果需要的话,可以将测试微生物培养物中的微生物浓度调节至期望的或预定的浓度。任何这样的调节将基于在浓度确定方法中确定的活微生物的浓度(即,基于悬浮液中的微生物的浓度)。
因此,本发明的方法可以进一步包括步骤(f),其中调节悬浮液或其一部分和/或测试微生物培养物中微生物细胞的浓度。更特别地,可以调节浓度以增加或减少微生物细胞的数目或浓度。如上所述,这样的调节可以在AST测定的情况下进行,但是也可以出于任何期望的原因在任何其他情况下进行,例如对回收的微生物的等分试样调节以用于进一步分析(例如遗传分析)、储存(例如冷冻)等。
如上所述,在某些实施方案中,该方法可以包括在确定悬浮液中的微生物浓度之前的初始调节,优选初始稀释。这可以被视为调节步骤的一部分(例如,作为初始或初步的调节)。或者,这可以看作是单独的初始(初步或盲式)调节,其独立于确定浓度之后进行的任何调节步骤而执行。一旦确定了悬浮液中微生物的浓度,如果需要,可以根据在本发明的步骤(e)(v)中确定的微生物浓度对微生物浓度进行进一步的调节(例如,以落入适合用于AST测定的范围内)。因此,在一个实施方案中,该方法可以包括在步骤(e)中确定浓度之后调节悬浮液的至少一部分中的微生物浓度的附加步骤(f)。在另一个实施方案中,该方法可以包括在确定浓度之前对悬浮液的至少一部分中的微生物浓度进行初始调节,并且然后在步骤(e)中确定浓度之后对经调节的悬浮液或其一部分进行进一步调节。在一个实施方案中,步骤(f)可以被视为执行这种进一步调节的步骤。有利的是,进行这种初始调节(例如,在调节悬浮液中微生物细胞的浓度的过程中)可以减少一旦在步骤(e)(v)中确定了悬浮液中的微生物浓度之后制备具有期望微生物浓度的悬浮液(例如接种物)所需的时间。
因此,在一个实施方案中,调节悬浮液的至少一部分中的微生物浓度。其中调节了微生物浓度的悬浮液的至少部分优选是在步骤(d)中获得悬浮液的未在步骤(e)(iii)中染色的部分,即它是悬浮液的未染色部分。
调节悬浮液的至少一部分的浓度可以提供用于接种步骤(iii)中的测试微生物培养物的接种物。因此,例如,可以例如通过将样品培养一段时间以使微生物细胞生长来增加接种物中的微生物浓度,或者例如通过在接种测试微生物培养物之前或在接种测试微生物培养物的过程中稀释来减少悬浮液中的微生物浓度,例如,通过选择待使用的适当量(例如体积),通过添加至固体(例如,干燥的抗微生物剂,例如冷冻干燥或真空干燥的抗生素)或通过在将接种物的一部分或等分试样添加到一定体积的抗生素和/或用于AST测试的培养基时稀释来建立测试培养物。因此,可以用悬浮液(或其等分试样)或从其调节的(例如稀释的)接种物接种测试微生物培养物。
在一个实施方案中,其中悬浮液包含高于期望的微生物浓度,例如太高而不能用于AST测定的微生物浓度,则使用适当的缓冲液或培养基(例如液体培养基)稀释微生物培养物,以将细胞密度降低至适当水平,例如进行AST的合适水平。在AST测定的情况下,优选使用用于进行AST测定的培养基进行稀释。在一个实施方案中,这可以使用Muller Hinton(MH)肉汤来进行。调节浓度可以例如包括基于在AST方法的步骤(ii)中确定的浓度进行稀释。
在替代实施方案中,其中悬浮液包含太低而不能用于AST测定的微生物浓度,则可以将悬浮液培养(或进一步培养)一段时间,以使其中存在的微生物生长和数目增加。可以连续地或在一系列单独的时间点监测悬浮液中存在的微生物细胞的浓度,直到微生物的浓度达到可以进行AST测定的足够高的细胞密度为止。可以通过本文所述的用于监测AST测定本身中的生长的任何方法来监测该阶段中微生物培养物的生长,例如,通过细胞或菌落的成像或计数,和/或可以在生长一段时间后进行本发明的浓度确定方法。
因此,在一个实施方案中,本发明利用具有标准微生物浓度(例如0.5McFarland单位或108CFU/ml)或其区域中的浓度的接种物(例如悬浮液或稀释的悬浮液)来接种用于AST测定的测试培养物。任选地或者如果需要的话,可以调节(即根据样品中存在的细胞数目而增加或减少)悬浮液中存在的微生物细胞的浓度,以获得具有标准浓度的悬浮液。替代地,悬浮液中存在的微生物细胞的浓度可以在标准范围内,则无需进行调节步骤。无论如何,通过本发明的方法确定悬浮液中存在的微生物细胞的浓度,并且可以根据需要或如果需要进行调节以获得具有标准浓度的悬浮液。替代地,可以不经调整就使用悬浮液,并且可以根据在悬浮液中确定的微生物浓度来调节测试微生物培养物中微生物细胞的浓度(例如,通过选择合适的稀释因子来建立测试培养物或合适的体积)。
AST测定通常利用具有设定的(或标准的或标准化)细胞密度或微生物浓度的微生物培养物,以允许将从一个样品或一个位置获得的结果与在其他地方获得的结果进行比较,因为已知微生物对抗微生物剂的响应随着样品中微生物的浓度以及抗微生物剂本身的类型和浓度而变化。影响临床结果的因素(例如抗微生物剂的剂量和给患者开出的治疗方案)基于从根据设定的标准规范进行的AST测定获得的结果。
使用“非标准”(或“非标准化”)微生物培养物进行的AST测定中获得的结果(微生物的抗微生物剂敏感性谱,或一组MIC和/或SIR值和/或指示抗微生物剂敏感性的任何其他值)可能不同于根据标准规范(例如使用“标准”微生物培养物)进行的AST测定中获得的结果。然而,如果用于接种AST测试培养物的悬浮液或接种物中的微生物细胞浓度已知,则可以确定使用非标准微生物培养物获得抗微生物剂敏感性值与使用标准微生物培养物获得的抗微生物剂敏感性值之间的差异程度。因此,可以从使用非标准微生物培养物获得的抗微生物剂敏感性值计算出理论上的“标准”抗微生物剂敏感性值(例如MIC和/或SIR值)。
使用非标准微生物培养物获得的敏感性值不同于“标准”MIC值的程度可根据微生物和抗微生物剂的性质而变化,并且对于例如测试的每种不同的抗微生物剂以及包含不同浓度的微生物细胞的微生物培养物可分别确定。
因此,本发明提供了使用包含非标准浓度的微生物细胞的接种物来确定微生物的抗微生物剂敏感性谱的方法,其中在进行AST测定之前测量测试微生物培养物中微生物细胞的浓度(间接地,通过测量用于接种所述测试微生物培养物或制备接种物的悬浮液中的微生物细胞浓度),即,确定悬浮液中微生物细胞的浓度,并基于由此制备的测试微生物培养物中微生物细胞的浓度调节在AST测定中获得的敏感性值(例如MIC和/或SIR值),以得到标准值(例如MIC和/或SIR值。
如上所述,在现有技术的方法中用于建立AST测试测定的标准接种物通常为约0.5McFarland单位。如上所述,这相当于约108CFU/m。通常将其以1:200的稀释度稀释,以提供包含约5x105 CFU/ml的测试微生物培养物。然而,尽管本发明的方法可以使用这些标准值,并且通常优选的是AST测试中接种的微生物测试培养物中微生物的浓度为4.5x105±80%或5x105±60%,但是在本发明的方法中,接种物(例如悬浮液和由其制备的接种物)和/或测试微生物培养物可以包含任何限定的或预定的微生物细胞浓度,条件是用于获得AST值的测试微生物培养物中微生物细胞的浓度是已知的。因此,在另一些实施方案中,AST测试中接种的微生物测试培养物中微生物的浓度可以在1x105±80%或5x104±80%或5x104±60%等范围。
因此,悬浮液中微生物细胞的浓度可以是适合于建立AST方法中的微生物测试培养物的任何期望或预定的浓度。因此其可以是至少10、102、103、104、105、106、107、108、109、1010、5x1010或1011CFU/ml。悬浮液中微生物细胞的浓度优选为10-1011、102-1011、103-1011、104-1011CFU/ml、105-1011CFU/ml、106-1011CFU/ml、107-1011CFU/ml、5x106-1011CFU/ml、2x106-1011CFU/ml、106-1011CFU/ml、5x106-5x1010CFU/ml、2x106-5x1010CFU/ml、或106-5x1010CFU/ml。
使用具有低浓度微生物的接种物进行的AST测定的统计可靠性可能比其中接种物包含较高浓度的微生物的实施方案差。因此,在某些实施方案中,如果在悬浮液中确定了特别低的微生物浓度,则可能希望或有利的是在该阶段不继续进行AST测定。因此,在某些实施方案中,当悬浮液中的微生物浓度低于1x103CFU/ml,或更优选低于1x104、1x105或1x106CFU/ml时,可以不使用悬浮液进行AST测定(即,不进行超过步骤(ii)的AST方法)。任选地,在重复浓度确定方法之前,可以允许悬浮液中微生物的浓度增加(例如在培养一段时间之后),并且如果在该稍后阶段悬浮液包含足够高的微生物浓度,则然后可以进行AST测定。
如果悬浮液中微生物细胞的浓度低于标准浓度,则本发明的允许将非标准浓度用于AST测试的AST方法具有特别的效用,因为其可以绕过对将所述悬浮液孵育一段时间以使悬浮液中的微生物细胞浓度增加例如至高于标准浓度的水平的需求。
本文给出的AST方法可被视为通过调节使用非标准微生物培养物进行AST测定而获得的敏感性(例如MIC和/或SIR)值来确定微生物的“标准”抗微生物剂敏感性谱的方法。换一种方式来看,这提供了调节用于接种AST测定中所用的测试培养物的微生物细胞的浓度,从而计算微生物的抗微生物剂敏感性的理论方法。
尽管可以使用非标准样品来接种用于本发明的测试培养物,但是在替代实施方案中,本发明提供了以物理方式调节悬浮液和/或测试微生物培养物中存在的微生物细胞浓度的方法,以使得测试微生物培养物中微生物细胞的浓度对应于标准或标准化浓度(例如约5x105CFU/ml),从而可以进行标准AST测定。
将悬浮液或由此制备的接种物用于接种测试微生物培养物。如上所述,在建立测试微生物培养物的阶段(AST方法的步骤(iii))中,可以将悬浮液添加到培养基中,即可以稀释或进一步稀释悬浮液。因此,可以在此时调节测试微生物的培养物以包含任何期望的或预定的浓度。因此,测试微生物培养物将包含至少10、101、102、103、104、105、106、107、108或109CFU/ml,优选102-108、103-107或104-106CFU/ml的微生物细胞初始浓度。如上所述,因此,可以将测试微生物培养物建立为终浓度为5x104±80%、1x104±80%、4x105±80%、4.5x105±80%或5x105±80%。
但是应注意,构成“标准”样品的条件可能根据微生物的身份而变化,即悬浮液中存在的微生物细胞的浓度可能取决于微生物的身份。悬浮液中微生物细胞的浓度优选为10-1011、10-1010、10-109、102-109、103-109、104-109CFU/ml、105-109CFU/ml、106-109CFU/ml、107-109CFU/ml。
存在用于AST测定的公认的和规定的条件,并且可以遵循该条件,以便可以容易地获得与在其他实验室中进行的测试相当的或可以进行比较的可比较的结果。
例如,这可以涉及使用规定的培养基和培养条件。在某些实施方案中,用于微生物培养的培养基可以是液体培养基,即,培养基可以是液体。
在某些实施方案中,平行建立具有不同培养基以供不同微生物生长的测试微生物培养物可能是有利或期望的。例如,如果样品(并且因此悬浮液)中微生物的身份是未知的,或者如果其生长模式或要求尚未完全表征,则这可能会很有用。因此,例如,可以建立在AST方法中的平行微生物测试培养物,其在生长培养基中包含或不包含苛养补充剂(fastidious supplement),或者换句话说,在苛养或非苛养培养基(fastidious or non-fastidious media)中的平行测试微生物培养物。苛养培养基在本领域中是周知的,并且预制备的苛养培养基和苛养补充剂两者都是广泛市售的。苛养补充剂包括例如裂解的血液制备物(例如裂解的马血)、血清、多种维生素和/或矿物质,辅因子等,例如β-烟酰胺。方便地,可将苛养补充剂作为稀释方案的一部分添加至培养基。此外,是否使用苛养培养基或苛养补充剂可能取决于对悬浮液确定的微生物细胞的浓度。例如,如果浓度低,例如悬浮液中的微生物细胞少于2x106CFU/ml,则可以从AST方法中省去使用含有苛养培养基/补充剂的微生物测试培养物。
在某些实施方案中,建立平行地具有不同培养基的测试微生物培养物也是有利的,所述不同培养基被优化用于测试对特定抗微生物剂的敏感性。测试微生物培养物中可能包含对于特定抗生素必需的添加剂。例如,可以包含聚山梨酯80,和/或可以在某些测试微生物培养物中提供增加的钙浓度。
可以使微生物在多种抗微生物剂的存在下生长以确定它们对给定抗微生物剂的敏感性。可以基于微生物的身份(如果已知的话),并且优选地还可以基于在微生物内鉴定的任何遗传的抗微生物剂抗性标记的性质来选择抗微生物剂。还可根据当前的临床实践,例如根据在实践中当前使用哪种抗微生物剂来处理所鉴定的微生物来选择使用的抗微生物剂和量,使得可以评估微生物对当前接受或公认的所选抗微生物剂治疗的敏感性。
因此,可以基于如下来选择抗微生物剂:已知对所鉴定的微生物有效的抗微生物剂或当前实践中用于处理该微生物的抗微生物剂,并且排除基于抗性标记物的存在而可以预期具有耐药性的任何试剂,或者尽管存在抗性标记,但是这样的试剂可以被包括在内并且可以选择使用的量以允许确定可能有效的抗微生物剂的量或浓度。将抗微生物剂以一定范围的终浓度或量添加到培养基中。在本发明的一个实施方案中,可以进行抗微生物剂的稀释。在本发明的一个优选形式中,将溶解后产生预定浓度的预定量的抗微生物剂预先沉积在孔中,在AST之前向所述孔中添加含有微生物的培养基。预先沉积的抗微生物剂优选是干燥的,例如冷冻干燥或真空干燥的制剂。
在AST测定中生长或培养悬浮液/来自其的微生物的步骤可以通过任何已知或方便的方式进行。可以使用固相或液相培养。
因此,例如,在一个优选的实施方案中,可以在包含抗微生物剂的板或其他固体培养基上或内或者包含抗微生物剂的含有液体培养基的容器(例如板的孔)中培养微生物,并且可以通过微生物可视化(例如成像)(例如,板成像等)来确定微生物生长。因此,对培养物直接进行可视化或成像,作为监测或评估生长的手段。因此,在一个优选的实施方案中,直接分析培养物以监测/评估生长。例如,可以使培养物在板的孔中或者载体基底的隔室中生长,并且可以对孔/隔室成像。
替代地,可以以间隔或在不同时间点从AST测试培养物中去除(或取出)样品(或等分试样),并且可以对去除的样品(等分试样)进行微生物生长分析。这可以通过任何手段来完成,包括例如通过分子测试,例如基于核酸的测试。因此,可以使用与微生物细胞或与微生物细胞释放或分离的组分结合的检测探针和/或引物。这可以包括例如可以与微生物DNA杂交的核酸探针或引物。在另一些实施方案中,如下面更详细描述的那样,可以直接检测微生物细胞,例如通过染色。
除了在没有任何抗微生物剂的情况下允许微生物生长的阳性对照以及在没有添加等分试样的情况下进行培养的至少一种阴性对照之外,每种抗微生物剂可以以至少两种浓度使用。例如,使用2、3、4、5、6、7或8种或更多种浓度的抗微生物剂。以稀释系列使用的浓度在各个浓度之间可能相差两倍。
术语抗微生物剂包括杀死微生物或抑制其生长的任何试剂。本发明的抗微生物剂可特别包括抗生素和抗真菌剂。抗微生物剂可以是杀微生物的(microbicidal)或使微生物停滞的(microbiostatic)。已知多种不同种类的抗生素,包括针对真菌或特别地真菌组具有活性的抗生素,并且可以使用任意或所有的这些抗生素。抗生素可包括β-内酰胺类抗生素、头孢菌素、多粘菌素、利福霉素、闰年霉素(lipiarmycins)、喹诺酮、磺酰胺、大环内酯类、林可酰胺、四环素、氨基糖苷、糖肽、环状脂肽、甘氨环素、噁唑烷酮、闰年霉素或碳青霉烯。本发明的优选的抗真菌剂可以包括多烯、咪唑、三唑和噻唑、烯丙胺或棘白菌素。抗微生物剂正在不断开发中,并且应当理解,也有可能使用本发明分析未来的抗微生物剂。
优选地,至少一种测试微生物培养物包含苛养培养基。更优选地,至少两种测试微生物培养物(例如包含不同浓度的相同抗微生物剂的至少两种不同生长条件)可以包含苛养培养基,使得微生物对在苛养生长条件下的特定抗微生物剂具有抗微生物剂敏感性。
可以通过从悬浮液培养微生物并在一定时间范围内分析AST培养物来确定抗微生物剂的敏感性。
可以在多个时间点分析AST培养物以监测微生物的生长。例如,可以在培养开始后0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小时的时间点分析培养物。可以在培养开始后立即分析培养物,其中t=0。也可以在培养开始后超过24小时的时间分析培养物。通常,可以在培养开始后的0、1、2、3、4、6和24小时分析培养物。但是,使用该方法获得的结果表明,较短的孵育时间可能足以检测微生物的差异生长,例如4个小时。因此,也可以使用长至8、7、6、5、4、3或2小时的较短的总孵育时间,例如每小时或每2个小时或90分钟进行分析。如上所述,通常在两个或更多个时间点分析培养物,例如在培养长至4、5或6个小时的两个或更多个时间点。在某些实施方案中,可以在更频繁的时间点分析AST培养物。可以在t=0时分析培养物,并且然后可以以1、2、3、4、5、10、15、20、25或30分钟的间隔分析培养物。因此,还可以有利地减少在使用这种短分析间隔时所需的总孵育时间,因此可以使用长至10、15、20、25、30或60分钟的较短孵育时间。
AST测定中微生物生长的监测或评估可以如下进行:通过连续地或在一段时间内(例如长至10、15、20、25或30分钟或者长至1、2、3、4、5、6、7或8小时)间隔地监测生长,或者通过将AST生长培养(测试微生物培养)开始时(t0)微生物细胞物质的量与随后时间点(例如长至10、15、20、25或30分钟或者长至1、2、3、4、5、6、7或8小时)的微生物细胞物质的量进行比较,即在间隔时间内发生的生长。替代地,可以在两个或更多个不同的时间点确定微生物细胞物质的量(例如,测量1、2、3、4、5、10、15、20、25或30分钟或者1、2、3或4小时之后的第一时间点,并且测量第一时间点之后1、2、3、4、5、10、15、20、25或30分钟或者1、2、3、4、5、6或7小时的第二时间点,或者培养开始后2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或55分钟或者2、3、4、5、6、7或8小时的第二时间点),从而可以确定生长量。在优选的实施方案中,可以在多于一个时间点,即至少两个时间点确定微生物的生长程度。
在另一个实施方案中,在仅一个时间点,例如在1、2、3、4、5、6、7或8小时,评估在存在抗微生物剂的情况下生长的测试微生物培养物和在不存在抗生素的情况下生长的测试微生物培养物(例如阳性对照)的生长。在AST生长培养开始后的时间点(或两个或更多个时间点)监测生长可以通过避免在微生物生长的滞后期中测量生长而有利于获得更准确的结果,因为在这段时间期间不同条件下的微生物生长的任何差异将是小的和难以检测的。可以在30分钟或者1、2、3或4小时后根据此方法进行第一测量,并且可以在第一个时间点之后1、2、3、4、5、6、7或8小时进行第二测量)。
但是,显然对于某些微生物,例如某些厌氧菌、分枝杆菌或真菌,微生物生长可能较慢,因此AST测定可能需要进行更长的时间。因此,根据本发明的某些实施方案,通过测量微生物生长8、9、10、11或12小时或更长时间(例如12、18或24小时)来进行AST测定可能是必要的或期望的。可以相应地在一个或多个时间点进行合适的测量。
在一个优选的实施方案中,相对于每种生长条件下微生物细胞的初始数目(量或浓度),可以在至少两种生长条件(例如每种生长条件)下测量生长。
可以在促进微生物生长的任何温度下进行测试微生物培养物的培养,例如在约20℃至40℃,或20℃至37℃之间,优选约25℃至37℃之间,更优选约30℃至37℃或30至35℃之间。在一个实施方案中,可以在约35℃下培养AST培养物。
许多用于监测或评估微生物生长的方法是已知的并用于AST测定中,例如包括浊度测量、比色测定、光检测、光散射、pH测量、光谱测量、荧光检测、测量抗生素或微生物降解产物、测量核酸含量或测量气体(例如CO2)的产生。可以使用这些中的任何。然而,根据本发明的优选实施方案,可以通过成像方法通过确定或评估微生物细胞的数目和/或量和/或尺寸和/或面积来检测和评估生长。如上所述,微生物细胞可以包括菌落和/或聚集体中的细胞。这可以通过用已知测量或检测微生物的任何方法评估或确定在抗微生物剂存在下生长之前和/或之后存在的微生物的数目或量来实现。这样的确定可以涉及确定微生物细胞、聚集体和/或菌落的数目和/或尺寸。同样,用于此目的的技术是已知和可用的。因此,可以通过随时间监测微生物和/或微生物细胞和/或菌落和/或聚集体的数目和/或量和/或尺寸来测量生长。这可以直接或间接地测量。微生物的数目或量可以通过血细胞计数、流式细胞术或自动显微术直接测量。在检测之前,微生物可以被固定和/或透化。或者,可以在体内条件下检测微生物。
Broeren等人,2013,Clin.Microbiol.Infect.19.286-291中描述了通过使用流式细胞术监测细菌细胞计数的AST测定方法。Price等人,2014,J.Microbiol.Met.98,50-58和Metzger等人,2014.J.Microbiol.Met.79,160-165以及Accelerate Diagnostics(参见例如WO2014/040088A1、US 2014/0278136A1和US 8,460,887B2)描述了用于进行AST测定的方法,其中使细胞生长并且在多通道流体盒中通过自动显微术进行枚举。在这些方法中,细菌固定在表面上并在表面上生长,并且通过在两个或更多个时间点对表面成像来评估单个细菌和/或菌落的生存力和/或生长(包括测量菌落的生长)。根据本发明可以使用这样的方法。Fredborg等人,J Clin Microbiol.2013,51(7):2047-53和Unisensor(US 8780181)描述了另一些已知方法,其中使用明场显微术通过对溶液拍摄一系列堆叠图像(物体平面)并且对样品中存在的细菌计数来对溶液中的细菌成像。
本文描述的或本领域已知的基于使用成像来监测微生物生长的任何方法都可以用于本文公开的用于确定AST的任何方法的AST步骤中(上述AST方法的步骤(iv))。然而,在某些实施方案中,AST方法中的AST方法中的微生物生长确定步骤(即评估微生物生长程度的步骤(iv))不依赖于对个体细胞计数或监测个体细胞或菌落的生长(例如,根据Accelerate Diagnostics Inc的方法监测个体细胞或菌落尺寸的增加)。因此,本申请公开的方法不限于(并且在某些实施方案中不涉及)使用固定位置对AST培养物或AST培养样品成像。进而,优选地监测AST培养物中细胞的本体生长(bulk growth),例如通过对视野内的本体细胞(bulk cells)成像。可以通过成像来确定视野中的微生物细胞物质(生物质)的量(例如面积)。可以直接(例如通过显微镜或照相机等)检测细胞/微生物生物质,例如使用明场显微术,或者可以对微生物细胞染色以用于检测,例如通过在生长预定或所需时间后向AST培养物或培养物样品中添加染色剂。但是,在另一些方法中,可以对个体细胞进行计数,或者可以监测个体细胞或菌落的生长。因此,除了本文具体描述和证明的方法以外的其他方法可以用于确定或评估AST测试培养物中的微生物生长,并且本文公开的用于制备微生物悬浮液和/或确定其中的微生物浓度的方法可用于其他AST方法中。
因此,在评估微生物测试培养物中的生长的步骤(iv)中,这优选地通过在可用于成像的培养物的大(显著或实质性)部分上对测试培养物成像来完成。此外,在步骤(iv)中,可以在不预先选择用于成像的测试培养物的群体或部分的情况下完成成像。可以产生液体(肉汤)培养物的延时图像。
在另一个特定的实施方案中,可以在不固定微生物细胞或者不将其驱动或主动运输到表面(例如不施加力,例如电泳)以将细胞定位到用于成像的检测位置或表面的情况下将AST培养物直接成像或可视化。
在这样的成像方法中,可以根据本领域周知的方法和原理,应用算法来从图像确定微生物生长量的值。因此,可以基于图像中微生物细胞物质/生物质的数目、尺寸和/或面积(例如,图像/视野中所有微生物细胞物质的量,例如成像的总细胞物质)将统计方法应用于微生物细胞图像。基于存在于培养物中的微生物和抗微生物剂的身份,可以编写算法以考虑不同的生长模式和/或形态。在共同申请审理中的申请WO 2017/216312中描述了用于测量样品中微生物生物质的量以及因此微生物生长的示例性图像分析算法,其结合了阈值化和纹理过滤,并且这样的方法可用于评估本发明的AST方法中微生物的生长。这种计数或成像方法允许对AST测定中的微生物进行数字表型分析。已获得的数据表明,这种数字表型测定提供的MIC值与参考技术(例如微肉汤稀释(microbroth dilution))的MIC值相似。
使用这样的方法的一个特别的优点是可以对包含宽范围浓度或量的微生物的测试微生物培养物进行抗微生物剂敏感性测试,并且在进行抗微生物剂敏感性测试之前不必使用标准化的微生物滴度。本发明的有用特征是使用不同浓度的微生物的能力。可以在本发明方法中使用包含至少103CFU/ml的测试微生物培养物或样品,例如可以使用包含至少103、104、105、106、107、108、109、1010或1011CFU/ml的样品(AST测试样品)。或者,可以使用包含少于103CFU/ml,例如至少102CFU/ml的测试微生物培养物或样品。在本发明的方法中,也可以使用包含少于102CFU/ml的测试微生物培养物或样品。
尽管明场成像代表了用于测定测试微生物培养物中微生物细胞浓度的一种形式,但是在本发明的一个实施方案中,可以通过在确定AST测试培养物中的微生物数目或量之前添加对微生物进行染色的标志物(即,染色剂或染料)或者通过使用微生物固有特性的方法(例如相差)或本领域已知用于量化样品中细菌数目的任何其他方法来检测微生物。合适的染色剂可包括有色或荧光染料,例如革兰氏染色或肽聚糖或DNA染色的其他染色,作为使微生物可视化的手段。在本发明的一个特定实施方案中,可以使用
Figure BDA0002593973430000461
DyeCycleTM对微生物内的DNA进行染色。其他DNA染色剂是周知的且可用。实际上,在本领域中可用于细菌染色的染色剂的数目是巨大的,并且大量这样的染色剂已有记录(包括在标准参考文献中),并且是市售的,例如来自Life Technologies。通过染色直接标记微生物是容易进行、方便且具有成本效益的,因此代表了优选的实施方案。
因此,例如,可以在微量滴定板的孔中(即,每种测试微生物培养物可以在板的孔中)使微生物生长以用于进行AST测定,并且在生长期结束时可以添加染色剂或染料并且可以对板孔成像,并且可以通过确定微生物细胞、聚集体或菌落的数目和/或尺寸(例如通过计数或成像)来评估微生物或微生物细胞物质的数目或量。替代地,可以使用流式细胞仪或类似类型的仪器(例如来自Q-linea AB(瑞典)的Aquila 400仪器)对微生物进行计数,如美国专利号10112194中所述。
用于图像分析以能够分析图像并导出或获得微生物生物质量的值等的算法在本领域中是周知的并且可用的导出。如上所述,WO 2017/216312中描述了一种这样的图像分析技术,并且这代表了在AST测试中评估和确定微生物生长的优选方式。
可以使用其他算法来导出样品中微生物对于一种或多种抗生素的抗微生物剂敏感性值(例如MIC和/或SIR值)。在这方面,虽然微生物的鉴定可以帮助建立AST测试,但这不是该方法的前提,并且在执行或建立该方法时不需要知道微生物ID。因此,就测试结果的速度而言,可以在样品中微生物的身份(ID)未知时开始AST方法,但是ID可以用于结果的解释,例如,当对AST微生物测试培养物成像时,和/或当分析成像的结果时。可以在没有微生物ID的情况下获得抗微生物剂敏感性值(例如MIC值),但是ID信息对于确定或解释微生物的SIR(敏感性/中间的/耐药性)信息很重要。从获自成像分析的生长数据导出或获得MIC和/或SIR信息的数据处理技术是周知的,并且对于本领域技术人员而言是可用的。
在一个替代实施方案中,可以通过微生物内或上的生物学特征对微生物进行特异性标记。“生物学特征”可以例如是微生物内或上的分子,例如在细胞表面表达或定位的蛋白质或其他生物分子。例如,标记物(例如有色或荧光标记物)可以与特异性结合特定生物学特征的蛋白质或其他亲和结合分子偶联。在一个实施方案中,蛋白质可以是凝集素、亲和体或抗体,或抗体片段。以这种方式标记的微生物可以如先前所述检测,例如枚举。
在另一个实施方案中,邻近探针(proximity probe)可以用于检测微生物内或上的特定生物学特征。
在本发明的另一个替代实施方案中,可以使用锁式探针(padlock probe)和基于RCA的扩增的单分子检测(ASMD)方法来检测和枚举测试微生物培养物中的微生物。这样的方法能够检测和计数单个微生物细胞。因此,可以通过锁式探针的结合来检测微生物,并且可以通过经由环化的锁式探针的RCA产生的扩增信号间接地测量微生物的数目。每个RCA产物(斑点)可能表示单个微生物。可以裂解微生物,并且可以使用设计成与微生物的一个或多个核苷酸序列杂交的锁式探针。这可以包括分离DNA的步骤,并且优选地选择性分离或富集微生物DNA。由于在AST测定中测试微生物培养物通常不如在初始样品中的复杂,因此可以使用简化的方案来分离或富集微生物DNA,例如涉及过滤以分离微生物和微生物细胞裂解或简单地直接进行微生物细胞裂解。
替代地,可以使用与存在于微生物上或者裂解的微生物内的一个或多个分子结合的亲和结合性分子,例如提供有可与锁式探针杂交的核酸标记物或标签的亲和探针,即类似于免疫RCA(immuneRCA)检测程序。类似地,邻近探针可用于与微生物内或上的靶标结合,并且邻近探针的核酸结构域可用于模板化锁式探针连接,并且还任选地通过RCA引发其扩增。用于此目的的程序是周知的,并且描述在文献中。如例如在Dahl等人,2004,PNAS USA,101,4548-4553和WO 03/012199Dahl等人,2004,PNAS USA,101,4548-4553和WO 03/012199中所述的滚环扩增(Circle-to-circle amplification,C2CA)可用于信号放大。因此可以通过对斑点数目计数来评估样品中微生物的数目,所述斑点可以被标记,如上文对于样品中“斑点”荧光标记。因此,这提供了获得数字表型敏感性读数的另一便利手段。
一般而言,有利的是在进行AST测定中对于被测微生物培养物是纯的,即为单一微生物。但是,这不是必需的特征,并且可以使用基于可视化或成像的微生物检测方法来进行AST测定,例如Accelerate Diagnostics提供的方法,其使用对表面上而非溶液中细菌成像,或实际上是以流体系统检测标记的微生物的方法,例如如上文讨论的Price等人,2014,J.Microbiol.Met.98,50-58和Metzger等人,2014.J.Microbiol.Met.79,160-165的基于自动显微术流体盒的系统。任何逐个细胞检测或形状识别和/或鉴定方法都可以用于包含多于一种微生物的样品的AST测定。进一步已知相同的抗生素可能会对不同的微生物产生不同的影响,并且因此,使用特定抗生素处理后的生物体外观可以用于鉴定和AST测定共培养物中的每种微生物。
方便地,本发明的方法可以是自动化的。多个步骤中的任何一个可以是自动化的,优选地,步骤(a)至(e)中的任何一个或全部。以上讨论的多种特定或优选步骤本身非常倾向于自动化,例如在本发明的浓度确定方法中使等分试样与染色剂接触和/或稀释悬浮液的等分试样和/或对等分试样/染色剂混合物成像,以及AST测定和从样品中回收微生物。已经开发了自动培养方法,包括血液培养方法,并且这些方法可以与例如根据本发明使用的自动化浓度确定和/或AST测定相结合。自动化将带来速度和操作简便性以及多路复用能力的优势,这在临床实验室环境中非常重要,并且在脓毒症的诊断中尤其重要。
现在将在下面的实施例中参考以下附图更详细地描述本发明和/或本文公开的方法。
在图中,
图1显示了使用本发明的方法在样品稀释度和计算出的微生物浓度之间存在线性关系。举例说明了粪肠球菌(Enterococcus faecalis)浓度的计算。
图2显示了改变用于细胞固定的乙醇浓度在检测微生物中的作用。显示了检测到的奇异变形杆菌(P.mirabilis)的两种菌株(20170927crl1是最上面的线)。
图3显示了如实施例2中所述的奇异变形杆菌的分析结果。垂直虚线是下限;垂直实线是较低的2.5%分位值;还显示了结果的正态分布。各个点对应于各个数据点(通过铺板和菌落计数计算的CFU/ml)。表示的数值数据显示在图表下方。
图4-12显示了与图3相同的数据,但是对于肺炎克雷伯菌(Klebsiellapneumoniae)(图4)、流感嗜血杆菌(Haemophilus influenzae)(图5)、大肠埃希菌(Escherichia coli)(图6)、阴沟肠杆菌(Enterobacter cloacae)(图7)、鲍曼不动杆菌(Acinetobacter baumanii)(图8)、肺炎链球菌(Streptococcus pneumoniae)(图9)、铜绿假单胞菌(Pseudomonas aeruginosa)(图10)、表皮葡萄球菌(Staphylococcusepidermidis)(图11)和金黄色葡萄球菌(Staphylococcus aureus)(图12)。
图13显示了与进行浓度确定和浓度调节的步骤相比,在不同的阳性血液培养瓶中存在的微生物浓度范围的浓度,以及如果将固定的稀释因子应用于等分试样时所得的微生物浓度。BCF样品微生物浓度显示为实心方块,固定稀释样品浓度显示为空心方块,其中已将微生物浓度确定/调节的样品显示为圆圈。显示了5x105CFU/ml±60%的虚线(EUCAST,CLSI和ICO标准)。
图14显示了用于临床肺炎克雷伯菌分离株在不同条件下的孵育过程中随时间变化的微生物生物质。在t=30、90、150、210、270和330分钟时获得自动显微术图像。图14A–在存在甲氧苄啶/磺胺甲噁唑稀释系列的情况下的微生物生物质。图14B–在存在哌拉西林/他唑巴坦稀释系列的情况下的微生物生物质。抗生素浓度以mg/l为单位测量。
实施例
实施例1–微生物浓度确定
材料制备
血液裂解缓冲液:
用pH 7.5的PBS(用ddH2O将10x PBS(Sigma-Aldrich,P7059)稀释至1x)制备0.45%Brij-O10(Sigma-Aldrich,P6136)溶液。
蛋白酶K:
将蛋白酶K(Merck,539480-1GM)溶解在pH 8的50mM Tris-HCl中,浓度为2.1mg/ml,得到蛋白酶K储备液。
SYTO BC:
将5mM SYTO BC(Thermo Fisher Scientific,S34855)添加到1x PBS中,得到20μMSYTO BC储备液。
浓度确定方案
将1ml裂解缓冲液与50μl蛋白酶K储备液混合。将所得的裂解缓冲液/蛋白酶K混合物添加到500μl细菌样品中并混合。将混合物在35℃下孵育7分钟,然后以4ml/min的速度通过孔径为0.2μM的直径为50mm的过滤器过滤。
将分离的细菌用2ml CAMBH(Thermo Fisher Scientific,T3462)洗涤,然后通过用2.5ml CAMBH以4ml/min的速度反冲洗通过过滤器来重悬。然后将重悬浮液混合。
然后将20μl的重悬浮液与0-20μl的70%乙醇混合;用ddH2O将重悬浮液/乙醇混合物的体积补足至40μl,使得所得乙醇浓度为0-35%。将混合物在35℃孵育5分钟。然后添加60μl PBS,并将20μl的所得稀释混合物用于进行10倍系列稀释。
将每个稀释样品的15μl等分试样与15μl S YTO BC储备液混合,并将染色剂-样品混合物在35℃下孵育5分钟。然后将染色剂-样品混合物转移到板上,并在Etulama板读数器中读取。
在读取过程中,使用502-561nm的发射滤光片检测509nm处的SYTO BC发射峰,从而对于每个孔的悬浮液中的微生物在光轴方向上相距30μm获得50个图像。对获得的图像进行阈值处理并进行分析,以确定对应于完整微生物的每个物体的尺寸、荧光强度和任选的形态,以获得每个等分试样的图像分析值。使用样品中微生物的特性来选择预定的校准曲线,以用于浓度确定步骤(例如,确定样品是否是聚集或非聚集微生物)。图像分析值在预定的校准曲线范围内的一个稀释等分试样被鉴定出。通过将所选稀释等分试样的图像分析值与预定的校准曲线进行比较来确定样品中完整微生物的浓度。
制作校准曲线
如上所述收集成像数据用于处于不同的已知浓度并使用不同浓度乙醇作为固定剂的许多不同微生物,并在图表上绘制计数的物体数目与完整微生物浓度之间的关系。当使用给定浓度的乙醇作为固定剂时,大多数微生物物种的计数的物体数目与完整微生物的浓度之间存在线性关系,如图1中的粪肠球菌所示(使用35%乙醇作为固定剂)。
对于多种微生物的物种和菌株,确定了作为固定剂的乙醇的最佳浓度。对于许多测试的物种和菌株,确定了约35%的最佳乙醇浓度,其能够使微生物染色最大化,从而改善检测并提高浓度确定的准确性。图2显示了一个示例性图,其展示了使用不同浓度的乙醇作为固定剂的奇异变形杆菌的两个菌株的浓度确定。对于所使用的每种乙醇浓度,样品中都存在相同浓度的细菌。如图所示,30-35%的乙醇浓度可为两种菌株提供最佳检测。
实施例2–多种细菌物种的分析
根据实施例1的方法分析包括以下物种的样品:变形杆菌(图3)、肺炎克雷伯菌(图4)、流感嗜血杆菌(图5)、大肠埃希菌(图6)、阴沟肠杆菌(图7)、鲍曼不动杆菌(图8)、肺炎链球菌(图9)、铜绿假单胞菌(图10)、表皮葡萄球菌(图11)和金黄色葡萄球菌(图12)。
如图所示,分析了包括每种物种的10至36个之间的样品(参见“N”值)。通过铺板然后进行CFU计数来确定每个样品的细菌浓度。对数据进行正态分布拟合,并为每个数据集标记两个值:较低的第2.5个分位值和使用本发明方法的检测下限处的细菌浓度(对应于1.5x106CFU/ml)。
为了确保本发明方法的准确性,优选地,对于每个物种,在准确浓度确定的极限与样品的较低的2.5%分位值的浓度之间存在至少1个数量级。如图3-12所示,除了铜绿假单胞菌、表皮葡萄球菌和金黄色葡萄球菌以外的所有物种都是这种情况。对于铜绿假单胞菌和表皮葡萄球菌,差异略小于1个数量级;尽管这不是最佳的,但是仍然可以预期本发明的方法在测量这些物种的浓度方面是高度准确的。对于金黄色葡萄球菌,准确浓度确定的极限为第4个分位值。这是由于金黄色葡萄球菌的聚集,并且据信金黄色葡萄球菌簇的分离(例如通过使用洗涤剂或适当的算法)将克服这一困难。
实施例3–从阳性血液培养瓶制备接种物
我们研究了包含多种不同革兰氏阳性微生物物种(肺炎链球菌、咽峡炎链球菌、轻型链球菌、化脓性链球菌、表皮葡萄球菌、金黄色葡萄球菌、路邓葡萄球菌、头状葡萄球菌(Staphylococcus capitis)、人葡萄球菌(Staphylococcus hominis)、粪肠球菌、单核细胞增多性李斯特菌(Listeria monocytogenes)和格氏李斯特菌(Listera Grayi))的阳性血液培养瓶中微生物浓度的变化性。确定每个阳性血液培养瓶的活细胞计数,并根据每个血液培养瓶中微生物的平均浓度确定固定稀释因子。将每个阳性血液培养瓶的等分试样用该固定稀释因子稀释。
从每个阳性血液培养瓶制备微生物悬浮液,并确定每个重悬浮液的活细胞计数。还通过以上实施例1中概述的方法测定了从每个阳性血液培养瓶中获得的重悬浮液的微生物浓度,除了将微生物重悬于2.8ml CAMBH中之外。根据确定的微生物浓度为每个样品制备接种物。通过以下公式计算每个接种物中提供的活细胞的实际浓度:
Figure BDA0002593973430000511
用固定稀释因子稀释的阳性血液培养物样品中只有28%的活细胞浓度在AST的标准5x105CFU/ml±60%范围内,而发现87%的样品制备的接种物(基于浓度确定方法进行调节)在该范围内。结果如表1和图13所示。
表1–阳性血液培养瓶和稀释的等分试样中的微生物浓度
Figure BDA0002593973430000512
Figure BDA0002593973430000521
Figure BDA0002593973430000531
实施例4–使用肺炎克雷伯菌的临床分离株的掺杂阳性血液培养瓶的分离、浓度确 定和抗生素敏感性
材料制备
阳性血液培养物样品的制备
将在琼脂板上生长的临床分离株分别悬浮在PBS中,并调节至0.5McFarland。将其1:100稀释液与9ml来自健康供体的血液一起添加到血液培养瓶(BD Bactec Plus Aerob)中,并在血液培养柜中孵育过夜。早晨,当BCF变为阳性后,将阳性BCF的500μl等分试样用于后续分析。
样品制备:
将500μl阳性BCF添加到耗材中,以允许自动样品制备和浓度调节,并按照实施例1所述的方法在自动化系统中确定微生物的浓度,不同之处在于将微生物重悬在2.8mlCAMBH中。在我们的共同申请审理的申请GB 1806505.2中更详细地描述了使用该耗材的这种系统的操作。将浓度确定值与预定的标准曲线进行比较,并且将回收的悬浮液中的微生物浓度自动调节至期望浓度(5x10^5CFU/ml)。对于该实验,将浓度调节的细菌的等分试样铺在琼脂板上以确定活细胞计数,以提供用于该方法的对照测量。
Figure BDA0002593973430000532
AST
使用自动移液器通过中央进样口将CAMBH中浓度调节的样品添加到预先填充有多种浓度的干燥抗生素的336孔AST圆盘中。
每个孔包含20μl样品,并在35℃下孵育。30分钟后获取初始读数(读数0)。通过自动显微术成像,随后每小时获取一次读数(读数1-6),直至5.5小时的总AST时间。在我们共同申请审理的申请PCT/EP2018/085692中更详细地描述了所使用的自动化显微镜。
MIC调用
如WO 2017/216312中所述,通过将图像转换为调用的生物质值和MIC来分析图像。对于不同的抗生素,确定了不同的抗生素浓度(mg/l)下每个时间点的微生物生物质,例如图14A(甲氧苄啶/磺胺甲噁唑)和图14B(哌拉西林/他唑巴坦)所示。
结果
确定了一系列抗生素的MIC抗生素浓度(以mg/l为单位测量)。在本实验中,每种抗生素一式三份存在于AST耗材中。结果示于表2。
表2-MIC值
Figure BDA0002593973430000541

Claims (51)

1.一种从包含微生物和哺乳动物细胞的样品制备完整微生物的悬浮液的方法,所述方法包括:
a.提供包含微生物和哺乳动物细胞的样品;
b.使所述样品与缓冲溶液、洗涤剂和一种或多种蛋白酶接触,其中所述缓冲溶液的pH为至少pH 6且小于pH 9,以裂解存在于所述样品中的哺乳动物细胞;
c.通过适合保留微生物的过滤器过滤步骤(b)中获得的混合物,其中所述过滤从所述混合物去除裂解的哺乳动物细胞;
d.回收步骤(c)中通过所述过滤器保留的微生物,其中所述回收包括将所述微生物重悬在液体中以提供包含回收的完整微生物的悬浮液;和
e.确定所述悬浮液中微生物的浓度,其中微生物的浓度通过包括以下的方法确定:
i.使所述悬浮液的等分试样与醇接触和/或加热所述悬浮液的等分试样;
ii.任选地稀释所述悬浮液的一个或多个等分试样以提供处于一个或多个稀释值的一个或多个稀释的等分试样,其中所述稀释在步骤(i)之前、期间和/或之后进行;
iii.使步骤(e)(i)或(e)(ii)的等分试样的至少一部分与能够结合DNA的单一荧光染色剂接触,以提供悬浮液-染色剂混合物,其中所述染色剂具有发射波长;
iv.在所述荧光染色剂的所述发射波长下对步骤(e)(iii)的所述悬浮液-染色剂混合物进行成像,并确定成像混合物中对应于微生物的物体的数目的图像分析值;和
v.将步骤(e)(iii)的所述等分试样的在步骤(e)(iv)中获得的图像分析值与预定的校准曲线进行比较,从而确定所述悬浮液中微生物的浓度。
2.根据权利要求1所述的方法,其中所述方法进一步包括步骤(f),调节所述悬浮液的至少一部分中的微生物的浓度。
3.根据权利要求2所述的方法,其中步骤(f)包括在确定所述悬浮液中的微生物的浓度之前调节所述悬浮液的至少一部分中的微生物的浓度。
4.根据权利要求2或3的方法,其中步骤(f)包括在步骤(e)中确定浓度之后调节所述悬浮液的至少一部分中的微生物的浓度。
5.根据权利要求2至4中任一项所述的方法,其中通过稀释调节所述浓度。
6.根据权利要求1至5中任一项所述的方法,其中步骤(e)(iii)的所述染色剂是细胞可渗透的染色剂。
7.根据权利要求1至6中任一项所述的方法,其中所述样品是临床或兽医样品或者临床或兽医样品的培养物。
8.根据权利要求1至7中任一项所述的方法,其中所述缓冲溶液为pH 6.5至8.5,或者pH6.5至8或7至8。
9.根据权利要求1至8中任一项所述的方法,其中所述缓冲溶液为pH 7.5。
10.根据权利要求1至9中任一项所述的方法,其中所述洗涤剂是非离子洗涤剂。
11.根据权利要求10所述的方法,其中所述非离子洗涤剂是Brij-O10。
12.根据权利要求1至11中任一项所述的方法,其中所述洗涤剂的浓度在0.1至5%w/v之间,或者在0.1至1%w/v之间。
13.根据权利要求12所述的方法,其中所述洗涤剂的浓度为0.45%w/v。
14.根据权利要求1至13中任一项所述的方法,其中所述蛋白酶是蛋白酶K。
15.根据权利要求1至14中任一项所述的方法,其中步骤(b)包括使所述样品与包含以下的组合物接触:(i)包含PBS pH 7.5、0.45%w/v Brij-O10的裂解缓冲液,和(ii)蛋白酶K。
16.根据权利要求1至15中任一项所述的方法,其中过滤步骤(c)包括使用孔径小于0.5μm、优选小于0.25μm的过滤器过滤所述混合物。
17.根据权利要求1至16中任一项所述的方法,其中从所述过滤器回收微生物包括将液体反冲洗通过所述过滤器。
18.根据权利要求1至17中任一项所述的方法,其中在步骤(d)中,将所述微生物细胞重悬于适合于培养微生物的液体生长培养基中。
19.根据权利要求1至18中任一项所述的方法,其中在步骤(c)和(d)之间洗涤所述过滤器。
20.根据权利要求1至19中任一项所述的方法,其中步骤(e)(i)的所述醇是乙醇。
21.根据权利要求20所述的方法,其中在步骤(e)(i)中,将乙醇添加到所述悬浮液中,使所得浓度为30至40%v/v,优选35%(v/v)。
22.根据权利要求1至21中任一项所述的方法,其中在步骤(e)(ii)中,用缓冲液稀释所述悬浮液。
23.根据权利要求22所述的方法,其中所述缓冲液是PBS。
24.根据权利要求1至23中任一项所述的方法,其中当所述染色剂与核酸结合时,在所述发射波长下所述荧光染色剂的荧光强度增强。
25.根据权利要求24所述的方法,其中所述荧光染色剂是不对称花青染料。
26.根据权利要求1至25中任一项所述的方法,其中所述荧光染色剂具有在350-700nm的波长范围内的激发波长和发射波长。
27.根据权利要求26所述的方法,其中所述荧光染色剂是绿色荧光染色剂。
28.根据权利要求24或27所述的方法,其中所述荧光染色剂是SYTO染色剂。
29.根据权利要求28所述的方法,其中所述SYTO染色剂是SYTO BC。
30.根据权利要求1至29中任一项所述的方法,其中所述方法包括稀释所述悬浮液的等分试样以提供处于不同稀释值的两个或更多个稀释的等分试样,其中在步骤(e)(ii)期间同时地、或者顺序地制备所述两个或更多个等分试样,其中在步骤(e)(iv)和/或(e)(v)之后制备第二或另外的稀释的等分试样。
31.根据权利要求30所述的方法,其中对处于不同稀释值的两个或更多个等分试样进行步骤(e)(iii)和(e)(iv),并且其中步骤(e)(v)包括鉴定包括处于预定的校准曲线范围内的图像分析值的等分试样,并且将所述等分试样的图像分析值与所述预定的校准曲线进行比较,从而确定所述悬浮液中完整微生物的浓度。
32.根据权利要求31所述的方法,其中对每个等分试样同时地进行步骤(e)(iii)和(e)(iv)。
33.根据权利要求31所述的方法,其中对每个等分试样顺序地进行步骤(e)(iii)和(e)(iv)。
34.根据权利要求1至33中任一项所述的方法,其中在通过所述悬浮液-染色剂混合物的一个或多个焦平面处获得图像。
35.根据权利要求34所述的方法,其中所述成像包括沿着光轴获得一系列2-D图像,其中每个图像在沿着通过一定体积的所述悬浮液-染色剂混合物的光轴的不同位置获得。
36.根据权利要求1至35中任一项所述的方法,其中与所述染色剂接触的步骤(e)(iii)在大于4℃的温度下进行。
37.根据权利要求1至36中任一项所述的方法,其中在步骤(e)(iii)的所述接触中,将所述等分试样或稀释的等分试样或其一部分与所述染色剂一起孵育1至20分钟的时间。
38.根据权利要求1至37中任一项所述的方法,其中步骤(e)(iv)中的所述成像在室温下进行。
39.根据权利要求1至38中任一项所述的方法,其中在步骤(e)(iv)的所述成像中,鉴定所述微生物是聚集的还是非聚集的,并且使用针对聚集或非聚集微生物预定的校准曲线。
40.根据权利要求1至39中任一项所述的方法,其中分析所述图像的荧光强度和/或每个枚举物体的尺寸,和任选地每个枚举物体的形态。
41.根据权利要求1至40中任一项所述的方法,其中分析所述图像的最大荧光强度、中值荧光强度和/或每个枚举物体的面积。
42.根据权利要求1至41中任一项所述的方法,其中分析所述图像的最大、中值和/或平均荧光强度和/或物体群的面积。
43.一种用于确定样品中微生物的抗微生物剂敏感性的方法,所述方法包括:
(i)提供包含活微生物和哺乳动物细胞的样品;
(ii)对所述样品进行如权利要求1至40中任一项所限定的步骤(b)至(d),以产生所述活微生物的悬浮液;
(iii)进行如权利要求1至40中任一项所限定的步骤(e),以确定所述悬浮液中微生物细胞的浓度;
(iv)使用步骤(ii)的所述悬浮液接种系列测试微生物培养物用于抗生素敏感性测试(AST),其中所述系列测试微生物培养物包括至少两种不同的生长条件,其中所述不同的生长条件包括一种或多种不同的抗微生物剂,并且在两种或更多种不同的浓度下测试每种抗微生物剂;和
(v)评估每种生长条件下微生物生长的程度,
其中如果需要,将所述悬浮液或所述测试微生物培养物中微生物细胞的浓度调节至期望或预定的浓度;和
其中使用每种生长条件下微生物生长的程度来确定指示所述样品中的微生物对至少一种抗微生物剂的敏感性的至少一个值。
44.根据权利要求43所述的方法,其中确定至少一个MIC和/或SIR值以确定所述样品中所述微生物的抗微生物剂敏感性。
45.根据权利要求43或权利要求44所述的方法,其中基于在步骤(iii)中确定的浓度,调节步骤(ii)的所述悬浮液的至少一部分的浓度,以提供用于在步骤(iv)中接种所述测试微生物培养物的接种物。
46.根据权利要求43至45中任一项所述的方法,其中调节浓度的步骤包括基于在步骤(iii)中确定的浓度的稀释。
47.根据权利要求46的方法,其中在步骤(iii)之后,将步骤(ii)的所述悬浮液的至少一部分稀释以提供用于步骤(iv)的接种物。
48.根据权利要求43至47中任一项所述的方法,其中在经接种的微生物测试培养物中微生物的浓度在4.5x 105±80%或5x 105±60%的范围内。
49.根据权利要求43至48中任一项所述的方法,其中所述测试微生物培养物中的至少一种包含苛养培养基。
50.根据权利要求43至45或48至49中任一项所述的方法,其中浓度调节包括培养或进一步培养所述悬浮液。
51.根据权利要求43至50中任一项所述的方法,其中如果所述悬浮液中的微生物的浓度低于1x 106个微生物,则不对所述悬浮液进行AST测定。
CN201980009378.9A 2018-01-22 2019-01-22 用于确定微生物浓度的方法 Pending CN111684074A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1801022.3A GB201801022D0 (en) 2018-01-22 2018-01-22 Single dye concentration determination
GB1801022.3 2018-01-22
PCT/EP2019/051525 WO2019141874A1 (en) 2018-01-22 2019-01-22 Method for determining microorganism concentration

Publications (1)

Publication Number Publication Date
CN111684074A true CN111684074A (zh) 2020-09-18

Family

ID=61283594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980009378.9A Pending CN111684074A (zh) 2018-01-22 2019-01-22 用于确定微生物浓度的方法

Country Status (6)

Country Link
US (1) US20210032674A1 (zh)
EP (1) EP3743522A1 (zh)
KR (1) KR20200111720A (zh)
CN (1) CN111684074A (zh)
GB (1) GB201801022D0 (zh)
WO (1) WO2019141874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112534A (zh) * 2021-12-06 2022-03-01 长春工业大学 一种适用于微生物悬浮液和固体培养基的智能取样及检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201806509D0 (en) 2018-04-20 2018-06-06 Q Linea Ab Analysis instrument
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
CN110940646B (zh) * 2019-11-01 2022-08-12 江苏美克医学技术有限公司 一种阴道微生物检测双重荧光染色液及其应用
CN112342152B (zh) * 2020-06-28 2022-05-20 南昌大学 一种表达脂肪酶的山羊葡萄球菌株ncu s6
KR102665427B1 (ko) * 2022-08-30 2024-05-13 가천대학교 산학협력단 고농도 균주에 대한 휘발성 항균물질의 항균력 측정방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816634A (zh) * 2003-07-11 2006-08-09 Cytyc公司 保存溶液中目标的检测
WO2007120860A2 (en) * 2006-04-13 2007-10-25 The Regents Of The University Of Michigan Nanoemulsion vaccines
US20100124763A1 (en) * 2008-10-31 2010-05-20 Biomerieux, Inc. Method for detection, characterization and/or identification of microorganisms in a sealed container
US20140186832A1 (en) * 2011-05-20 2014-07-03 Martin Fuchs Selective ultrasonic lysis of blood and other biological fluids and tissues
CN103946389A (zh) * 2011-07-26 2014-07-23 马德里自治大学 用于评价细菌细胞壁完整性的方法
CN104254597A (zh) * 2012-02-29 2014-12-31 Bd公司 从阳性血培养中隔离活性微生物的流程与配方
CN104284984A (zh) * 2012-02-29 2015-01-14 哈佛大学校长及研究员协会 抗生素药敏性的快速测试
WO2016207065A1 (en) * 2015-06-24 2016-12-29 Q-Linea Ab Method for determining antimicrobial susceptibility of a microorganism
CN106661606A (zh) * 2014-06-13 2017-05-10 Q-莱纳公司 用于检测和表征微生物的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803208B2 (en) * 2001-07-30 2004-10-12 The United States Of America As Represented By The Secretary Of The Navy Automated epifluorescence microscopy for detection of bacterial contamination in platelets

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816634A (zh) * 2003-07-11 2006-08-09 Cytyc公司 保存溶液中目标的检测
WO2007120860A2 (en) * 2006-04-13 2007-10-25 The Regents Of The University Of Michigan Nanoemulsion vaccines
US20100124763A1 (en) * 2008-10-31 2010-05-20 Biomerieux, Inc. Method for detection, characterization and/or identification of microorganisms in a sealed container
US20140186832A1 (en) * 2011-05-20 2014-07-03 Martin Fuchs Selective ultrasonic lysis of blood and other biological fluids and tissues
CN103946389A (zh) * 2011-07-26 2014-07-23 马德里自治大学 用于评价细菌细胞壁完整性的方法
CN104254597A (zh) * 2012-02-29 2014-12-31 Bd公司 从阳性血培养中隔离活性微生物的流程与配方
CN104284984A (zh) * 2012-02-29 2015-01-14 哈佛大学校长及研究员协会 抗生素药敏性的快速测试
CN106661606A (zh) * 2014-06-13 2017-05-10 Q-莱纳公司 用于检测和表征微生物的方法
WO2016207065A1 (en) * 2015-06-24 2016-12-29 Q-Linea Ab Method for determining antimicrobial susceptibility of a microorganism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112534A (zh) * 2021-12-06 2022-03-01 长春工业大学 一种适用于微生物悬浮液和固体培养基的智能取样及检测装置
CN114112534B (zh) * 2021-12-06 2024-03-22 长春工业大学 一种适用于微生物悬浮液和固体培养基的智能取样及检测装置

Also Published As

Publication number Publication date
GB201801022D0 (en) 2018-03-07
EP3743522A1 (en) 2020-12-02
US20210032674A1 (en) 2021-02-04
KR20200111720A (ko) 2020-09-29
WO2019141874A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US20210017568A1 (en) Device for determining antimicrobial susceptibility of a microorganism
US11505835B2 (en) Method for determining the identity and antimicrobial susceptibility of a microorganism
CN111684074A (zh) 用于确定微生物浓度的方法
US20200299748A1 (en) Method for determining the concentration of intact microorganisms in a sample
US20230241603A1 (en) Test cartridges
EP2738262B1 (en) Method for evaluating bacterial cell wall integrity
US11970726B2 (en) Method for quantifying the cultivability of individual bacterial cells using culture independent parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination