CN111684057B - Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain - Google Patents

Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain Download PDF

Info

Publication number
CN111684057B
CN111684057B CN201980007631.7A CN201980007631A CN111684057B CN 111684057 B CN111684057 B CN 111684057B CN 201980007631 A CN201980007631 A CN 201980007631A CN 111684057 B CN111684057 B CN 111684057B
Authority
CN
China
Prior art keywords
ala
leu
gly
arg
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980007631.7A
Other languages
Chinese (zh)
Other versions
CN111684057A (en
Inventor
弘斗星
朴智浩
金太贤
金基洙
李载雨
李馀濬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Bioland Jiangsu Co ltd
Hyundai Bioland Co Ltd
Original Assignee
Hyundai Bioland Jiangsu Co ltd
Hyundai Bioland Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Bioland Jiangsu Co ltd, Hyundai Bioland Co Ltd filed Critical Hyundai Bioland Jiangsu Co ltd
Publication of CN111684057A publication Critical patent/CN111684057A/en
Application granted granted Critical
Publication of CN111684057B publication Critical patent/CN111684057B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides a bacterial cellulose high-yield strain (Komagataeibacter rhaeticus) KOSS15, a composition for preparing cellulose sheets comprising the strain or the culture, and a method for preparing cellulose sheets comprising the step of culturing the strain. The cellulose sheet produced by the bacterial cellulose highly-producing strain KOSS15 of the present invention exhibits high tensile strength and burst strength as compared with those of cellulose sheets of Acetobacter xylinum, which have been known to have the highest productivity of cellulose, and can reduce the sugar content required for producing cellulose sheets of the same weight by 5 to 6 times.

Description

Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain
Technical Field
The present patent application claims priority from korean patent application No. 10-2018-011099, filed in the korean patent office on month 17 of 2018, the disclosure of which is incorporated herein by reference.
The invention relates to a novel bacterial cellulose high-yield bacterial strain and a preparation method of cellulose tablets using the bacterial cellulose high-yield bacterial strain.
Background
A sheet type mask for use in the cosmetic field may generally have three types including: a cellulose mask (i) for forming a mask-shaped support by immersing a non-woven fabric prepared from plant cellulose fibers such as cotton and pulp or synthetic fibers such as nylon and polyester into a pale water body of a cosmetic emulsion; hydrogel mask (ii) prepared from natural polysaccharide such as natural agar (agar), carrageenan, locust bean gum; and a bacterial cellulose mask (iii) which is prepared by culturing microorganisms, and which is formed into a mask-shaped support by immersing bacterial cellulose (bacterial cellulose, biocellulose) in a body of water for cosmetics.
The sheet type mask for the cosmetic field is applied by hands, and only the sheet manufactured in the form of a face is required to be applied, and has the greatest advantage of moisturizing and cleaning effects, so that the mask is attracting attention in the cosmetic market.
Recently, cellulose (also called bacterial cellulose) produced by microbial culture has been increasingly utilized as a raw material for a burn healing agent for pharmaceuticals or a cosmetic mask. Cellulose is the most abundant biomass resource in nature, and particularly, cellulose produced from acetic acid bacteria is attracting attention not only as an additive for foods but also as a new industrial material with high added value. Moreover, cellulose produced by bacteria has excellent physicochemical properties unlike cellulose produced by plant bodies.
Bacterial cellulose-producing strains include Acetobacter sp, agrobacterium sp, rhizobium sp, pseudomonas sp and Sarcina sp, and particularly Acetobacter sp, acetobacter Pasteum A.pastoris A.hansenii and Acetobacter hansenii A.hansenii are well known among Acetobacter strains, and the microorganism having the highest cellulose production yield is Acetobacter xylinum A.hansenii (Korean society of industrial scale KIC News,2013 16 (4) 37-45).
As is well known, microorganisms producing such bacterial cellulose are relatively inefficient in production, and thus, there is a need to develop novel microorganisms having relatively high cellulose production efficiency.
Disclosure of Invention
Technical problem
The inventors of the present invention have developed a method for producing bacterial cellulose which is excellent in quality and can improve productivity, and studied the quality and productivity changes of bacterial cellulose by digging a novel strain and sugar source of a culture solution. As a result, the present invention has been completed by identifying a novel bacterial cellulose high-yielding strain (Komagataeibacter rhaeticus) KOSS15, and it has been found that the above strain uses honey as a sugar source, and thus has a high cellulose productivity and the produced bacterial cellulose has excellent quality.
Accordingly, an object of the present invention is to provide a bacterial cellulose highly productive bacterial KOSS15 strain.
It is still another object of the present invention to provide a composition for producing bacterial cellulose tablets.
It is another object of the present invention to provide a method for preparing bacterial cellulose.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, the scope of the invention as claimed, and the accompanying drawings.
Technical proposal
According to an embodiment of the present invention, there is provided bacterial cellulose high-yielding strain (Komagataeibacter rhaeticus) KOSS15 having accession No. KCCM12270P.
The inventors of the present invention have developed a method for producing bacterial cellulose which is excellent in quality and can improve productivity, and studied the quality and productivity changes of bacterial cellulose by the excavation of novel strains and the sugar source of the culture solution. As a result, the present invention has been completed by identifying a novel bacterial cellulose high-yielding strain (Komagataeibacter rhaeticus) KOSS15, and it has been found that the above strain uses honey as a sugar source, and thus has a high cellulose productivity and the produced bacterial cellulose has excellent quality.
According to an embodiment of the present invention, the bacterial cellulose-producing high-yield strain KOSS15 is derived from black tea fungus (kombucha).
The black tea fungus is one of organic acid-producing fungus (lactobacillus) produced by symbiotic bacteria and yeast with hypha such as silk as parent, and has various names such as Kang Pucha, black tea mushroom yeast, red mushroom, and long life mushroom. Black tea fungus is a symbiont of yeasts such as bacteria and Saccharomyces cerevisiae, zygosaccharomyces, candida, schizosaccharomyces pombe, and Saccharomyces (Saccharomyces), and the produced alcohols are fermented into acetic acid and other acids by yeasts such as Acetobacter (A. Xylinum) to increase acidity.
According to an example of the present invention, the bacterial cellulose high-yielding strain KOSS15 described above has cellulose productivity.
The term "cellulose" in the present specification means that beta-D-glucose forms a polymer through glycosidic bond, and has the chemical formula (C 6 H 10 O 5 ) And n, the unit body is polysaccharide of cellobiose (cellobiose).
According to still another embodiment of the present invention, the bacterial cellulose high-yielding strain KOSS15 described above produces cellulose from honey as a sugar source.
The term "honey" in the present specification is a substance having viscosity collected from the glands of plants by bees, and means a substance containing various vitamins, proteins, mineral components in addition to high contents of glucose and fructose.
According to other embodiments of the present invention, the present invention relates to a composition for preparing cellulose sheets comprising bacterial cellulose high-yielding strain KOSS15 having accession No. KCCM12270P or a culture of the above strain.
The term "culture" of the present invention means a culture medium comprising a strain which is obtained by culturing the above strain in a medium capable of providing nutrients for a period of time in order to allow the bacterial cellulose-producing high-yield strain KOSS15 of the present invention to grow and survive in vitro, a metabolite thereof, the balance of nutrients, and the like. The bacterial cellulose-producing high-yield strain KOSS15 described above is used as a strain having cellulose-producing ability, and therefore, the bacterial cellulose-producing high-yield strain KOSS15 described above or a culture thereof can be used in a composition for producing cellulose sheets from a sugar source.
According to another embodiment of the present invention, the present invention relates to a method for producing a cellulose sheet comprising the step of culturing a bacterial cellulose high-yielding strain KOSS15 having accession No. KCCM12270P.
The bacterial cellulose high-yielding strain KOSS15 can be used for producing cellulose by using honey, fructose, glucose or a combination thereof.
According to an example of the present invention, the bacterial cellulose-producing KOSS15 strain is cultured in a medium comprising (a) honey or (b) a sugar source of glucose and fructose and proline.
The culture medium may comprise 0.1-2.0 volume percent, 0.2-2.0 volume percent, 0.3-2.0 volume percent, 0.4-2.0 volume percent, 0.5-2.0 volume percent, 0.6-2.0 volume percent, 0.7-2.0 volume percent, 0.8-2.0 volume percent, 0.9-2.0 volume percent, 0.1-1.9 volume percent, 0.1-1.8 volume percent, 0.1-1.7 volume percent, 0.1-1.6 volume percent, 0.1-1.5 volume percent, 0.1-1.4 volume percent, 0.1-1.3 volume percent, 0.1-1.2 volume percent, 0.1-1.1.0 volume percent, 0.2-1.8 volume percent, 0.2-1.6 volume percent, 0.2-1.4 volume percent or 0.2-1.2 volume percent of honey.
The medium may comprise 0.1 to 2.0 wt%, 0.2 to 2.0 wt%, 0.3 to 2.0 wt%, 0.4 to 2.0 wt%, 0.5 to 2.0 wt%, 0.6 to 2.0 wt%, 0.7 to 2.0 wt%, 0.8 to 2.0 wt%, 0.9 to 2.0 wt%, 0.1 to 1.9 wt%, 0.1 to 1.8 wt%, 0.1 to 1.7 wt%, 0.1 to 1.6 wt%, 0.1 to 1.5 wt%, 0.1 to 1.4 wt%, 0.1 to 1.3 wt%, 0.1 to 1.2 wt%, 0.1 to 1.1 wt%, 0.2 to 1.8 wt%, 0.2 to 1.6 wt%, 0.2 to 1.4 wt%, or 0.2 to 1.2 wt% fructose.
Although the above-mentioned medium may contain 0.01 to 1.0 wt%, 0.02 to 1.0 wt%, 0.03 to 1.0 wt%, 0.04 to 1.0 wt%, 0.05 to 1.0 wt%, 0.06 to 1.0 wt%, 0.07 to 1.0 wt%, 0.08 to 1.0 wt%, 0.01 to 0.8 wt%, 0.01 to 0.6 wt%, 0.01 to 0.4 wt%, 0.01 to 0.2 wt%, 0.02 to 0.6 wt%, 0.03 to 0.6 wt%, 0.04 to 0.6 wt%, 0.05 to 0.4 wt%, 0.06 to 0.3 wt%, 0.04 to 0.2 wt%, or 0.05 to 0.15 wt% of proline, it is not limited thereto.
The above fructose, glucose and proline are main saccharides and amino acids constituting Lac Regis Apis, and when bacterial cellulose high-yielding strain KOSS15 is cultured, bacterial cellulose can be prepared by adding main saccharides and amino acids constituting Lac Regis Apis instead of Mel.
The composition for producing cellulose sheet of the present invention may further comprise a carbon source, a nitrogen source and a phosphorus source (phosphorus) for culturing the bacterial cellulose highly productive KOSS15 strain.
The carbon source includes at least one carbon source selected from the group consisting of ethanol, glucose, sucrose, fructose, galactose, soluble starch, inositol, glycerol, xylose, dextrose, lactose, dextrin, ribitol, mannitol, mannose, maltose and raffinose, but is not limited thereto.
The nitrogen source comprises at least one organic nitrogen source selected from the group consisting of yeast extract, peptone, soybean protein, casamino acid, tryptone and malt extract; selected from ammonium chloride (NH) 4 Cl), ammonium carbamate ((COONH) 4 ) 2 ) Monoammonium phosphate (NH) 4 H 2 PO 4 ) Diammonium phosphate ((NH) 4 ) 2 HPO 4 ) Ammonium Nitrate (NH) 4 NO 3 ) Sodium nitrate (NaNO) 3 ) Ammonium sulfate ((NH) 4 ) 2 SO 4 ) One or more inorganic nitrogen sources in the group consisting of, but not limited to, these.
The phosphorus source includes one or more phosphorus sources selected from the group consisting of potassium dihydrogen phosphate, dipotassium hydrogen phosphate, sodium dihydrogen phosphate and disodium hydrogen phosphate, but is not limited thereto.
The composition for producing cellulose sheet may further contain magnesium sulfate (MgSO 4 ) Calcium chloride (CaCl) 2 ) Potassium chloride (KCl), barium chloride (BaCl) 2 ) Sulfur and sulfurLithium acid (Li) 2 SO 4 ) Anhydrous manganese sulfate (MnSO), manganese sulfate tetrahydrate (MnSO) 4 ) Zinc sulfate (ZnSO) 4 ) Ferrous sulfate (FeSO) 4 ) Sodium molybdate (Na) 2 MoO 4 ) Monopotassium phosphate (KH) 2 PO 4 ) Ferric chloride (FeCl) 3 ) However, the present invention is not limited thereto.
According to other embodiments of the present invention, the present invention relates to a method for producing a bacterial cellulose sheet using bacterial cellulose high-yielding strain KOSS15 having accession No. KCCM12270P, comprising:
a preculture step (a) of culturing the strain in a preculture medium containing a sugar source and cellulase with stirring;
a main culture step (b) of adding the preculture solution of the above step to a main culture medium containing a sugar source and proline, and culturing under stirring; and
and (c) a plate-transformation culturing step of adding the main culture solution of the above step to a main culture medium containing a sugar source and proline, thereby performing stationary culture.
The preparation method of the bacterial cellulose sheet of the present invention is described in terms of the respective steps.
Step (a): pre-cultivation step
First, a bacterial cellulose high-yielding strain KOSS15 having accession No. KCCM12270P was cultured with stirring in a preculture medium containing a sugar source and cellulase.
According to an embodiment of the invention, the pre-culture medium comprises a sugar source.
According to an embodiment of the present invention, the sugar source is 0.1 to 5 volume percent (v/v) of (a) honey or 0.1 to 5 weight percent (w/v) of (b) glucose and fructose.
According to a specific example of the present invention, the culture medium of the present invention comprises honey at a concentration of 0.1 to 5 volume percent, 0.1 to 4 volume percent, 0.1 to 3 volume percent, 0.1 to 2.5 volume percent, 0.1 to 2 volume percent, 0.1 to 1.5 volume percent, or 0.1 to 1 volume percent.
According to other examples, the culture medium of the present invention comprises 0.1 to 3.0 volume percent, 0.2 to 3.0 volume percent, 0.3 to 3.0 volume percent, 0.4 to 3.0 volume percent, 0.5 to 3.0 volume percent, 0.6 to 3.0 volume percent, 0.7 to 3.0 volume percent, 0.8 to 3.0 volume percent, 0.9 to 3.0 volume percent, 1 to 3.0 volume percent, 0.1 to 2.0 volume percent, 0.2 to 2.0 volume percent, 0.3 to 2.0 volume percent, 0.4 to 2.0 volume percent, 0.5 to 2.0 volume percent, 0.6 to 2.0 volume percent, 0.7 to 2.0 volume percent, 0.8 to 2.0 volume percent, 0.9 to 2.0 volume percent, 0.1 to 1.9 volume percent, 0.1 to 1.0 volume percent, 0.1 to 2.0 volume percent, 0.1 to 1.4 volume percent, 0.1 to 1.0 volume percent, 0 volume percent, 0.1 to 1.1 volume percent or 2.1 to 2.0 volume percent.
According to other embodiments of the present invention, the culture medium composition of the present invention comprises glucose and fructose at a concentration of 0.1 to 5 weight percent, 0.1 to 4 weight percent, 0.1 to 3 weight percent, 0.1 to 2.5 weight percent, 0.1 to 2 weight percent, 0.1 to 1.5 weight percent, or 0.1 to 1 weight percent in total.
According to another example of the present invention, the medium of the present invention comprises 0.1 to 3.0 weight percent, 0.2 to 3.0 weight percent, 0.3 to 3.0 weight percent, 0.4 to 3.0 weight percent, 0.5 to 3.0 weight percent, 0.6 to 3.0 weight percent, 0.7 to 3.0 weight percent, 0.8 to 3.0 weight percent, 0.9 to 3.0 weight percent, 1 to 3.0 weight percent, 0.1 to 2.0 weight percent, 0.2 to 2.0 weight percent, 0.3 to 2.0 weight percent, 0.4 to 2.0 weight percent, 0.5 to 2.0 weight percent, 0.6 to 2.0 weight percent, 0.7 to 2.0 weight percent, 0.8 to 2.0 weight percent, 0.9 to 2.0 weight percent, 0.1 to 1.9 weight percent, 0.1 to 1.0 weight percent, 0.2.2.0 weight percent, 0.2 to 2.0 weight percent, 0.3 to 2.0 weight percent, 0.1 to 2.0 weight percent, 0.5 to 2.0 weight percent, 0.0 weight percent, 0.4 to 2.0 weight percent, 0.0 weight percent, 0.5 to 2.0 weight percent, 0 weight percent, 0.1 to 1 weight percent, 1.4 weight percent, 1 to 2.0 weight percent, 1 or 1 to 2.1 weight percent of fructose.
According to other examples of the invention, at 2:3 comprises the glucose and fructose in a weight ratio. The ratio of glucose and fructose contained in royal jelly can lead to the above 2: 3.
According to an embodiment of the present invention, the pre-culture medium comprises 0.1 to 10.0 wt% of yeast extract, 0.002 to 0.2 wt% of magnesium sulfate (MgSO) 4 ) 0.002 to 0.2 weight percent calcium chloride (CaCl) 2 ) 0.2 to 20.0 weight percent ethanol and 0.0005 to 0.05 weight percent cellulase or combinations thereof.
The term "preculture" in the present specification means a step of culturing a stock cellulose producing strain to a smaller scale (for example, 100L or less) for the purpose of activating the cellulose producing strain or increasing bacteria.
The pre-culture medium may comprise 0.1 to 10.0 wt%, 0.5 to 10.0 wt%, 0.7 to 10.0 wt%, 0.9 to 10.0 wt%, 0.1 to 8.0 wt%, 0.1 to 6.0 wt%, 0.1 to 4.0 wt%, 0.1 to 2.0 wt%, 0.5 to 10.0 wt%, 0.5 to 8.0 wt%, 0.5 to 6.0 wt%, 0.5 to 4.0 wt%, 0.5 to 2.0 wt%, 0.9 to 10.0 wt%, 0.9 to 8.0 wt%, 0.9 to 6.0 wt%, 0.9 to 4.0 wt%, 0.9 to 2.0 wt%, or 0.9 to 1.5 wt% of the yeast extract.
The preculture medium may comprise 0.002-0.2 wt%, 0.005-0.2 wt%, 0.008-0.2 wt%, 0.01-0.2 wt%, 0.013-0.2 wt%, 0.015-0.2 wt%, 0.01-0.15 wt%, 0.01-0.1 wt%, 0.01-0.05 wt%, 0.01-0.03 wt% or 0.015-0.03 wt% of magnesium sulfate (MgSO) 4 )。
The preculture medium may comprise 0.002-0.2 wt%, 0.005-0.2 wt%, 0.008-0.2 wt%, 0.01-0.2 wt%, 0.013-0.2 wt%, 0.015-0.2 wt%, 0.01-0.15 wt%, 0.01-0.1 wt%, 0.01-0.05 wt%, 0.01-0.03 wt% or 0.015-0.03 wt% of calcium chloride (CaCl) 2 )。
The pre-culture medium may comprise 0.2 to 20.0 volume percent, 0.5 to 20.0 volume percent, 1.0 to 20.0 volume percent, 1.5 to 20.0 volume percent, 1.0 to 17.0 volume percent, 1.0 to 14.0 volume percent, 1.0 to 11.0 volume percent, 1.0 to 8.0 volume percent, 1.0 to 5.0 volume percent, or 1.0 to 3.0 volume percent ethanol.
The pre-culture medium may comprise 0.0005 to 0.05 wt%, 0.001 to 0.05 wt%, 0.003 to 0.05 wt%, 0.001 to 0.03 wt%, 0.001 to 0.02 wt%, or 0.001 to 0.01 wt% cellulase.
According to an embodiment of the present invention, the above-mentioned preculture step is performed at 100 to 200rpm for 24 to 72 hours with stirring.
The above-mentioned preculture step may be performed for 30 hours to 72 hours, 36 hours to 72 hours, 42 hours to 72 hours, 36 hours to 66 hours, 36 hours to 60 hours, 36 hours to 54 hours, 42 hours to 66 hours, 42 hours to 60 hours, 42 hours to 54 hours, or 42 hours to 52 hours of agitation culture.
According to other examples of the present invention, the above-mentioned preculture step is performed at 160rpm for 48 hours with stirring.
Step (b): main culture step
Then, the preculture solution of the above step was added to the main medium containing the saccharide source and proline to stir the culture.
The term "main culture" in the present specification means a step of culturing bacterial cellulose-producing strains on a large scale (for example, 500L or more and 50000L or less) by a culture solution of "preculture" until the preceding step of the "sheet transformation culture" step of actually producing bacterial cellulose sheets.
The main culture medium comprises 0.01-1.0 wt% of proline, 0.002-0.2 wt% of magnesium sulfate (MgSO) 4 ) 0.002 to 0.2 weight percent calcium chloride (CaCl) 2 ) 0.01 to 1.0 weight percent sodium acetate and 0.02 to 2.0 weight percent acetic acid or combinations thereof.
The main culture medium may comprise 0.01-1.0 wt%, 0.02-1.0 wt%, 0.03-1.0 wt%, 0.04-1.0 wt%, 0.05-1.0 wt%, 0.06-1.0 wt%, 0.07-1.0 wt%, 0.08-1.0 wt%, 0.01-0.8 wt%, 0.01-0.6 wt%, 0.01-0.4 wt%, 0.01-0.2 wt%, 0.02-0.6 wt%, 0.03-0.6 wt%, 0.04-0.6 wt%, 0.05-0.4 wt%, 0.06-0.3 wt%, 0.04-0.2 wt% or 0.05-0.15 wt% of proline.
The main culture medium may comprise 0.002-0.2 wt%, 0.005-0.2 wt%, 0.008-0.2 wt%, 0.01-0.2 wt%, 0.013-0.2 wt%, 0.015-0.2 wt%, 0.01-0.15 wt%, 0.01-0.1 wt%, 0.01-0.05 wt%, 0.01-0.03 wt% or 0.015-0.03 wt% of magnesium sulfate (MgSO) 4 )。
The main culture medium may comprise 0.002-0.2 wt%, 0.005-0.2 wt%, 0.008-0.2 wt%, 0.01-0.2 wt%, 0.013-0.2 wt%, 0.015-0.2 wt%, 0.01-0.15 wt%, 0.01-0.1 wt%, 0.01-0.05 wt%, 0.01-0.03 wt% or 0.015-0.03 wt% of calcium chloride (CaCl) 2 )。
The main culture medium may comprise 0.01-1.0 wt%, 0.02-1.0 wt%, 0.03-1.0 wt%, 0.04-1.0 wt%, 0.05-1.0 wt%, 0.06-1.0 wt%, 0.07-1.0 wt%, 0.08-1.0 wt%, 0.01-0.8 wt%, 0.01-0.6 wt%, 0.01-0.4 wt%, 0.01-0.2 wt%, 0.02-0.6 wt%, 0.03-0.6 wt%, 0.04-0.6 wt%, 0.05-0.4 wt%, 0.06-0.3 wt%, 0.04-0.2 wt% or 0.05-0.15 wt% sodium acetate.
The main culture medium may contain 0.02-2.0 wt%, 0.05-2.0 wt%, 0.1-2.0 wt%, 0.15-2.0 wt%, 0.1-1.5 wt%, 0.1-1.0 wt% or 0.1-0.5 wt% of acetic acid.
Step (c): sheet transformation culture step
Finally, the main culture medium containing the saccharide source and proline is added to the main culture medium in the above steps to perform stationary culture, thereby performing plate-transfer culture.
The term "sheet transformation culture" in the present specification means a step of allowing a bacterial cellulose producing strain to produce bacterial cellulose sheets by stationary culturing a main culture liquid containing the bacterial cellulose producing strain.
The above medium has the same composition as the main medium of step (b).
The method for producing a bacterial cellulose sheet according to the present invention is similar to the bacterial cellulose high-producing strain KOSS15 described above, a culture of the strain, and a composition for producing a cellulose sheet, and in order to avoid complicating the present description due to the same matters, descriptions thereof are omitted below.
ADVANTAGEOUS EFFECTS OF INVENTION
The invention provides a bacterial cellulose high-yield strain (Komagataeibacter rhaeticus) KOSS15, a composition for preparing cellulose sheets comprising the strain or the culture, and a method for preparing cellulose sheets comprising the step of culturing the strain. The cellulose sheet produced by the bacterial cellulose highly-producing strain KOSS15 of the present invention exhibits high tensile strength and burst strength as compared with those of cellulose sheets of Acetobacter xylinum, which have been known to have the highest productivity of cellulose, and can reduce the sugar content required for producing cellulose sheets of the same weight by 5 to 6 times.
Drawings
FIG. 1 is a diagram showing a phylogenetic tree of bacterial cellulose high-yielding strain KOSS 15.
Fig. 2 is a diagram showing a cellulose production process using bacterial cellulose high-yielding strain KOSS 15.
Fig. 3 is a schematic diagram showing a preparation process of cellulose sheets of bacterial cellulose high-yielding strain KOSS15 by subculturing.
Fig. 4 is a diagram showing a cellulose sheet produced by culturing bacterial cellulose high-yielding strain KOSS15 strain.
FIG. 5 is a diagram showing a cellulose sheet of bacterial cellulose highly productive bacteria KOSS15 and Acetobacter xylinum IFO13693 produced by cellulase treatment.
Fig. 6 is a graph showing cellulose sheets of bacterial cellulose high-yielding strain KOSS15 prepared according to the concentration of honey in a medium.
Fig. 7 is a view showing a cellulose sheet of bacterial cellulose high-yielding strain KOSS15 prepared according to the kind of honey in a medium.
FIG. 8 shows the results of dielectric analysis of cellulose production genomes of bacterial cellulose high yielding strain KOSS15 and Acetobacter xylinum IFO13693.
Detailed Description
Hereinafter, the present invention will be described in more detail by way of examples. These examples are merely to more specifically illustrate the present invention, and it will be apparent to those skilled in the art that the scope of the present invention according to the gist of the present invention is not limited by these examples.
Examples
In the entire specification, when "%" used for expressing the concentration of a specific substance is not mentioned alone, solid/solid is (weight/weight)%, solid/liquid is (weight/volume)%, and liquid/liquid is (volume/volume)%.
1. Strain screening
3 bags of brown rice green tea were soaked in 1L of water, 30% (w/v) white sugar was added thereto, and 500ml of each was dispensed into a flask, and then sterilized and cooled at 121℃for 30 minutes. The obtained 5 kinds of black tea fungus solutions (Vietnam black tea mushroom, zhiyishan green tea mushroom, baocheng green tea mushroom, yunnan black tea mushroom in China, and Tibet black tea mushroom in China) were inoculated at 10% (v/v), and were subjected to stationary culture in an incubator at 28 ℃. After 2 weeks of culture, it was confirmed that cellulose was formed, 2% glucose, 1% yeast extract, 0.02% magnesium sulfate, 0.02% calcium chloride and 1.8% agar were added after the collection of bacteria in one experimental zone. After the pH of the medium was adjusted to 4.0 by acetic acid, an agar medium was prepared. One liquid (Zhiyishan green tea black tea mushroom) selected from 5 liquids of the agar medium was smeared at 0.1ml and cultured at 28℃for 7 days. After separating colonies having the same shape as the bacteria into 6 groups, 60ml of a medium solution containing 2% glucose, 1% yeast extract, 0.02% magnesium sulfate and 0.02% calcium chloride was sterilized. The sterilized medium was then dispensed at 10ml each and 6 colonies were inoculated here each.
After 3 days of culture at 28℃an acetic acid preculture medium was prepared in 40ml, and 4ml of the culture broth was placed in the acetic acid preculture medium for 3 days, and after 4 days of stationary culture at 28℃a morphology of cellulose was observed. Finally, the label presents a colony with good cellulose morphology, thereby preparing a stock bacterium. The most well formed colony in 6 experimental areas was designated as KOSS15, and patent deposit number KCCM12270P was granted from the korean microorganism preservation center.
2. Strain culture
(1) Culture of Acetobacter (Acetobacter oxydans) IFO13693 strain
1) Pre-culture (1 passage)
As a control group for comparison of the cellulose bioconversion efficiency of bacterial cellulose-producing strain KOSS15, acetobacter xylinum (Acetobactor xylinum) IFO13693 was used. The above acetobacter xylinum is a representative cellulose producing strain.
Acetobacter xylinum IFO13693 was treated with a solution comprising 2% glucose, 1.0% yeast extract, 0.02% magnesium sulfate (MgSO 4 ) 0.02% calcium chloride (CaCl) 2 ) And 2.0X10% ethanol in the medium 7 CFU/ml was inoculated and precultured in flasks (flash) at 160rpm for 48 hours at 30 ℃.
2) Main culture (2 passage)
Subsequently, the slurry (residue) produced from the preculture was filtered through a 80mesh sieve and inoculated with 10% of the main culture broth. By adding 3% glucose, 0.5% sodium glutamate (MSG, monosodium glutamate), 0.02% magnesium sulfate (MgSO 4 ) 0.02% calcium chloride (CaCl) 2 ) The main culture medium was prepared with 0.1% sodium acetate and 0.2% acetic acid. The main culture was a static culture at 0rpm and 0.3vvm (application volume/medium volume/minute) for 48 hours.
3) Sheet transformation culture (Main culture liquid mixing and tray dispensing) and washing
Finally, the main culture of Acetobacter xylinum IFO13693 was inoculated and mixed in an amount of 5 to 10% based on the medium, and the mixture was dispensed on a tray, and the mixture was left to stand at 0rpm and 0.3vvm for 3 days to induce conversion of cellulose sheets (FIGS. 2 and 3). After the completion of the culture, the prepared cellulose sheet was subjected to dehydration post-treatment with 0.1% sodium hydroxide (NaOH), whereby washing was performed by removing the excess strain. Subsequently, 5% sodium percarbonate was treated and washed by removing proteins and impurities to obtain a sheet (fig. 4).
(2) Culture of bacterial cellulose-producing high-yield strain KOSS15 (KCCM 12270P)
1) Pre-culture (1 passage)
The bacterial cellulose high-yielding strain KOSS15 is prepared from sugar source (0.6% fructose and 0.4% glucose or 1% Mel), 1.0% yeast extract, 0.02% magnesium sulfate (MgSO) 4 ) 0.02% calcium chloride (CaCl) 2 ) 1.0X10% in medium of 2% ethanol and 0.005% cellulase 8 CFU/ml was inoculated and precultured in flasks (flash) at a temperature of 30℃and at 80-160 rpm for 48 hours. In the case of preculture, the cellulase is added to prevent the formation of a pellicle (pellicle), and if cellulase is added to the preculture medium of Acetobacter xylinum IFO13693 of the above (1), a defective sheet is generated, and therefore, it is not suitable (FIG. 5).
2) Main culture (2 passage)
Subsequently, 10% of the preculture was inoculated with respect to the main medium. By adding sugar source (0.6% fructose and 0.4% glucose or 1% Mel), 0.1% proline, 0.02% magnesium sulfate (MgSO) 4 ) 0.02% calcium chloride (CaCl) 2 ) The main culture medium was prepared with 0.1% sodium acetate and 0.2% acetic acid. The main culture was performed at 80rpm and 0.3vvm for 48 hours under stirring.
3) Sheet transformation culture (Main culture liquid mixing and tray dispensing) and washing
Finally, the main culture of Acetobacter xylinum IFO13693 was inoculated and mixed in an amount of 5 to 10% based on the medium, and the mixture was dispensed on a tray, and the mixture was left to stand at 0rpm and 0.3vvm for 2 days to induce conversion of cellulose sheets (FIGS. 2 and 3). After the end of the incubation, 0.1% sodium hydroxide (NaOH) was treated overnight (overlapping), whereby post-dehydration washing was performed by removing excess strain. Subsequently, 5% sodium percarbonate was treated and washed by removing proteins and impurities to obtain a sheet (fig. 4). Unlike the sheet produced by acetobacter xylinum IFO13693, the cellulose sheet produced by the above bacterial cellulose highly productive bacteria KOSS15 has a characteristic that the sheet becomes gradually hard and has excellent strength when immersed in an aqueous solution of sodium hydroxide (NaOH) before the sheet is dehydrated.
3. Preparation of cellulose tablets
3.1. Drying weight of cellulose tablet according to the type and content of sugar source in the culture medium
The washed cellulose sheet was cut into 18.15X10.15 cm pieces after being laid flat, and the weight was measured. After the measurement, drying was performed in a drying oven at a temperature of 95℃for 1 hour, and the weight thereof was measured, and the weights before and after the drying were calculated.
The content of the sugar source in the medium in the following table 1 means the content of the sugar source in the medium when the cellulose sheet is transformed and cultured.
TABLE 1
Figure GDA0004211395720000131
From this, it was confirmed that when tablets of the same weight were prepared, bacterial cellulose high-yielding strain KOSS15 was able to reduce the content of the sugar source in the medium by about 6 times as compared with Acetobacter xylinum IFO13693. And, when using 3:2, the same effect can be exhibited when the sugar source containing fructose and glucose is substituted for honey.
3.2. Composition of cellulose tablet according to sugar source and content in culture medium
The content of the constituent sugar of the cellulose sheet was confirmed.
TABLE 2
Figure GDA0004211395720000141
3.3. Physical properties of cellulose sheet according to sugar sources in the medium
The tensile strength of the sheet was measured by a tester applying the constant-speed elongation method (20 mm/min) (KS M ISO 1924-2).
The wet burst strength of the sheet was measured by increasing the fluid pressure (KS M ISO 2758).
TABLE 3 Table 3
Figure GDA0004211395720000142
Figure GDA0004211395720000151
3.4. Physical property comparison of constituent sugar and cellulose tablets according to concentration of Mel in culture medium
Cellulose sheets were produced in the same manner as in example 2 above, except that the types and contents of sugar sources of the medium used in the sheet transformation culturing step were as shown in Table 4, and 0.3% honey, 0.5% honey and 1.0% honey were as shown in Table 4 below. The type and content of sugar sources in the medium were measured based on the honey concentrations before and after the culture, and the physical properties of the cellulose tablets prepared according to the honey concentrations contained in the medium were compared (Table 4).
TABLE 4 Table 4
Figure GDA0004211395720000152
As shown in table 4, from the concentration of honey contained in the culture medium, it was confirmed that the proportion of the constituent sugar and the dry weight of the tablets increased.
3.5. Comparison of dry weights of sugar and cellulose tablets according to the composition of the honey species in the medium
To confirm the productivity of cellulose sheets according to the kind of honey, cellulose sheets were produced by the same method as in example 2 above except that 0.5% of cultivated honey, 0.5% of locust honey, and 0.55% of wild flower honey (miscellaneous honey) were used as sugar sources of the medium used in the sheet transformation cultivation step, as shown in table 5 below. The type and content of sugar source in the medium were measured based on the types of honey before and after the culture, and the dry weights of cellulose sheets prepared for each type of honey contained in the medium were compared (Table 4).
The results are shown in Table 5.
TABLE 5
Figure GDA0004211395720000161
As shown in table 5, although it can be confirmed that the drying weight (production efficiency) for cellulose production is excellent according to the bee species, it can be confirmed that the locust honey and the wild honey (miscellaneous honey) are more excellent and the wild honey (miscellaneous honey) is most excellent (fig. 6 and 7).
4. Cellulose production Gene analysis of bacterial cellulose high-yielding Strain KOSS15 (K.rhaeticus KOSS 15)
4.1. Research of novel cellulose-producing genes
IFO13693 and KOSS15 were sequenced by one of the next generation of base sequence analyses (NGS, next generation sequencing), i.e., pacbio sequence analysis. In the case of the IFO13693 strain, it was confirmed to have chromosome 3539432bp. In the case of KOSS15 strain, it was confirmed that there were 3275555bp and 3 plasmids on the chromosome. Based on the new generation of base sequence analysis (NGS, next generation sequencing), the production genes of the biological cellulose were confirmed in the two production strains, respectively (fig. 8).
TABLE 6
Figure GDA0004211395720000162
While specific portions of the invention have been described in detail above, it will be appreciated by those skilled in the art that such specific techniques are merely preferred examples, and that the scope of the invention is not so limited.
Deposit number
Preservation agency name: korean microorganism preservation center (foreign)
Preservation number: KCCM12270P
Preservation date: 20180530
Figure GDA0004211395720000181
Figure GDA0004211395720000182
Korean microorganism preservation center
Figure GDA0004211395720000183
First city Siemens gate area Hongji inner 2 street 45 elm forest ∈10->
<110> Aikebailangde Co., ltd
<120> bacterial cellulose high-yielding strain and method for producing cellulose sheet using the same
<130> 1017-047.20P8
<150> KR 10-2018-0111099
<151> 2018-09-17
<160> 38
<170> KoPatentIn 3.0
<210> 1
<211> 2001
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1824 (BcsA I)
<400> 1
gtgctttcgg cgctggtgtc cctgcgttat ctgacgtggc ggctgaccga aacactggat 60
ttcgatacat ggctccaggg tacattgggg gtcacgctgc ttctggcgga actgtacgcg 120
ctgtacatgc tgttcctcag ctatttccag accatttccc ccctgcaccg cgcgccgctg 180
cccctgtctc ccaatccgga agactggccc acggtcgaca tcttcatccc gacctatgac 240
gaaagcctgg gcatcgtgcg tctgacggtg ctgggcgcgc ttggtatcga ctggccaccg 300
gacaaggtga acgtctatat ccttgatgac ggcaagcgtg aggaattcgc ccgctttgcc 360
gaagaatgcg gtgcccgcta cattgcccgt cccgataacg cgcatgccaa ggccggtaac 420
ctgaactacg ccattcagca tacaagtggc gaatacatcc tgattctgga ctgcgatcac 480
atcccgaccc gtgcgttcct gcagatctcg atgggatgga tggtcgagga caagaagatc 540
gccctgatgc agacgccgca tcacttctat tcccccgatc ctttccagcg taacctggcc 600
gtcggttacc gcacgccgcc tgaaggcaac ctgttctatg gtgtcattca ggatggcaac 660
gacttctggg atgcgacctt cttctgtggt tcctgtgcca tcctgcgccg caaggccatc 720
gaagagatca atggtttcgc aaccgagacc gtgacggaag atgcccatac cgccctgcgc 780
atgcagcgca gggggtggtc gaccgcctat ctgcgcattc cgctggccag cgggctggcg 840
acggagcgcc tggtcacgca tatcgggcag cgtatgcgct gggcccgtgg catgatccag 900
atcttccgcg tggataatcc catgctgggg ccgggcctga agctggggca gcggctttgc 960
tatctttcgg ccatgacgtc gttcttcttc gccattccgc gtgtcatctt ccttgcctcc 1020
ccgctggcct tccttttctt cagccagaat atcatcgcgg cctcccccct ggcggtgctg 1080
gcctacgcca ttccccacat gttccattcc gttgccacgg cggcaaaggt gaacaaggga 1140
tggcgctatt cattctggag tgaagtgtac gaaaccgtca tggcgctgtt cctggtgcgg 1200
gtgaccatcg tcacgatgat gttcccctcg aagggcaagt tcaacgtgac ggaaaaaggt 1260
ggcgttctgg agaacgagga attcgacctt ggtgccacat atccgaacat catctttgcg 1320
gtcatcatgg cgattggcct gatgcgcggg ctgtttgccc tggccttcca gcatctggac 1380
ataatttcag agcgtgccta cgcactcaac tgtgtctggt ccgtgatcag tctcatcatc 1440
ctgcttgcgg ccattgccgg cggccgtgag accaagcaga tccgccacag ccatcgtgtc 1500
gatgcgcgaa ttccggtaac ggtttatgat tacgaaggga attccagcca tggcatcacg 1560
caggacgtgt ccatgggtgg tgtggccatt catatgccgt ggcgcaatgt gacaccggac 1620
cagccggtgc agaccgttgt ccacgccgtg ctggatggtg aggtggtcaa tctccccgct 1680
accatgatcc gctgtgcgaa tggcaaggcg gtctttacct ggaacatcac ctccctcccg 1740
attgaagcct ctgtcgtccg gttcgtgttc ggtcgcgccg atgcctggct gcagtggaat 1800
gattacgagc atgatcggcc gttgcgaagc ctgtggagcc tgatcctcag catcaaggcg 1860
ctgttccgca agaagggtcg gatgatgatc catagtcgcc cgcaaaataa acccattgca 1920
ctgcctgttg agcgcaggga gccaacaagc agtcagggtg gtcagaaaca ggaaggaaag 1980
atcagtcgtg cggcctcgtg a 2001
<210> 2
<211> 666
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1824 (BcsA I)
<400> 2
Met Leu Ser Ala Leu Val Ser Leu Arg Tyr Leu Thr Trp Arg Leu Thr
1 5 10 15
Glu Thr Leu Asp Phe Asp Thr Trp Leu Gln Gly Thr Leu Gly Val Thr
20 25 30
Leu Leu Leu Ala Glu Leu Tyr Ala Leu Tyr Met Leu Phe Leu Ser Tyr
35 40 45
Phe Gln Thr Ile Ser Pro Leu His Arg Ala Pro Leu Pro Leu Ser Pro
50 55 60
Asn Pro Glu Asp Trp Pro Thr Val Asp Ile Phe Ile Pro Thr Tyr Asp
65 70 75 80
Glu Ser Leu Gly Ile Val Arg Leu Thr Val Leu Gly Ala Leu Gly Ile
85 90 95
Asp Trp Pro Pro Asp Lys Val Asn Val Tyr Ile Leu Asp Asp Gly Lys
100 105 110
Arg Glu Glu Phe Ala Arg Phe Ala Glu Glu Cys Gly Ala Arg Tyr Ile
115 120 125
Ala Arg Pro Asp Asn Ala His Ala Lys Ala Gly Asn Leu Asn Tyr Ala
130 135 140
Ile Gln His Thr Ser Gly Glu Tyr Ile Leu Ile Leu Asp Cys Asp His
145 150 155 160
Ile Pro Thr Arg Ala Phe Leu Gln Ile Ser Met Gly Trp Met Val Glu
165 170 175
Asp Lys Lys Ile Ala Leu Met Gln Thr Pro His His Phe Tyr Ser Pro
180 185 190
Asp Pro Phe Gln Arg Asn Leu Ala Val Gly Tyr Arg Thr Pro Pro Glu
195 200 205
Gly Asn Leu Phe Tyr Gly Val Ile Gln Asp Gly Asn Asp Phe Trp Asp
210 215 220
Ala Thr Phe Phe Cys Gly Ser Cys Ala Ile Leu Arg Arg Lys Ala Ile
225 230 235 240
Glu Glu Ile Asn Gly Phe Ala Thr Glu Thr Val Thr Glu Asp Ala His
245 250 255
Thr Ala Leu Arg Met Gln Arg Arg Gly Trp Ser Thr Ala Tyr Leu Arg
260 265 270
Ile Pro Leu Ala Ser Gly Leu Ala Thr Glu Arg Leu Val Thr His Ile
275 280 285
Gly Gln Arg Met Arg Trp Ala Arg Gly Met Ile Gln Ile Phe Arg Val
290 295 300
Asp Asn Pro Met Leu Gly Pro Gly Leu Lys Leu Gly Gln Arg Leu Cys
305 310 315 320
Tyr Leu Ser Ala Met Thr Ser Phe Phe Phe Ala Ile Pro Arg Val Ile
325 330 335
Phe Leu Ala Ser Pro Leu Ala Phe Leu Phe Phe Ser Gln Asn Ile Ile
340 345 350
Ala Ala Ser Pro Leu Ala Val Leu Ala Tyr Ala Ile Pro His Met Phe
355 360 365
His Ser Val Ala Thr Ala Ala Lys Val Asn Lys Gly Trp Arg Tyr Ser
370 375 380
Phe Trp Ser Glu Val Tyr Glu Thr Val Met Ala Leu Phe Leu Val Arg
385 390 395 400
Val Thr Ile Val Thr Met Met Phe Pro Ser Lys Gly Lys Phe Asn Val
405 410 415
Thr Glu Lys Gly Gly Val Leu Glu Asn Glu Glu Phe Asp Leu Gly Ala
420 425 430
Thr Tyr Pro Asn Ile Ile Phe Ala Val Ile Met Ala Ile Gly Leu Met
435 440 445
Arg Gly Leu Phe Ala Leu Ala Phe Gln His Leu Asp Ile Ile Ser Glu
450 455 460
Arg Ala Tyr Ala Leu Asn Cys Val Trp Ser Val Ile Ser Leu Ile Ile
465 470 475 480
Leu Leu Ala Ala Ile Ala Gly Gly Arg Glu Thr Lys Gln Ile Arg His
485 490 495
Ser His Arg Val Asp Ala Arg Ile Pro Val Thr Val Tyr Asp Tyr Glu
500 505 510
Gly Asn Ser Ser His Gly Ile Thr Gln Asp Val Ser Met Gly Gly Val
515 520 525
Ala Ile His Met Pro Trp Arg Asn Val Thr Pro Asp Gln Pro Val Gln
530 535 540
Thr Val Val His Ala Val Leu Asp Gly Glu Val Val Asn Leu Pro Ala
545 550 555 560
Thr Met Ile Arg Cys Ala Asn Gly Lys Ala Val Phe Thr Trp Asn Ile
565 570 575
Thr Ser Leu Pro Ile Glu Ala Ser Val Val Arg Phe Val Phe Gly Arg
580 585 590
Ala Asp Ala Trp Leu Gln Trp Asn Asp Tyr Glu His Asp Arg Pro Leu
595 600 605
Arg Ser Leu Trp Ser Leu Ile Leu Ser Ile Lys Ala Leu Phe Arg Lys
610 615 620
Lys Gly Arg Met Met Ile His Ser Arg Pro Gln Asn Lys Pro Ile Ala
625 630 635 640
Leu Pro Val Glu Arg Arg Glu Pro Thr Ser Ser Gln Gly Gly Gln Lys
645 650 655
Gln Glu Gly Lys Ile Ser Arg Ala Ala Ser
660 665
<210> 3
<211> 1131
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1824 (BcsB I)
<400> 3
gtgcgcttcc gggcgcccga cgggccgatc gtggacctgg cgcgttcgca tctggacgtt 60
ggtatcaaca atacctacct gcagtcctat tccctgcatg aaaaggacag tgtggtcgac 120
cagctggtcc agcgttttgg cggccggggc cagaccagtg gcgtgcagca gcatacgctg 180
accattccgc cgtggatggt gttcggtcag gatcagctgc agttctattt tgatgcggcc 240
cccctgaccc agcccggctg ccgtcccggc cccagcctga tccacatgtc ggttgatccg 300
gattccacga tcgacctgtc caacgcctat cacatcacgc gcatgcccaa tctggcctac 360
atggccagcg cggggtatcc gttcaccacc tatgccgacc tgtcgcactc ggccgtggtg 420
ctgccggacc atcccaatgg tacggttgtc agcgcctatc ttgacctgat gggcttcatg 480
ggggcgacga cgtggtatcc cgtctcgggt ctggacatcg tttccgcgga tcatgtgaat 540
gatgtggcgg accggaacct gatcgtcctg tccacgctgg ccaatagcgg ggaggtttcc 600
tccctgctgt cgaactcgtc gtaccagatt gccgacgggc gcctgcacat ggggatgcgc 660
tccaccctga gtggggtgtg gaacatcttc caggacccga tggccgccat caacaatacc 720
catccgaccg aggtcgagac gaccctgagc ggtggcgtgg gcgcgatggt ggaagcggaa 780
tccccgctgg catccggacg cacggttctt gccctgctct cggctgacgg gcaggggctg 840
gacaatctgg tccagatcct cgggcagcgt aagaaccagg ccaagattca gggcgacctg 900
gtgcttgccc atggggatga cctgacatcg taccgcagtt cgccccttta taccgttggc 960
acgctgccga tgtggctcat gccggactgg tatatgcata accatcccgt tcgcgtgatc 1020
gtggtggggc tgttcggatg cctgctggtt gtggccgtgc tggttcgtgc cctgttgcgg 1080
catgcactgt tccgccggcg gcagctgcag gaagaaaggc agaaatcgtg a 1131
<210> 4
<211> 376
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1824 (BcsB I)
<400> 4
Met Arg Phe Arg Ala Pro Asp Gly Pro Ile Val Asp Leu Ala Arg Ser
1 5 10 15
His Leu Asp Val Gly Ile Asn Asn Thr Tyr Leu Gln Ser Tyr Ser Leu
20 25 30
His Glu Lys Asp Ser Val Val Asp Gln Leu Val Gln Arg Phe Gly Gly
35 40 45
Arg Gly Gln Thr Ser Gly Val Gln Gln His Thr Leu Thr Ile Pro Pro
50 55 60
Trp Met Val Phe Gly Gln Asp Gln Leu Gln Phe Tyr Phe Asp Ala Ala
65 70 75 80
Pro Leu Thr Gln Pro Gly Cys Arg Pro Gly Pro Ser Leu Ile His Met
85 90 95
Ser Val Asp Pro Asp Ser Thr Ile Asp Leu Ser Asn Ala Tyr His Ile
100 105 110
Thr Arg Met Pro Asn Leu Ala Tyr Met Ala Ser Ala Gly Tyr Pro Phe
115 120 125
Thr Thr Tyr Ala Asp Leu Ser His Ser Ala Val Val Leu Pro Asp His
130 135 140
Pro Asn Gly Thr Val Val Ser Ala Tyr Leu Asp Leu Met Gly Phe Met
145 150 155 160
Gly Ala Thr Thr Trp Tyr Pro Val Ser Gly Leu Asp Ile Val Ser Ala
165 170 175
Asp His Val Asn Asp Val Ala Asp Arg Asn Leu Ile Val Leu Ser Thr
180 185 190
Leu Ala Asn Ser Gly Glu Val Ser Ser Leu Leu Ser Asn Ser Ser Tyr
195 200 205
Gln Ile Ala Asp Gly Arg Leu His Met Gly Met Arg Ser Thr Leu Ser
210 215 220
Gly Val Trp Asn Ile Phe Gln Asp Pro Met Ala Ala Ile Asn Asn Thr
225 230 235 240
His Pro Thr Glu Val Glu Thr Thr Leu Ser Gly Gly Val Gly Ala Met
245 250 255
Val Glu Ala Glu Ser Pro Leu Ala Ser Gly Arg Thr Val Leu Ala Leu
260 265 270
Leu Ser Ala Asp Gly Gln Gly Leu Asp Asn Leu Val Gln Ile Leu Gly
275 280 285
Gln Arg Lys Asn Gln Ala Lys Ile Gln Gly Asp Leu Val Leu Ala His
290 295 300
Gly Asp Asp Leu Thr Ser Tyr Arg Ser Ser Pro Leu Tyr Thr Val Gly
305 310 315 320
Thr Leu Pro Met Trp Leu Met Pro Asp Trp Tyr Met His Asn His Pro
325 330 335
Val Arg Val Ile Val Val Gly Leu Phe Gly Cys Leu Leu Val Val Ala
340 345 350
Val Leu Val Arg Ala Leu Leu Arg His Ala Leu Phe Arg Arg Arg Gln
355 360 365
Leu Gln Glu Glu Arg Gln Lys Ser
370 375
<210> 5
<211> 1272
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1825 (BcsB I)
<400> 5
gtgtccctga tcgcgctgct ggtctttgca acgggagcgc aggctgcgcc ggttgcatcc 60
aaagcgccag ccccgcagcc tgcgggcgat aacctgccgc ccctgcccgc cgcggcaccg 120
gccgccgcgg cagccccggc cgggcagcag cctgctggcg ccgccagtgc ggcacctgcc 180
gtcgatccgg ccgctgccag cgccgccgat gccatggtgg acaatgcgga gaatgcgacc 240
ggcgtcggtt cggatgtggc gaccgtgcat acctattccc tgcgcgaact tggcgcggag 300
aacgcgctga ccatgcgtgg cgcggccccc ctgcaggggc tgcagttcgg tattccgggc 360
gaccagctcg tcacctcggc gcggcttgtc gtgtcgggtg cgatgtcacc caatctccag 420
cccgataaca gcgcggtcac gattacgctg aacgagcagt atatcggcac gctccggcct 480
gacccgtcac atccggcctt tggtccgctt tcctttgaca tcaaccccat cttctttgtc 540
agcggcaacc ggctgaactt caatttctcg gcagggtcga aaggatgcac cgacccgagc 600
aacggattgc agtgggccag cgtgtccgag cattcggaac tgcagatcac caccataccg 660
cttcctcccc gtcgtcagct gtcgcggctg ccgcagccgt tctttgacaa gaacgtaagg 720
cagaagacgg tcattccgtt cgtccttgca cagacatttg atgctgaagt gctcaaggct 780
tccggcatcc tggcgtcctg gttcggccag cagaccgatt tccgcggcgt gaacttcccc 840
gtattttcca ccattccgca gacaggcaat gccgttgtgg tgggtgttgc cgatgaactg 900
ccttccgcgc tggggcgtcc ggccatcagc gggccgaccc tgatggaagt ggccaacccg 960
tccgatccca atggcacgat cctgctggta acgggccggg accgcgatga agtcattacc 1020
gcaagcaagg gcataggctt cagctccagc acgctgccgg ttgccgcgcg catggatgtg 1080
gcgccgattg acgtggcccc cgcgccccca acgacgcgcc gtccttcatc ccgaccagcc 1140
ggcctgtccg gctgggtgaa ctggtgccgg tcagtgccct gcagggcgaa ggctataccc 1200
ccggcgtgct ttccgtggcg ttccgcacgg cgcctgacct gtatacctgg cgcgaccggc 1260
cgtacaagct ga 1272
<210> 6
<211> 423
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1825 (BcsB I)
<400> 6
Met Ser Leu Ile Ala Leu Leu Val Phe Ala Thr Gly Ala Gln Ala Ala
1 5 10 15
Pro Val Ala Ser Lys Ala Pro Ala Pro Gln Pro Ala Gly Asp Asn Leu
20 25 30
Pro Pro Leu Pro Ala Ala Ala Pro Ala Ala Ala Ala Ala Pro Ala Gly
35 40 45
Gln Gln Pro Ala Gly Ala Ala Ser Ala Ala Pro Ala Val Asp Pro Ala
50 55 60
Ala Ala Ser Ala Ala Asp Ala Met Val Asp Asn Ala Glu Asn Ala Thr
65 70 75 80
Gly Val Gly Ser Asp Val Ala Thr Val His Thr Tyr Ser Leu Arg Glu
85 90 95
Leu Gly Ala Glu Asn Ala Leu Thr Met Arg Gly Ala Ala Pro Leu Gln
100 105 110
Gly Leu Gln Phe Gly Ile Pro Gly Asp Gln Leu Val Thr Ser Ala Arg
115 120 125
Leu Val Val Ser Gly Ala Met Ser Pro Asn Leu Gln Pro Asp Asn Ser
130 135 140
Ala Val Thr Ile Thr Leu Asn Glu Gln Tyr Ile Gly Thr Leu Arg Pro
145 150 155 160
Asp Pro Ser His Pro Ala Phe Gly Pro Leu Ser Phe Asp Ile Asn Pro
165 170 175
Ile Phe Phe Val Ser Gly Asn Arg Leu Asn Phe Asn Phe Ser Ala Gly
180 185 190
Ser Lys Gly Cys Thr Asp Pro Ser Asn Gly Leu Gln Trp Ala Ser Val
195 200 205
Ser Glu His Ser Glu Leu Gln Ile Thr Thr Ile Pro Leu Pro Pro Arg
210 215 220
Arg Gln Leu Ser Arg Leu Pro Gln Pro Phe Phe Asp Lys Asn Val Arg
225 230 235 240
Gln Lys Thr Val Ile Pro Phe Val Leu Ala Gln Thr Phe Asp Ala Glu
245 250 255
Val Leu Lys Ala Ser Gly Ile Leu Ala Ser Trp Phe Gly Gln Gln Thr
260 265 270
Asp Phe Arg Gly Val Asn Phe Pro Val Phe Ser Thr Ile Pro Gln Thr
275 280 285
Gly Asn Ala Val Val Val Gly Val Ala Asp Glu Leu Pro Ser Ala Leu
290 295 300
Gly Arg Pro Ala Ile Ser Gly Pro Thr Leu Met Glu Val Ala Asn Pro
305 310 315 320
Ser Asp Pro Asn Gly Thr Ile Leu Leu Val Thr Gly Arg Asp Arg Asp
325 330 335
Glu Val Ile Thr Ala Ser Lys Gly Ile Gly Phe Ser Ser Ser Thr Leu
340 345 350
Pro Val Ala Ala Arg Met Asp Val Ala Pro Ile Asp Val Ala Pro Ala
355 360 365
Pro Pro Thr Thr Arg Arg Pro Ser Ser Arg Pro Ala Gly Leu Ser Gly
370 375 380
Trp Val Asn Trp Cys Arg Ser Val Pro Cys Arg Ala Lys Ala Ile Pro
385 390 395 400
Pro Ala Cys Phe Pro Trp Arg Ser Ala Arg Arg Leu Thr Cys Ile Pro
405 410 415
Gly Ala Thr Gly Arg Thr Ser
420
<210> 7
<211> 3981
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1823 (BcsC I)
<400> 7
gtgagcatga acagacgcta cgtcttttcc ctttctgccg gcctgcttgc cagcagttgc 60
atgaccgtgc tggtggcggt gccactggcg cgcgcgcagc aggcctccac ggccatgacc 120
ggtacccagg cttcgggcgg gtcggcggcg ccacggcaga tcctgctgca gcaggcccgg 180
ttctggcttc agcagcagca gtatgacaat gcccgtcagg ccctgcagaa tgcccagcgc 240
gtggcgccgg atgcgccgga tgtcctggag gtacagggcg aataccagac ggcgatcggc 300
aaccgggaag cggcagccga tacgctgcgc cacctccagc aggttgcgcc cggcagtacg 360
gccgccaaca gcctgagtga cctgttgcac gagcgttcca tctcgacatc cgacctgtcg 420
caggtgcgtt cccttgccgc atccgggcat aacgcgcagg cggtgcaggg gtaccagaag 480
ctgttcaatg gcggtaagcc gccgcattcg cttgcggtgg aatattacca gaccatggca 540
ggcgttccgg ccgaatggga tcaggcccgg gccgggcttg ccggtatcgt ggcatccaat 600
ccacaggatt atcatgccca gctcgcattt gcgcaggcgc tgacctataa tacggcgacc 660
cgtatggaag gtctggcgcg gctcaaggac ctgcagggtt tccgcagcca ggctccggtc 720
gaggctgcgg ccgccagcca gtcctaccgg cagacgctga gctggctgcc ggtaacgccc 780
accacgcagc cgctcatgca gcagtggctg gatagccatc ccaatgatac cgaactgcgt 840
gagcatatgg tccacccgcc cggcggcccg ccggacaagg cgggtcttgc gcgtcaggcg 900
ggttatcagc agctgaatgc cggccgtatt gccgcagccg agcagtcctt ccagtccgcg 960
ttacagatca attcccatga tgccgattca cttggcggca tgggactggt cagcatgcgg 1020
cagggtgacg cagccgaagc ccgccgctat ttccaggaag cgatggcggc cgatcccaag 1080
acggcggatc gctggcgccc ggccctggcc ggcatggaaa tcagcggtga ctatgccgcg 1140
gtccgccagc ttattgccgc ccaccagtat gatgcggcca agcagcgcct gtccgcgctg 1200
gcacgccagt ccggccagtt taccggcgcc acgctcatgc tggccgacct gcagcgcacg 1260
accggccaga tgggtgcggc ggagcaggaa taccagtccg ttctggcacg cgacccgaac 1320
agccagcttg ccctgatggg actggcgcgg gtggagatgg cgcagggcaa gacggcggaa 1380
gcccgccagc tgctgtcgcg tgtcggatcg cagtatgcga cccaggtcgg ggaaatcgag 1440
gtgacgggcc ttatggccgc cgcctcgcag acatcggatt ccgcgcgcaa ggtctcgatc 1500
ctgcgcgaag ccatggccca ggcaccgcgt gacccatggg tgcggatcaa tctggccaat 1560
gccctgcagc agcaggggga catggcggaa gccaatcggg tcatgcagcc catcctgtcc 1620
aatcccgtga cggcgcagga ccgacaggcc ggtatcctgt ttacctatgg cagtggcaat 1680
gatgcgatga cacgccgcct gctggctggc ctgtcgcccg aggactattc ccccgccatc 1740
catgccattg cgacggaaat ggagatcaag caggatctgg ccagccgcct gtccatggtg 1800
gcgaacccgg ttccgctgat ccgtgaagcc ctttcgccgc ccgacccgac gggcgcgcgt 1860
ggcgtggccg tggctgatct gttccgtcag cgtggcgaca tgattcatgc ccgcatggcc 1920
ctgcgcattg cctcgacccg cacgctcgat ctttcggcgg accagcgtct ggcctacgcc 1980
accgaataca tgaagatcag caacccggtt gcggccgccc gcctgctggc cccgctgggt 2040
gacggcagtg gcacgggggc gggcaatgcc ctgcttcccg agcaggtaca gacgctgcag 2100
cagctgcgca tggggattgc cgtggcccag tccgacctgc tgaaccagcg cggcgatcag 2160
gcgcaggcat acgatcacct tgctccggcc ctgcaggccg atccggaagc gacatcgccc 2220
aaactggcgc tggcgcggct ttacaatggt cagggcaagt ccggcaaggc gctggaaatc 2280
gatctggccg tgctgcggca caacccgcag gatctggatg cgcgccaggc agcggtgcag 2340
gctgccgtca atagcggccg caagagcctg gccacccgcc ttgccatgga tggtgtgcag 2400
gaaagcccga tggatgcgcg tgcctggctg gccatggccg tggccgatca ggccgatggc 2460
catggccacc ggaccatcag tgacctgcgc cgcgcctatg acctgcgtct gcagcaggtg 2520
gaaggcacgc gggcggtggc aagcgggacg ggtgagcagg aatcgcttga acccccgtcc 2580
agcaacccgt ttcgccacca tggctatgga cgccagacgg aactgggcgc accggttacg 2640
ggtggctcct acagcatgga ggcaacgtct cccgaagcat cggaccagat gctgtcctcc 2700
atcgccgggc agatcaccac gctgcgggaa aacctggccc cctccatcga tggcggtctg 2760
gggttccggt cgcgttcggg tgagcacggc atgggccgcc tgaccgaagc gaacattccc 2820
atcgtggggc gcctgccgct gcaggcgggt gagtccagcc tgaccttctc gatcacgcca 2880
accatgatct ggtcgggaca gctcaatacc ggttcggtct atgatgtgcc gcgctttggc 2940
accgacatgg caacacaggc gtataaccag tacgtcagtt acataagcca gaacaattcc 3000
agcagcaccc tgcatagcga acttgtcaag ggtggcgagg ccgaggccgg ttttgcgcca 3060
gacgtgcagt tcggcaacag ctgggtgcgg gcggacctgg gggcatcgcc catcggcttc 3120
cccatcacca acgtactggg cggtgtggaa ttctcgccgc gtgtcggacc ggttaccttc 3180
cgcgtcagcg cggaacgccg ctccatcacc aacagcgtgc tgtcctatgg tggcatgcgc 3240
gaccccaact acaacacgac actgggccgc tatgcccgcc agctttatgg caaggagctg 3300
agttcccagt ggagtgagga atggggcggg gtcgtgacca accacttcca tggtcaggtt 3360
gaggcaacgc tgggcaacac catcgtatat ggtggcggtg gctatgccat ccagaccggc 3420
aagcatgtgc agcgcaatga cgagcgcgag gcgggcatcg gtgtcaacac gctggtctgg 3480
cacaatgcca acatgctggt ccgcatcggt gtcagcctga cctatttcgg ctatgccaac 3540
aaccaggact tctataccta cgggcagggt ggctacttct cgccgcaatc ctattacgcg 3600
gcgaccgtac ccatccggta tgcggggcag cacaagcggc tggactggga cgtgacgggc 3660
agcgttggct accaggtgtt ccatgaacac tcgtccccat tcttcccgac gtcttccctg 3720
ctgcagtctg gcgcgcagta cattgctgac tcgtatgtgc agaacgcaac cagttccgac 3780
tatctctcac aggagacggt caacagcgcc tattatcccg gagatagtat tgctagtctt 3840
acgggtggct tcaatgctag ggtagggtat cgatttacac acaatcttcg tcttgatctg 3900
tcggggcgct ggcagaaggc cggtaactgg actgaaagcg gcgccatgat ttccgcacac 3960
tatcttatta tggaccagta a 3981
<210> 8
<211> 1326
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1823 (BcsC I)
<400> 8
Met Ser Met Asn Arg Arg Tyr Val Phe Ser Leu Ser Ala Gly Leu Leu
1 5 10 15
Ala Ser Ser Cys Met Thr Val Leu Val Ala Val Pro Leu Ala Arg Ala
20 25 30
Gln Gln Ala Ser Thr Ala Met Thr Gly Thr Gln Ala Ser Gly Gly Ser
35 40 45
Ala Ala Pro Arg Gln Ile Leu Leu Gln Gln Ala Arg Phe Trp Leu Gln
50 55 60
Gln Gln Gln Tyr Asp Asn Ala Arg Gln Ala Leu Gln Asn Ala Gln Arg
65 70 75 80
Val Ala Pro Asp Ala Pro Asp Val Leu Glu Val Gln Gly Glu Tyr Gln
85 90 95
Thr Ala Ile Gly Asn Arg Glu Ala Ala Ala Asp Thr Leu Arg His Leu
100 105 110
Gln Gln Val Ala Pro Gly Ser Thr Ala Ala Asn Ser Leu Ser Asp Leu
115 120 125
Leu His Glu Arg Ser Ile Ser Thr Ser Asp Leu Ser Gln Val Arg Ser
130 135 140
Leu Ala Ala Ser Gly His Asn Ala Gln Ala Val Gln Gly Tyr Gln Lys
145 150 155 160
Leu Phe Asn Gly Gly Lys Pro Pro His Ser Leu Ala Val Glu Tyr Tyr
165 170 175
Gln Thr Met Ala Gly Val Pro Ala Glu Trp Asp Gln Ala Arg Ala Gly
180 185 190
Leu Ala Gly Ile Val Ala Ser Asn Pro Gln Asp Tyr His Ala Gln Leu
195 200 205
Ala Phe Ala Gln Ala Leu Thr Tyr Asn Thr Ala Thr Arg Met Glu Gly
210 215 220
Leu Ala Arg Leu Lys Asp Leu Gln Gly Phe Arg Ser Gln Ala Pro Val
225 230 235 240
Glu Ala Ala Ala Ala Ser Gln Ser Tyr Arg Gln Thr Leu Ser Trp Leu
245 250 255
Pro Val Thr Pro Thr Thr Gln Pro Leu Met Gln Gln Trp Leu Asp Ser
260 265 270
His Pro Asn Asp Thr Glu Leu Arg Glu His Met Val His Pro Pro Gly
275 280 285
Gly Pro Pro Asp Lys Ala Gly Leu Ala Arg Gln Ala Gly Tyr Gln Gln
290 295 300
Leu Asn Ala Gly Arg Ile Ala Ala Ala Glu Gln Ser Phe Gln Ser Ala
305 310 315 320
Leu Gln Ile Asn Ser His Asp Ala Asp Ser Leu Gly Gly Met Gly Leu
325 330 335
Val Ser Met Arg Gln Gly Asp Ala Ala Glu Ala Arg Arg Tyr Phe Gln
340 345 350
Glu Ala Met Ala Ala Asp Pro Lys Thr Ala Asp Arg Trp Arg Pro Ala
355 360 365
Leu Ala Gly Met Glu Ile Ser Gly Asp Tyr Ala Ala Val Arg Gln Leu
370 375 380
Ile Ala Ala His Gln Tyr Asp Ala Ala Lys Gln Arg Leu Ser Ala Leu
385 390 395 400
Ala Arg Gln Ser Gly Gln Phe Thr Gly Ala Thr Leu Met Leu Ala Asp
405 410 415
Leu Gln Arg Thr Thr Gly Gln Met Gly Ala Ala Glu Gln Glu Tyr Gln
420 425 430
Ser Val Leu Ala Arg Asp Pro Asn Ser Gln Leu Ala Leu Met Gly Leu
435 440 445
Ala Arg Val Glu Met Ala Gln Gly Lys Thr Ala Glu Ala Arg Gln Leu
450 455 460
Leu Ser Arg Val Gly Ser Gln Tyr Ala Thr Gln Val Gly Glu Ile Glu
465 470 475 480
Val Thr Gly Leu Met Ala Ala Ala Ser Gln Thr Ser Asp Ser Ala Arg
485 490 495
Lys Val Ser Ile Leu Arg Glu Ala Met Ala Gln Ala Pro Arg Asp Pro
500 505 510
Trp Val Arg Ile Asn Leu Ala Asn Ala Leu Gln Gln Gln Gly Asp Met
515 520 525
Ala Glu Ala Asn Arg Val Met Gln Pro Ile Leu Ser Asn Pro Val Thr
530 535 540
Ala Gln Asp Arg Gln Ala Gly Ile Leu Phe Thr Tyr Gly Ser Gly Asn
545 550 555 560
Asp Ala Met Thr Arg Arg Leu Leu Ala Gly Leu Ser Pro Glu Asp Tyr
565 570 575
Ser Pro Ala Ile His Ala Ile Ala Thr Glu Met Glu Ile Lys Gln Asp
580 585 590
Leu Ala Ser Arg Leu Ser Met Val Ala Asn Pro Val Pro Leu Ile Arg
595 600 605
Glu Ala Leu Ser Pro Pro Asp Pro Thr Gly Ala Arg Gly Val Ala Val
610 615 620
Ala Asp Leu Phe Arg Gln Arg Gly Asp Met Ile His Ala Arg Met Ala
625 630 635 640
Leu Arg Ile Ala Ser Thr Arg Thr Leu Asp Leu Ser Ala Asp Gln Arg
645 650 655
Leu Ala Tyr Ala Thr Glu Tyr Met Lys Ile Ser Asn Pro Val Ala Ala
660 665 670
Ala Arg Leu Leu Ala Pro Leu Gly Asp Gly Ser Gly Thr Gly Ala Gly
675 680 685
Asn Ala Leu Leu Pro Glu Gln Val Gln Thr Leu Gln Gln Leu Arg Met
690 695 700
Gly Ile Ala Val Ala Gln Ser Asp Leu Leu Asn Gln Arg Gly Asp Gln
705 710 715 720
Ala Gln Ala Tyr Asp His Leu Ala Pro Ala Leu Gln Ala Asp Pro Glu
725 730 735
Ala Thr Ser Pro Lys Leu Ala Leu Ala Arg Leu Tyr Asn Gly Gln Gly
740 745 750
Lys Ser Gly Lys Ala Leu Glu Ile Asp Leu Ala Val Leu Arg His Asn
755 760 765
Pro Gln Asp Leu Asp Ala Arg Gln Ala Ala Val Gln Ala Ala Val Asn
770 775 780
Ser Gly Arg Lys Ser Leu Ala Thr Arg Leu Ala Met Asp Gly Val Gln
785 790 795 800
Glu Ser Pro Met Asp Ala Arg Ala Trp Leu Ala Met Ala Val Ala Asp
805 810 815
Gln Ala Asp Gly His Gly His Arg Thr Ile Ser Asp Leu Arg Arg Ala
820 825 830
Tyr Asp Leu Arg Leu Gln Gln Val Glu Gly Thr Arg Ala Val Ala Ser
835 840 845
Gly Thr Gly Glu Gln Glu Ser Leu Glu Pro Pro Ser Ser Asn Pro Phe
850 855 860
Arg His His Gly Tyr Gly Arg Gln Thr Glu Leu Gly Ala Pro Val Thr
865 870 875 880
Gly Gly Ser Tyr Ser Met Glu Ala Thr Ser Pro Glu Ala Ser Asp Gln
885 890 895
Met Leu Ser Ser Ile Ala Gly Gln Ile Thr Thr Leu Arg Glu Asn Leu
900 905 910
Ala Pro Ser Ile Asp Gly Gly Leu Gly Phe Arg Ser Arg Ser Gly Glu
915 920 925
His Gly Met Gly Arg Leu Thr Glu Ala Asn Ile Pro Ile Val Gly Arg
930 935 940
Leu Pro Leu Gln Ala Gly Glu Ser Ser Leu Thr Phe Ser Ile Thr Pro
945 950 955 960
Thr Met Ile Trp Ser Gly Gln Leu Asn Thr Gly Ser Val Tyr Asp Val
965 970 975
Pro Arg Phe Gly Thr Asp Met Ala Thr Gln Ala Tyr Asn Gln Tyr Val
980 985 990
Ser Tyr Ile Ser Gln Asn Asn Ser Ser Ser Thr Leu His Ser Glu Leu
995 1000 1005
Val Lys Gly Gly Glu Ala Glu Ala Gly Phe Ala Pro Asp Val Gln Phe
1010 1015 1020
Gly Asn Ser Trp Val Arg Ala Asp Leu Gly Ala Ser Pro Ile Gly Phe
1025 1030 1035 1040
Pro Ile Thr Asn Val Leu Gly Gly Val Glu Phe Ser Pro Arg Val Gly
1045 1050 1055
Pro Val Thr Phe Arg Val Ser Ala Glu Arg Arg Ser Ile Thr Asn Ser
1060 1065 1070
Val Leu Ser Tyr Gly Gly Met Arg Asp Pro Asn Tyr Asn Thr Thr Leu
1075 1080 1085
Gly Arg Tyr Ala Arg Gln Leu Tyr Gly Lys Glu Leu Ser Ser Gln Trp
1090 1095 1100
Ser Glu Glu Trp Gly Gly Val Val Thr Asn His Phe His Gly Gln Val
1105 1110 1115 1120
Glu Ala Thr Leu Gly Asn Thr Ile Val Tyr Gly Gly Gly Gly Tyr Ala
1125 1130 1135
Ile Gln Thr Gly Lys His Val Gln Arg Asn Asp Glu Arg Glu Ala Gly
1140 1145 1150
Ile Gly Val Asn Thr Leu Val Trp His Asn Ala Asn Met Leu Val Arg
1155 1160 1165
Ile Gly Val Ser Leu Thr Tyr Phe Gly Tyr Ala Asn Asn Gln Asp Phe
1170 1175 1180
Tyr Thr Tyr Gly Gln Gly Gly Tyr Phe Ser Pro Gln Ser Tyr Tyr Ala
1185 1190 1195 1200
Ala Thr Val Pro Ile Arg Tyr Ala Gly Gln His Lys Arg Leu Asp Trp
1205 1210 1215
Asp Val Thr Gly Ser Val Gly Tyr Gln Val Phe His Glu His Ser Ser
1220 1225 1230
Pro Phe Phe Pro Thr Ser Ser Leu Leu Gln Ser Gly Ala Gln Tyr Ile
1235 1240 1245
Ala Asp Ser Tyr Val Gln Asn Ala Thr Ser Ser Asp Tyr Leu Ser Gln
1250 1255 1260
Glu Thr Val Asn Ser Ala Tyr Tyr Pro Gly Asp Ser Ile Ala Ser Leu
1265 1270 1275 1280
Thr Gly Gly Phe Asn Ala Arg Val Gly Tyr Arg Phe Thr His Asn Leu
1285 1290 1295
Arg Leu Asp Leu Ser Gly Arg Trp Gln Lys Ala Gly Asn Trp Thr Glu
1300 1305 1310
Ser Gly Ala Met Ile Ser Ala His Tyr Leu Ile Met Asp Gln
1315 1320 1325
<210> 9
<211> 471
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1822 (BcsD I)
<400> 9
atgacaactt tcaacgcaaa accggacttt tccctgttcc tgcaggccct ctcctgggag 60
attgatgatc aggccgggat cgaggtgagg aatgacctgt tgcgcgaggt cggtcacggc 120
atggccggtc ggctgcagcc tccgctgtgc aacaccattc atcagctgca gatcgagctg 180
aactcgctgc tggccatgat caactggggc tatgtgcagc ttgaactgct gcccgaggac 240
catgccatgc gcatcgtcca tgaggacctg ccccaggtgg gcagcgcggg cgagccggcc 300
ggcacatggc tggcccccgt gctcgaaggg ctgtatggcc gctggatcac gtcgcagccg 360
ggtgcctttg gcgattatgt cgtcacccgc gatgtggatg cggaggatct caactccgtt 420
cccagccaga cgatcatcct gtacatgcgc acccgcagca gcagcaactg a 471
<210> 10
<211> 156
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1822 (BcsD I)
<400> 10
Met Thr Thr Phe Asn Ala Lys Pro Asp Phe Ser Leu Phe Leu Gln Ala
1 5 10 15
Leu Ser Trp Glu Ile Asp Asp Gln Ala Gly Ile Glu Val Arg Asn Asp
20 25 30
Leu Leu Arg Glu Val Gly His Gly Met Ala Gly Arg Leu Gln Pro Pro
35 40 45
Leu Cys Asn Thr Ile His Gln Leu Gln Ile Glu Leu Asn Ser Leu Leu
50 55 60
Ala Met Ile Asn Trp Gly Tyr Val Gln Leu Glu Leu Leu Pro Glu Asp
65 70 75 80
His Ala Met Arg Ile Val His Glu Asp Leu Pro Gln Val Gly Ser Ala
85 90 95
Gly Glu Pro Ala Gly Thr Trp Leu Ala Pro Val Leu Glu Gly Leu Tyr
100 105 110
Gly Arg Trp Ile Thr Ser Gln Pro Gly Ala Phe Gly Asp Tyr Val Val
115 120 125
Thr Arg Asp Val Asp Ala Glu Asp Leu Asn Ser Val Pro Ser Gln Thr
130 135 140
Ile Ile Leu Tyr Met Arg Thr Arg Ser Ser Ser Asn
145 150 155
<210> 11
<211> 2793
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3004 (BcsAB II)
<400> 11
atggcgcagt ttgtggataa aattaccaga ttcatggagc aggcggctac cggcagggtg 60
ccttcatggg tgccgatcgt gatcggtgtc gtcatgatga gctttgtggg ttcggttgca 120
ttgctgccgg acatgcaggg gctgatttca atcgggacgg tcctgctgct gcttgtgctg 180
aaccggttca aggggcgcgg catcaccata ttcctcatga tgctctcgct gctggtgtcc 240
atgcgttacg tggtctggcg gctgacatcg acgatcgagt tccatgggtg gatacagtcc 300
gccctgtcca tcctgctgct cctggccgag gtttatgccc tgtccaccct gtgcctgagc 360
tatttccaga tggcctggcc gctggggcgc aaggagcatc ccctgcccga ggatacgtcc 420
tcgtggccac atgtggacat atatgttcca tcatataacg aggaactgtc cctggtccgc 480
tcgaccgtgc tgggcgcgct gaagcttgac tggccagagg acaagcttca cgtctacatc 540
cttgacgacg ggcgccgggt cgcctttcgt gactttgcgc tggaagcggg ggcgggctac 600
atcatccgct cgcaaaacaa ccatgcgaaa gcaggcaacc tcaatcatgc gctgaagatt 660
accgatggcc agttcgccgt gatcttcgac tgcgatcatg tgcccacgcg cggcttcctg 720
aaaagaacca tcggctggat gatcgccgat cccaagcttg ccctgctgca gaccccgcac 780
catttctatg cgcccgaccc gttccagcgc aatcttgtgg cgggtgccca tgtccccccc 840
gaagggaaca tgttctatgg tctggtgcag gatggcaatg atttctggga cgcaacattc 900
ttctgcggtt cctgcgcggt catccgccgc tccgctgttc tgggcattgg cggctttgca 960
accgagacgg tgacggaaga cgcgcatacc gcgctcaaga tgcagcgcag gggctggcgg 1020
accgcctacc tgcgtgaacc gctggccggc gggcttgcga ccgaacggct gatcctgcat 1080
atcggccagc gcgtgcgctg ggcgcgtggc atgctgcaga tcatgcggcg ggacaatccc 1140
ctgctggggc gcgggctgcg gtgggagcag cggctgtgtt acctgtccgc catgtcgcac 1200
ttcctgttcg ccattccgcg cgtgaccttc cttgtctcgc cgctggcgta cctgtttctg 1260
gggcagaata tcatcgcggc ctcgccactg gccatcagtg tctatgcgct gccgcacatc 1320
ttccattcca tcctgaccct gtcgcgtatt gaaagccgct ggcggtattc attctggagc 1380
gagatctacg aaacctcgct cgcccttttc ctggtcagga tcaccatcgt cacgctgctg 1440
cagccccaca aggggacctt taacgtgacg gacaagggcg gcctgctgga aaaaagctat 1500
tttgacgtgg gggccgtcta tcccaacgtc atccttgcgg tcatcctgtt cgccgcattc 1560
ctgcggggca tattcggcat tgtatggcag ttccatgacc gcctggccct gcagtccttc 1620
gcgctcaata cgctgtgggt ggtcataagc ctgatcatcg tgctggcttc catcgcggtc 1680
gggcgtgaaa cacgccagac ccgtgccgcc ccgcgcattg ccgtggccct gccggtcagg 1740
ataaccgaca tggaaggccg gagctttgcc ggacataccc gcgatatctc gctgggtgga 1800
ctgggggttg acctgcactg gcccgcagat gtcgcacggc ccgacagggt catgatggaa 1860
tatgtaaacg agcgggacgg gatccatgcc accgtgcccg caacggtcct ggccctggat 1920
gaacgttcca tgcggctgca atgggaacgc cgcgatctgg aagatgaaag ccagatcgtg 1980
gacatggtct ttggccggaa tgatgcctgg gcgaactggg ccgatttcga gcccgatcgc 2040
cccctgcgca gcattgccat ggtgctcaga agtattggtg gcctttttaa atggcaggcg 2100
cgtgagatcc cacgccatgt ggcggatgac gaagaggcca aggcgcctgt cgtggaagca 2160
aaactggaga aacaaagcct cgtgctgaaa cctgttcgac gcagtgcccg gaatggtgct 2220
gccgcatccg ctgtccttct cgtggctctt gccgccctca gcccggtcgc gatggcgcag 2280
gtgcagcccg ccgcgtccgc ttccgtgccg gaccagacgg gcgtcagcgc cgaaaccccg 2340
ttcggggaca gcaataccgg gaccgtgccg gacatgattc cggttatcga tcaggcggcg 2400
gcggaccgga tcagtgattc ggaagtgacc cgcaccctgt ccttccgcaa tctgggggcc 2460
acgtcaggcc cgctgacgct gcgtggctat tcccccctgc aggggctgga tgtgatcgtg 2520
cccgccaaca gggtggtcac gcatgcgcgg ctgtccattt ccggcgccct ttcgccctcc 2580
ctgctgccgg aagccagcgc ggttacggtc acgctgaacg agcagtatat cggcacgatc 2640
aaggtcgatc ccgaacaccc gcagttcggg ccgctgacat tcgatatcga cccgctgtat 2700
ttcacgggcg acaacaagct caatttccgt tttgcgggcg aataccggcg tgactgtaaa 2760
gaggtggtcc ccatttttcg gacagggcga taa 2793
<210> 12
<211> 930
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3004 (BcsAB II)
<400> 12
Met Ala Gln Phe Val Asp Lys Ile Thr Arg Phe Met Glu Gln Ala Ala
1 5 10 15
Thr Gly Arg Val Pro Ser Trp Val Pro Ile Val Ile Gly Val Val Met
20 25 30
Met Ser Phe Val Gly Ser Val Ala Leu Leu Pro Asp Met Gln Gly Leu
35 40 45
Ile Ser Ile Gly Thr Val Leu Leu Leu Leu Val Leu Asn Arg Phe Lys
50 55 60
Gly Arg Gly Ile Thr Ile Phe Leu Met Met Leu Ser Leu Leu Val Ser
65 70 75 80
Met Arg Tyr Val Val Trp Arg Leu Thr Ser Thr Ile Glu Phe His Gly
85 90 95
Trp Ile Gln Ser Ala Leu Ser Ile Leu Leu Leu Leu Ala Glu Val Tyr
100 105 110
Ala Leu Ser Thr Leu Cys Leu Ser Tyr Phe Gln Met Ala Trp Pro Leu
115 120 125
Gly Arg Lys Glu His Pro Leu Pro Glu Asp Thr Ser Ser Trp Pro His
130 135 140
Val Asp Ile Tyr Val Pro Ser Tyr Asn Glu Glu Leu Ser Leu Val Arg
145 150 155 160
Ser Thr Val Leu Gly Ala Leu Lys Leu Asp Trp Pro Glu Asp Lys Leu
165 170 175
His Val Tyr Ile Leu Asp Asp Gly Arg Arg Val Ala Phe Arg Asp Phe
180 185 190
Ala Leu Glu Ala Gly Ala Gly Tyr Ile Ile Arg Ser Gln Asn Asn His
195 200 205
Ala Lys Ala Gly Asn Leu Asn His Ala Leu Lys Ile Thr Asp Gly Gln
210 215 220
Phe Ala Val Ile Phe Asp Cys Asp His Val Pro Thr Arg Gly Phe Leu
225 230 235 240
Lys Arg Thr Ile Gly Trp Met Ile Ala Asp Pro Lys Leu Ala Leu Leu
245 250 255
Gln Thr Pro His His Phe Tyr Ala Pro Asp Pro Phe Gln Arg Asn Leu
260 265 270
Val Ala Gly Ala His Val Pro Pro Glu Gly Asn Met Phe Tyr Gly Leu
275 280 285
Val Gln Asp Gly Asn Asp Phe Trp Asp Ala Thr Phe Phe Cys Gly Ser
290 295 300
Cys Ala Val Ile Arg Arg Ser Ala Val Leu Gly Ile Gly Gly Phe Ala
305 310 315 320
Thr Glu Thr Val Thr Glu Asp Ala His Thr Ala Leu Lys Met Gln Arg
325 330 335
Arg Gly Trp Arg Thr Ala Tyr Leu Arg Glu Pro Leu Ala Gly Gly Leu
340 345 350
Ala Thr Glu Arg Leu Ile Leu His Ile Gly Gln Arg Val Arg Trp Ala
355 360 365
Arg Gly Met Leu Gln Ile Met Arg Arg Asp Asn Pro Leu Leu Gly Arg
370 375 380
Gly Leu Arg Trp Glu Gln Arg Leu Cys Tyr Leu Ser Ala Met Ser His
385 390 395 400
Phe Leu Phe Ala Ile Pro Arg Val Thr Phe Leu Val Ser Pro Leu Ala
405 410 415
Tyr Leu Phe Leu Gly Gln Asn Ile Ile Ala Ala Ser Pro Leu Ala Ile
420 425 430
Ser Val Tyr Ala Leu Pro His Ile Phe His Ser Ile Leu Thr Leu Ser
435 440 445
Arg Ile Glu Ser Arg Trp Arg Tyr Ser Phe Trp Ser Glu Ile Tyr Glu
450 455 460
Thr Ser Leu Ala Leu Phe Leu Val Arg Ile Thr Ile Val Thr Leu Leu
465 470 475 480
Gln Pro His Lys Gly Thr Phe Asn Val Thr Asp Lys Gly Gly Leu Leu
485 490 495
Glu Lys Ser Tyr Phe Asp Val Gly Ala Val Tyr Pro Asn Val Ile Leu
500 505 510
Ala Val Ile Leu Phe Ala Ala Phe Leu Arg Gly Ile Phe Gly Ile Val
515 520 525
Trp Gln Phe His Asp Arg Leu Ala Leu Gln Ser Phe Ala Leu Asn Thr
530 535 540
Leu Trp Val Val Ile Ser Leu Ile Ile Val Leu Ala Ser Ile Ala Val
545 550 555 560
Gly Arg Glu Thr Arg Gln Thr Arg Ala Ala Pro Arg Ile Ala Val Ala
565 570 575
Leu Pro Val Arg Ile Thr Asp Met Glu Gly Arg Ser Phe Ala Gly His
580 585 590
Thr Arg Asp Ile Ser Leu Gly Gly Leu Gly Val Asp Leu His Trp Pro
595 600 605
Ala Asp Val Ala Arg Pro Asp Arg Val Met Met Glu Tyr Val Asn Glu
610 615 620
Arg Asp Gly Ile His Ala Thr Val Pro Ala Thr Val Leu Ala Leu Asp
625 630 635 640
Glu Arg Ser Met Arg Leu Gln Trp Glu Arg Arg Asp Leu Glu Asp Glu
645 650 655
Ser Gln Ile Val Asp Met Val Phe Gly Arg Asn Asp Ala Trp Ala Asn
660 665 670
Trp Ala Asp Phe Glu Pro Asp Arg Pro Leu Arg Ser Ile Ala Met Val
675 680 685
Leu Arg Ser Ile Gly Gly Leu Phe Lys Trp Gln Ala Arg Glu Ile Pro
690 695 700
Arg His Val Ala Asp Asp Glu Glu Ala Lys Ala Pro Val Val Glu Ala
705 710 715 720
Lys Leu Glu Lys Gln Ser Leu Val Leu Lys Pro Val Arg Arg Ser Ala
725 730 735
Arg Asn Gly Ala Ala Ala Ser Ala Val Leu Leu Val Ala Leu Ala Ala
740 745 750
Leu Ser Pro Val Ala Met Ala Gln Val Gln Pro Ala Ala Ser Ala Ser
755 760 765
Val Pro Asp Gln Thr Gly Val Ser Ala Glu Thr Pro Phe Gly Asp Ser
770 775 780
Asn Thr Gly Thr Val Pro Asp Met Ile Pro Val Ile Asp Gln Ala Ala
785 790 795 800
Ala Asp Arg Ile Ser Asp Ser Glu Val Thr Arg Thr Leu Ser Phe Arg
805 810 815
Asn Leu Gly Ala Thr Ser Gly Pro Leu Thr Leu Arg Gly Tyr Ser Pro
820 825 830
Leu Gln Gly Leu Asp Val Ile Val Pro Ala Asn Arg Val Val Thr His
835 840 845
Ala Arg Leu Ser Ile Ser Gly Ala Leu Ser Pro Ser Leu Leu Pro Glu
850 855 860
Ala Ser Ala Val Thr Val Thr Leu Asn Glu Gln Tyr Ile Gly Thr Ile
865 870 875 880
Lys Val Asp Pro Glu His Pro Gln Phe Gly Pro Leu Thr Phe Asp Ile
885 890 895
Asp Pro Leu Tyr Phe Thr Gly Asp Asn Lys Leu Asn Phe Arg Phe Ala
900 905 910
Gly Glu Tyr Arg Arg Asp Cys Lys Glu Val Val Pro Ile Phe Arg Thr
915 920 925
Gly Arg
930
<210> 13
<211> 849
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1007 (BcsAB II)
<400> 13
atgaccgacc accgcgcgct gtccatcggc agccttacgg ttggcaacca gtcccccttc 60
acgctgattg caggcccgtg ccagatcgaa tcagcaagcc acgcgatgga ggtggcggac 120
gcgctgcatg gcatcgccac gcgactgggg atcgggctga tctacaaaag ctcgttcgac 180
aaggccaacc gcacctccat caacggcgcg cgcggcgtgg gcatggcgca ggggctggac 240
atactgggtc aggtgcgcgc ccgcttcggc atgccggtgc tgaccgacgt gcacctgccc 300
gaccagtgcg ccgcggtggc cgagacggtg gatgtgctcc agatccccgc cttcctgtgc 360
cgccagaccg accttctgct ggcggcgggc cagacggggg cggccatcaa cataaaaaag 420
gggcagttcc ttgccccgtg ggacatggcg aacgtggccg ccaaggtggc ttccaccggc 480
aatgagcgca tcatgctgtg cgagcgtggc acgtcatttg gctacaacac gctggtcaat 540
gacatgcgcg gcctgccgat catggcgggc acggggtatc cggtcatctt tgacgccacc 600
cattccgtcc agcagccggg ggggctgggc acatcctcgg gcgggcagcg ggtattcgcc 660
cccatcctgg cgcgcgcggc gctggccgta ggggttgcgg gggtgttcat tgaaacccat 720
cccgaccccg atacagcccc cagcgatggt acgaccatgc tgccgctggc ctgtatggaa 780
gacctgctga ccaccctgct gcgctatgac cggctgacca agcagaaccc gccagccgag 840
atcgtctga 849
<210> 14
<211> 282
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_1007 (BcsAB II)
<400> 14
Met Thr Asp His Arg Ala Leu Ser Ile Gly Ser Leu Thr Val Gly Asn
1 5 10 15
Gln Ser Pro Phe Thr Leu Ile Ala Gly Pro Cys Gln Ile Glu Ser Ala
20 25 30
Ser His Ala Met Glu Val Ala Asp Ala Leu His Gly Ile Ala Thr Arg
35 40 45
Leu Gly Ile Gly Leu Ile Tyr Lys Ser Ser Phe Asp Lys Ala Asn Arg
50 55 60
Thr Ser Ile Asn Gly Ala Arg Gly Val Gly Met Ala Gln Gly Leu Asp
65 70 75 80
Ile Leu Gly Gln Val Arg Ala Arg Phe Gly Met Pro Val Leu Thr Asp
85 90 95
Val His Leu Pro Asp Gln Cys Ala Ala Val Ala Glu Thr Val Asp Val
100 105 110
Leu Gln Ile Pro Ala Phe Leu Cys Arg Gln Thr Asp Leu Leu Leu Ala
115 120 125
Ala Gly Gln Thr Gly Ala Ala Ile Asn Ile Lys Lys Gly Gln Phe Leu
130 135 140
Ala Pro Trp Asp Met Ala Asn Val Ala Ala Lys Val Ala Ser Thr Gly
145 150 155 160
Asn Glu Arg Ile Met Leu Cys Glu Arg Gly Thr Ser Phe Gly Tyr Asn
165 170 175
Thr Leu Val Asn Asp Met Arg Gly Leu Pro Ile Met Ala Gly Thr Gly
180 185 190
Tyr Pro Val Ile Phe Asp Ala Thr His Ser Val Gln Gln Pro Gly Gly
195 200 205
Leu Gly Thr Ser Ser Gly Gly Gln Arg Val Phe Ala Pro Ile Leu Ala
210 215 220
Arg Ala Ala Leu Ala Val Gly Val Ala Gly Val Phe Ile Glu Thr His
225 230 235 240
Pro Asp Pro Asp Thr Ala Pro Ser Asp Gly Thr Thr Met Leu Pro Leu
245 250 255
Ala Cys Met Glu Asp Leu Leu Thr Thr Leu Leu Arg Tyr Asp Arg Leu
260 265 270
Thr Lys Gln Asn Pro Pro Ala Glu Ile Val
275 280
<210> 15
<211> 669
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3007 (BcsX)
<400> 15
atgaatgctc ttcttgctgg cctgacactt ctgattatcg gtgatagtca cgtaaccttc 60
aaagacaccc tgctttcggt cctgcctgat gaatttacca gacagggcgc aagggtcgtg 120
acctatggtg tgtgttcctc cactgcggcg gactgggttg tgcctaatcc caataacgga 180
tgcggggcgg ccgaacgcat cggcaccgcc ccgatcggcg cgcccgacat gaagccggcc 240
tcgccgccgc cggtggccga actgattgcg aaatggcacc ccgacgcggt catggtcatc 300
ctgggggata ccatggccgc ctatgggcag ggcgcggtct cgaaggactg ggtggacgag 360
caggtcaagt ccctgaccta tacgattggc aggaccgcgt gcatctgggt cgggccgacc 420
tgggggcagt tcagcccgcg ttatggcaag accgaccagc gcgcgatgga aatggcaagc 480
ttcctgaagg gggaggtggc gccatgcacc tatatcgatg gcacggcgct gctcaggcag 540
ggaagcgtca gtaccaccga tggcattcac gcgacaccgg aaagctaccg ggcctggggc 600
aatgccatcg tgcaggcggc gctgccggaa ctggagaagc tgaagtctcc cgccgcggcg 660
ggacagtag 669
<210> 16
<211> 222
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3007 (BcsX)
<400> 16
Met Asn Ala Leu Leu Ala Gly Leu Thr Leu Leu Ile Ile Gly Asp Ser
1 5 10 15
His Val Thr Phe Lys Asp Thr Leu Leu Ser Val Leu Pro Asp Glu Phe
20 25 30
Thr Arg Gln Gly Ala Arg Val Val Thr Tyr Gly Val Cys Ser Ser Thr
35 40 45
Ala Ala Asp Trp Val Val Pro Asn Pro Asn Asn Gly Cys Gly Ala Ala
50 55 60
Glu Arg Ile Gly Thr Ala Pro Ile Gly Ala Pro Asp Met Lys Pro Ala
65 70 75 80
Ser Pro Pro Pro Val Ala Glu Leu Ile Ala Lys Trp His Pro Asp Ala
85 90 95
Val Met Val Ile Leu Gly Asp Thr Met Ala Ala Tyr Gly Gln Gly Ala
100 105 110
Val Ser Lys Asp Trp Val Asp Glu Gln Val Lys Ser Leu Thr Tyr Thr
115 120 125
Ile Gly Arg Thr Ala Cys Ile Trp Val Gly Pro Thr Trp Gly Gln Phe
130 135 140
Ser Pro Arg Tyr Gly Lys Thr Asp Gln Arg Ala Met Glu Met Ala Ser
145 150 155 160
Phe Leu Lys Gly Glu Val Ala Pro Cys Thr Tyr Ile Asp Gly Thr Ala
165 170 175
Leu Leu Arg Gln Gly Ser Val Ser Thr Thr Asp Gly Ile His Ala Thr
180 185 190
Pro Glu Ser Tyr Arg Ala Trp Gly Asn Ala Ile Val Gln Ala Ala Leu
195 200 205
Pro Glu Leu Glu Lys Leu Lys Ser Pro Ala Ala Ala Gly Gln
210 215 220
<210> 17
<211> 1113
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3008 (BcsY)
<400> 17
atgttcggaa aggacttctt tccccaaaac cgtcggcgcg atatcgacgg gctgcgtggt 60
cttgccgttg cccttgttgt cctgttccat gcgggctggc tgaagggggg ctttgtcggg 120
gttgacgtct ttgtcgtgat ctcgggctat ttcatggatc gttcggcgct catgcagcat 180
ccgttccagc caatgcgctt tgtctgccgc aggctttacc gcctgcttcc cgcgctgctg 240
tgcatgatcg cgctggtctc ggccggcatg ctgtggtggg tgctgcagag tgaccgggcc 300
gatatcgccg ataacggcgc ctatgccctg gtctacctgt ccaatatctg ggcatcgggg 360
catgtcggct atttccaggg gcagagcatt gcctacccct tcctgcatac atggtcgctt 420
tcgctggaaa tgcagttcta tgccatcatc ttcttgatgg ccctgctgct gccgctgaca 480
cggcaccgca ggctggtact gtcgggcatc tgcgtggcgt cgtttgcctt ttgcatcagc 540
tgcgacatcc ggggggatac gcaggcctat tacaacatct ttgcccggct gtggcagttc 600
tcgcttggca cgatgatctg gatgttcccg cgcccccgac tgtcggcggt ggcggcgaat 660
accatccatg ccggggccgt tggggtgatt gtgggcgcgg ccctgttcta tacgctccgc 720
tttgcctgtc cgtccagcat ggcggttttt ccctgtgtgg ccgttgcggc catcatcatg 780
ctgccccaga cgcaggcggg caggctgtgc ctggtgccgc tttccccgct gggggtcatt 840
tcctactcgg tctatctttg gcactggccg ggtattgtgg tggcaaacta ccttctgttc 900
tttcaggtgc atggtctggt catggcggcg gttctgggca tcgtgctcgt ggtcagcctg 960
ttcagttacc tgctggtgga acgtaccggc ctgaattacg aggacagggt cgtccccgcc 1020
gtccgcaacc gtggggcggc cctgctggtg gggtcatgca tggtgctggc catggtcctg 1080
ttctacgtct cccgtgtgtc ccgtgttcat tag 1113
<210> 18
<211> 370
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3008 (BcsY)
<400> 18
Met Phe Gly Lys Asp Phe Phe Pro Gln Asn Arg Arg Arg Asp Ile Asp
1 5 10 15
Gly Leu Arg Gly Leu Ala Val Ala Leu Val Val Leu Phe His Ala Gly
20 25 30
Trp Leu Lys Gly Gly Phe Val Gly Val Asp Val Phe Val Val Ile Ser
35 40 45
Gly Tyr Phe Met Asp Arg Ser Ala Leu Met Gln His Pro Phe Gln Pro
50 55 60
Met Arg Phe Val Cys Arg Arg Leu Tyr Arg Leu Leu Pro Ala Leu Leu
65 70 75 80
Cys Met Ile Ala Leu Val Ser Ala Gly Met Leu Trp Trp Val Leu Gln
85 90 95
Ser Asp Arg Ala Asp Ile Ala Asp Asn Gly Ala Tyr Ala Leu Val Tyr
100 105 110
Leu Ser Asn Ile Trp Ala Ser Gly His Val Gly Tyr Phe Gln Gly Gln
115 120 125
Ser Ile Ala Tyr Pro Phe Leu His Thr Trp Ser Leu Ser Leu Glu Met
130 135 140
Gln Phe Tyr Ala Ile Ile Phe Leu Met Ala Leu Leu Leu Pro Leu Thr
145 150 155 160
Arg His Arg Arg Leu Val Leu Ser Gly Ile Cys Val Ala Ser Phe Ala
165 170 175
Phe Cys Ile Ser Cys Asp Ile Arg Gly Asp Thr Gln Ala Tyr Tyr Asn
180 185 190
Ile Phe Ala Arg Leu Trp Gln Phe Ser Leu Gly Thr Met Ile Trp Met
195 200 205
Phe Pro Arg Pro Arg Leu Ser Ala Val Ala Ala Asn Thr Ile His Ala
210 215 220
Gly Ala Val Gly Val Ile Val Gly Ala Ala Leu Phe Tyr Thr Leu Arg
225 230 235 240
Phe Ala Cys Pro Ser Ser Met Ala Val Phe Pro Cys Val Ala Val Ala
245 250 255
Ala Ile Ile Met Leu Pro Gln Thr Gln Ala Gly Arg Leu Cys Leu Val
260 265 270
Pro Leu Ser Pro Leu Gly Val Ile Ser Tyr Ser Val Tyr Leu Trp His
275 280 285
Trp Pro Gly Ile Val Val Ala Asn Tyr Leu Leu Phe Phe Gln Val His
290 295 300
Gly Leu Val Met Ala Ala Val Leu Gly Ile Val Leu Val Val Ser Leu
305 310 315 320
Phe Ser Tyr Leu Leu Val Glu Arg Thr Gly Leu Asn Tyr Glu Asp Arg
325 330 335
Val Val Pro Ala Val Arg Asn Arg Gly Ala Ala Leu Leu Val Gly Ser
340 345 350
Cys Met Val Leu Ala Met Val Leu Phe Tyr Val Ser Arg Val Ser Arg
355 360 365
Val His
370
<210> 19
<211> 3879
<212> DNA
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3009 (BcsC II)
<400> 19
atgcgccccg ccgcctgccg gccgtcatcg gcatggctgg ccgggggtgg atggaaaatc 60
atctgtggca tggttgccgg tgtcatcatg tccggggaga tcgcgcaggc ggaacccgcc 120
tggacggcag gaccggacac cgcggcgtcc cccgccggtg gcagcaccca gattaccgtg 180
acccccgatg caggccagaa cgcggccaac aacgcgcatc tggcgcatgc cgcggccgtg 240
ctggaactgc tgctgaacca gggatattac tggctggggc agcacaacct gcccaaggca 300
cgcgagacga tccagcgtgc gttgtccatc gagccggata ataacgaggc ccttttcctg 360
ctgggtcgcc tgcagatggc ggaaggccag acgaagcttg ccgccgccac actgggcagg 420
ctgatccaga acgggaatgc accgggtctg gtggctgatc tcagggccca gatccatgcc 480
ggtccgatag accccagggg gctggcggaa gcccgcgccc ttgcggccga gggcaagatg 540
atgcccgcga tgttcaaata ccgcgccctg ttcaagaacg gtgacccgcc gcccgacctg 600
gccatggaat attaccgcgt tctgggggcc accacccttg gctatcagga agccgccacc 660
aggcttgccg cctgggtggc gcgcaacccg cgtgacctgg acgcaaaact ttcgctggac 720
cggatcctga cctatcatgt cacctcgcgt gacgaggggc tggatggcct gcgccagctt 780
gcccgttcca atgcttccgc cgcgatacgt gacggggcca ttgccgcctg gcgtgacgcc 840
ctgctgtggg agccggtcac gggacccacc atcgcactgt ataacgagtg gcttgacctg 900
catccgggtg atgcggaaat cattgaccgc cggcacaagg cgcaggatgc gcagaatatc 960
attgatggcg cgaattaccg ccagcagggt ttcgtgctgc tgtcgcgcag gaatatcgaa 1020
ggggccgccg acctgttcca tcgcgccctg gccatcaacg cccatgacgc ggactcgctt 1080
ggtggcatgg cgcttgtggc gcaggcccgc cagcagcccg ccctggcacg gcgctatttc 1140
cagcaggcca tacaggcgga cccggattcc gcagcccact ggcgcgcggc cctgaaggcg 1200
atggaggcag gcggtggtgg cgggatggac ccgctggtgg cacggatcat acaggccatc 1260
aattccggac attatgatgc ggcacagtcc gacctggcgc tgctgggccg ccggggcaac 1320
acgatcacgc tgcaggcgct gcagggcatg ctggcgcgca ggcagggcca tatggaggaa 1380
gccgagcgcc tgtatcgtga gatcctgcgc cgcgcgccgg gcaatgccga tgcgctgttc 1440
aatctgggcg ggatcctgat tgaaaccgga cgcgaggccg aagcgcagga tatcatcgcg 1500
cgtcttgcgc acatccgtcc cgaccttgcg cggcatctgg aagtggccgg gctttcagcc 1560
cggtcggacc ggacacgcaa taatgacgaa aagctttcat tgctgaaccg ggccatggcc 1620
atggccccca cggacccgtg gatacggctc aagctcgcgc gcgcgctgga tgaagcgggc 1680
aaccatgcgc aggcccaggc catcatggat ggcgtgacca gtggccgcgc cgtcaccccc 1740
gatgacctgc aggccgcgat cctctatgca atgggccgcc atgacatggc cagggcggaa 1800
cagcttctgg cgcggctgcc ccccggtatc gaaagccccg gcatggcccg cgtggccgag 1860
cagatcgaac tggtccggcg catacaggaa ctcaaccgcg tgccgcgtgc gcccaacgcg 1920
ctccttgtgg cgctggccga ccggcctgac cccacgggtg aacgtggcat gcgtatcgcc 1980
aacgcgctgc tcgaccgcca tgccccacag gatgcccagc aggtactggc aacggaagaa 2040
cgtctgaccc agccgcccca gccatcccag ctccttgcct atgcgggtgt gtacctgcgg 2100
ctgcattccg ctgttgatgc aacgcgatgc ctcaatgcct ttgatgcgat ggcccgggcc 2160
cggcccaccg acatcacggc ggaccagcag gagatacgca accagatcgc cattggcctt 2220
gccatcatga cggcggacgg gttcaaccgt tatggccaga cggcgcgggc gtatcaggta 2280
ctggcgccgg tgctgcaggc acatccggat tccgccgagg cgcatctggc catggggcgc 2340
gtctaccaga cccgcaacat ggcccgtcgc gcactggaag aggaccagat cgccctgcgc 2400
ctgaaaccgc acaacatata cgcccttgcc gccgccgcgc gtgacgcggg gggactgcac 2460
cagatggcag aggcaaaaga ctattccacc cggctggcac atgaagaccc cgacggcccg 2520
atgagctggg aagtccgttc cgatatcgaa cggatagagg gcaacacacg cgcgcagctg 2580
gtggatgtgg agcatgcgcg ccacgcgcag tgcacgcttg atggtgaagg gacatgcgac 2640
gggcagcatg aaagcttcct gccggactat cgctggcctg agatcgacag caactacatc 2700
aacctgcatg gcgcgaccct gcctgcaacc tatcactaca ttcccgaaga tgacgggccg 2760
gaggcaatgg accgccagat cgtctatctg cgggattccg tatcgcccca gatcgatgcc 2820
aattcctacg tgcgcagccg tacgggcacc gcggggctgg ggcagctgac ggaattcgcc 2880
gtgccgatta cgggcacgct gccgtttgaa tcctgggagc acaggctgtc cttctcgatc 2940
gtgcccacgc tcctgttcac cggcaatccg cttgccaatc cctattcggc gcatgaattc 3000
ggtacctatg ccatcaatgg ggcgctgccc ggctcatccc accattatta cacgcagggt 3060
gtggggctga gcctgaatta cgtcaatcac tggttctcgg cggatgtggg gtcgtcgcca 3120
ctgggctttc ccattaccaa tgtggtgggc ggggttgaat tcgcgccacg cctgacccgc 3180
aacctcggcc tgcgcataag tggtggccgc cgcatggtga cggatagcga actgtcctat 3240
gccgggatgc gcgatccggg caccggcagg ctatggggcg gtgtgacacg catgttcggc 3300
catggcgcgc ttgaatggtc ggagccgaca tggaacctgt acgcgggcgg tggttttgcc 3360
tatctgggtg gcacccatgt cgttgacaat accgaagtgg aggccggcgc gggtggcagt 3420
gccacggtat ggcagtcgca tgacaggcag tggctgcggg tcgggcttga cctgatgtat 3480
ttcggctaca agcgcgatac ctattccttt acatgggggc aggggggata cttctcgccg 3540
cagcagtatt acggcgccat gataccggtc gaatggtcgg gacatgaccg gcggtggaca 3600
tggttcctgc gtggtgaagc gggtttccag cactatcaca gcaatggcgc gccttattac 3660
ccgacggatt ccgccctgca ggcgctttct gtggcgcacc agcccgatta ttatggtgat 3720
gagggggaaa gcggccttgc ggggaacata cgtggtcgtg ttgtctatca gttcacccac 3780
cgcctgcgtc tgggcatgga aggtggttac agccgggcag gaaactggtc ggaaaccagc 3840
ggcatgtgga tggcacacta tacttttgat ggccagtaa 3879
<210> 20
<211> 1292
<212> PRT
<213> artificial sequence
<220>
<223> Komagataeibacter rhaeticus KOSS15_3009 (BcsC II)
<400> 20
Met Arg Pro Ala Ala Cys Arg Pro Ser Ser Ala Trp Leu Ala Gly Gly
1 5 10 15
Gly Trp Lys Ile Ile Cys Gly Met Val Ala Gly Val Ile Met Ser Gly
20 25 30
Glu Ile Ala Gln Ala Glu Pro Ala Trp Thr Ala Gly Pro Asp Thr Ala
35 40 45
Ala Ser Pro Ala Gly Gly Ser Thr Gln Ile Thr Val Thr Pro Asp Ala
50 55 60
Gly Gln Asn Ala Ala Asn Asn Ala His Leu Ala His Ala Ala Ala Val
65 70 75 80
Leu Glu Leu Leu Leu Asn Gln Gly Tyr Tyr Trp Leu Gly Gln His Asn
85 90 95
Leu Pro Lys Ala Arg Glu Thr Ile Gln Arg Ala Leu Ser Ile Glu Pro
100 105 110
Asp Asn Asn Glu Ala Leu Phe Leu Leu Gly Arg Leu Gln Met Ala Glu
115 120 125
Gly Gln Thr Lys Leu Ala Ala Ala Thr Leu Gly Arg Leu Ile Gln Asn
130 135 140
Gly Asn Ala Pro Gly Leu Val Ala Asp Leu Arg Ala Gln Ile His Ala
145 150 155 160
Gly Pro Ile Asp Pro Arg Gly Leu Ala Glu Ala Arg Ala Leu Ala Ala
165 170 175
Glu Gly Lys Met Met Pro Ala Met Phe Lys Tyr Arg Ala Leu Phe Lys
180 185 190
Asn Gly Asp Pro Pro Pro Asp Leu Ala Met Glu Tyr Tyr Arg Val Leu
195 200 205
Gly Ala Thr Thr Leu Gly Tyr Gln Glu Ala Ala Thr Arg Leu Ala Ala
210 215 220
Trp Val Ala Arg Asn Pro Arg Asp Leu Asp Ala Lys Leu Ser Leu Asp
225 230 235 240
Arg Ile Leu Thr Tyr His Val Thr Ser Arg Asp Glu Gly Leu Asp Gly
245 250 255
Leu Arg Gln Leu Ala Arg Ser Asn Ala Ser Ala Ala Ile Arg Asp Gly
260 265 270
Ala Ile Ala Ala Trp Arg Asp Ala Leu Leu Trp Glu Pro Val Thr Gly
275 280 285
Pro Thr Ile Ala Leu Tyr Asn Glu Trp Leu Asp Leu His Pro Gly Asp
290 295 300
Ala Glu Ile Ile Asp Arg Arg His Lys Ala Gln Asp Ala Gln Asn Ile
305 310 315 320
Ile Asp Gly Ala Asn Tyr Arg Gln Gln Gly Phe Val Leu Leu Ser Arg
325 330 335
Arg Asn Ile Glu Gly Ala Ala Asp Leu Phe His Arg Ala Leu Ala Ile
340 345 350
Asn Ala His Asp Ala Asp Ser Leu Gly Gly Met Ala Leu Val Ala Gln
355 360 365
Ala Arg Gln Gln Pro Ala Leu Ala Arg Arg Tyr Phe Gln Gln Ala Ile
370 375 380
Gln Ala Asp Pro Asp Ser Ala Ala His Trp Arg Ala Ala Leu Lys Ala
385 390 395 400
Met Glu Ala Gly Gly Gly Gly Gly Met Asp Pro Leu Val Ala Arg Ile
405 410 415
Ile Gln Ala Ile Asn Ser Gly His Tyr Asp Ala Ala Gln Ser Asp Leu
420 425 430
Ala Leu Leu Gly Arg Arg Gly Asn Thr Ile Thr Leu Gln Ala Leu Gln
435 440 445
Gly Met Leu Ala Arg Arg Gln Gly His Met Glu Glu Ala Glu Arg Leu
450 455 460
Tyr Arg Glu Ile Leu Arg Arg Ala Pro Gly Asn Ala Asp Ala Leu Phe
465 470 475 480
Asn Leu Gly Gly Ile Leu Ile Glu Thr Gly Arg Glu Ala Glu Ala Gln
485 490 495
Asp Ile Ile Ala Arg Leu Ala His Ile Arg Pro Asp Leu Ala Arg His
500 505 510
Leu Glu Val Ala Gly Leu Ser Ala Arg Ser Asp Arg Thr Arg Asn Asn
515 520 525
Asp Glu Lys Leu Ser Leu Leu Asn Arg Ala Met Ala Met Ala Pro Thr
530 535 540
Asp Pro Trp Ile Arg Leu Lys Leu Ala Arg Ala Leu Asp Glu Ala Gly
545 550 555 560
Asn His Ala Gln Ala Gln Ala Ile Met Asp Gly Val Thr Ser Gly Arg
565 570 575
Ala Val Thr Pro Asp Asp Leu Gln Ala Ala Ile Leu Tyr Ala Met Gly
580 585 590
Arg His Asp Met Ala Arg Ala Glu Gln Leu Leu Ala Arg Leu Pro Pro
595 600 605
Gly Ile Glu Ser Pro Gly Met Ala Arg Val Ala Glu Gln Ile Glu Leu
610 615 620
Val Arg Arg Ile Gln Glu Leu Asn Arg Val Pro Arg Ala Pro Asn Ala
625 630 635 640
Leu Leu Val Ala Leu Ala Asp Arg Pro Asp Pro Thr Gly Glu Arg Gly
645 650 655
Met Arg Ile Ala Asn Ala Leu Leu Asp Arg His Ala Pro Gln Asp Ala
660 665 670
Gln Gln Val Leu Ala Thr Glu Glu Arg Leu Thr Gln Pro Pro Gln Pro
675 680 685
Ser Gln Leu Leu Ala Tyr Ala Gly Val Tyr Leu Arg Leu His Ser Ala
690 695 700
Val Asp Ala Thr Arg Cys Leu Asn Ala Phe Asp Ala Met Ala Arg Ala
705 710 715 720
Arg Pro Thr Asp Ile Thr Ala Asp Gln Gln Glu Ile Arg Asn Gln Ile
725 730 735
Ala Ile Gly Leu Ala Ile Met Thr Ala Asp Gly Phe Asn Arg Tyr Gly
740 745 750
Gln Thr Ala Arg Ala Tyr Gln Val Leu Ala Pro Val Leu Gln Ala His
755 760 765
Pro Asp Ser Ala Glu Ala His Leu Ala Met Gly Arg Val Tyr Gln Thr
770 775 780
Arg Asn Met Ala Arg Arg Ala Leu Glu Glu Asp Gln Ile Ala Leu Arg
785 790 795 800
Leu Lys Pro His Asn Ile Tyr Ala Leu Ala Ala Ala Ala Arg Asp Ala
805 810 815
Gly Gly Leu His Gln Met Ala Glu Ala Lys Asp Tyr Ser Thr Arg Leu
820 825 830
Ala His Glu Asp Pro Asp Gly Pro Met Ser Trp Glu Val Arg Ser Asp
835 840 845
Ile Glu Arg Ile Glu Gly Asn Thr Arg Ala Gln Leu Val Asp Val Glu
850 855 860
His Ala Arg His Ala Gln Cys Thr Leu Asp Gly Glu Gly Thr Cys Asp
865 870 875 880
Gly Gln His Glu Ser Phe Leu Pro Asp Tyr Arg Trp Pro Glu Ile Asp
885 890 895
Ser Asn Tyr Ile Asn Leu His Gly Ala Thr Leu Pro Ala Thr Tyr His
900 905 910
Tyr Ile Pro Glu Asp Asp Gly Pro Glu Ala Met Asp Arg Gln Ile Val
915 920 925
Tyr Leu Arg Asp Ser Val Ser Pro Gln Ile Asp Ala Asn Ser Tyr Val
930 935 940
Arg Ser Arg Thr Gly Thr Ala Gly Leu Gly Gln Leu Thr Glu Phe Ala
945 950 955 960
Val Pro Ile Thr Gly Thr Leu Pro Phe Glu Ser Trp Glu His Arg Leu
965 970 975
Ser Phe Ser Ile Val Pro Thr Leu Leu Phe Thr Gly Asn Pro Leu Ala
980 985 990
Asn Pro Tyr Ser Ala His Glu Phe Gly Thr Tyr Ala Ile Asn Gly Ala
995 1000 1005
Leu Pro Gly Ser Ser His His Tyr Tyr Thr Gln Gly Val Gly Leu Ser
1010 1015 1020
Leu Asn Tyr Val Asn His Trp Phe Ser Ala Asp Val Gly Ser Ser Pro
1025 1030 1035 1040
Leu Gly Phe Pro Ile Thr Asn Val Val Gly Gly Val Glu Phe Ala Pro
1045 1050 1055
Arg Leu Thr Arg Asn Leu Gly Leu Arg Ile Ser Gly Gly Arg Arg Met
1060 1065 1070
Val Thr Asp Ser Glu Leu Ser Tyr Ala Gly Met Arg Asp Pro Gly Thr
1075 1080 1085
Gly Arg Leu Trp Gly Gly Val Thr Arg Met Phe Gly His Gly Ala Leu
1090 1095 1100
Glu Trp Ser Glu Pro Thr Trp Asn Leu Tyr Ala Gly Gly Gly Phe Ala
1105 1110 1115 1120
Tyr Leu Gly Gly Thr His Val Val Asp Asn Thr Glu Val Glu Ala Gly
1125 1130 1135
Ala Gly Gly Ser Ala Thr Val Trp Gln Ser His Asp Arg Gln Trp Leu
1140 1145 1150
Arg Val Gly Leu Asp Leu Met Tyr Phe Gly Tyr Lys Arg Asp Thr Tyr
1155 1160 1165
Ser Phe Thr Trp Gly Gln Gly Gly Tyr Phe Ser Pro Gln Gln Tyr Tyr
1170 1175 1180
Gly Ala Met Ile Pro Val Glu Trp Ser Gly His Asp Arg Arg Trp Thr
1185 1190 1195 1200
Trp Phe Leu Arg Gly Glu Ala Gly Phe Gln His Tyr His Ser Asn Gly
1205 1210 1215
Ala Pro Tyr Tyr Pro Thr Asp Ser Ala Leu Gln Ala Leu Ser Val Ala
1220 1225 1230
His Gln Pro Asp Tyr Tyr Gly Asp Glu Gly Glu Ser Gly Leu Ala Gly
1235 1240 1245
Asn Ile Arg Gly Arg Val Val Tyr Gln Phe Thr His Arg Leu Arg Leu
1250 1255 1260
Gly Met Glu Gly Gly Tyr Ser Arg Ala Gly Asn Trp Ser Glu Thr Ser
1265 1270 1275 1280
Gly Met Trp Met Ala His Tyr Thr Phe Asp Gly Gln
1285 1290
<210> 21
<211> 3558
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2950 (BcsA I)
<400> 21
atggacgcca tcggccttgc caatcgcagc caggcgcagg catcggaccc gcaggcatcg 60
gtgtttgtct cggcctcggc gggtagtggc aagaccaagc tgctgatcga ccggctgctg 120
cgcctcatgc tgccgcgtga cgtgcccgac cgtgacggcg tgcccacccg tgtcgcgggc 180
agcgaccccg gtcgcatcct gtgcctgacc tttaccaagg cggcggcagc cgaaatgtcg 240
atccgcctgc aggaccggct gggccagtgg gtcatgctgc ctgatgcggc gctggatggg 300
gaacttgccc gcctgtcggt gccggtggat gagcgcacgc gcgaggtggc gcgtgaactg 360
tttgcccgcg tgcttgatct gcccggcggc atgcgcattg gcaccatcca tgccttctgc 420
cagtcgctgc tgcggcgctt ccccattgaa gccgcgatca gcccgcattt caccctgatc 480
gaggaaaccg atgcccgcct ggcccagcgc gcggcggtgg aggacgtggt gggcgcgggc 540
ggccccgccg tggggctgct ggcgggtcag atcggcatgg gtgactttac gtccctgatc 600
gcgcggttgc aggcgcatgc ccgccgcctg ctgccggtgg cgcggcagtg ggtgcgcgac 660
cgggccagtg tcgaggctgc cctgatgcgc ctgctgggca taagcgggcg cagcgtggag 720
gaggtgctgc gccaggcctg cgccaccatc cccgatgagg acgccctgcg cgacggcctg 780
cgttacgcgg cgcaggaagg atcgcccacc gtcaggacgc aggccgaaat catgctggcc 840
tggctggggc aggatgcggc ggcccgcgcg gcacaatggc ccgtgtggcg caaggcgctg 900
ctgaaaaacg atggcgcgcc ccgtcagcgc ggcgggctga acgccaaact tgccgccgcg 960
cgcccggtgc tggtcgaaca gctgctggcg gaggcggcgc gcatcatcgc cattgagcag 1020
cagatgcgtg cgatcacggt gtttgaactg acctgcgcgc tgctctcggt cgcgcagccg 1080
gtgctggagc gttacgccac gcgcaagagc gcgcagggca tggttgatta tgatgacctg 1140
atcgaccgca cgctcgaact gctgcgtgac cccggtgcgg cgtgggtact ctacaagctc 1200
gacggcggca tcgaccacct tctgcttgat gaggtgcagg atacatcatt cgaccagtgg 1260
gccatcgcgg gggggctgac ggcggagttc ttcgcaggcg aaggcacgca tgatgacgag 1320
ggcacgccgc gcaccatctt cgcggtgggg gactacaagc agtcgatcta ttcgtttcag 1380
ggggccgacc ccgaggcctt ccgcgcgtgg cggcagcgct ttcgccacag tgcggcggca 1440
gccggggccc tgtggcgcga accggccctg accgtttcct tccgctccac cgccccggtg 1500
ctcaaactgg tggacagcgt gttcgccaac gccgccgccg cccggggcgt ggccgagccc 1560
gatggcacca ttccccccca tgtcaccgcc cgccccggcc agggcggccg cgtcgagatc 1620
tggccccccg tgccggtgga ggaggatggc gaggcagtca gcccctggca ggcccccagc 1680
cagaacgcgg gccagtccac tgcccagcag cgcctggccg atacgctggc cgcctggatt 1740
gcagccgaac tgcgcaggcc cccggcaccg ggcgaggccc cgcttgcgcc gggtgacgtg 1800
ctgattctcg tgccgcgtcg ctcggccttc gcccgcgccc tgatccgcgc gctgaaaacg 1860
aacgacgtgc cggtggccac cctcgtgcgc accgtgctga ccgaccagct tgccgtgcag 1920
gatctcatgg cgctgtgcgc gtgtctgctc ctgccgcagg atgacctgac gctggcctgc 1980
gtgctgacct cgcccattgg cgggctggat gatgagtcgc tcatgcatct tgcaacgggc 2040
cgcgatggca aaccgctctg ggccgtgctg cgcgcgcgcc ataccgagcg cccggactgg 2100
gcggcggcat ggcatatcct caacacgctg ttccggcagg tggactacgc aaccccctac 2160
cagcttctgg ccgaggccct tgggccgctg ggggcgcgca cgcggctgct ggcccgcctt 2220
gggccggagg cggtggagcc ggtggatgaa ctgctctccg ccgcgctgcg ctttgaggag 2280
gcgcatgcca tctcgctgca gggcttcctg cactggctca atgcctcgga tgagaccgtg 2340
cgccatgagc ctgacgcctc ggccaacatg gtgcgcgtca tgaccgcgca cggggccaag 2400
gggctgcagg cgcggctggt ggtgctgccc gataccatcg ccagcccccg ctctgacacc 2460
aacatcctgt ggaaaaagga ccagcagacc ggtctcgaca tccccatctg ggtgccccgc 2520
cgcgagctga ccaccgacct gaccgcagcc ttgcaggaca agatcaaaca ggaggcggcg 2580
gaggaatata accgtctgct ttacgtggcg ttgacccgtg cgagcgaccg gctggtcata 2640
tgcggctgga agcccagccg gggcgtgccc gatggctgct ggtatgacct gtgccaccgt 2700
ggtttcgagc aggcaggcgc cgaggcccgg ccttttgatc tgggctggga gggtgaaagc 2760
ctggtgctgg aggaaaagcg cagcgtgtcc gcgcccatgc cccggtcgca ggccccggcg 2820
ctggaggtgg aacccgtcgc cttgccggag tggatgggcc acgcgccgct gtggcggccc 2880
gtgctgcccg tggcggaagg cccgctggcc cgcccgcttg cgcccagccg gcccgatgat 2940
gtggcccttg gcccgcagcc tgccgtgcgc tcgccgctgg tctcggccag cacggtgcgc 3000
gaccgggcgg atgccacggc ccggcgcgcc cgcgccctgc aacgcgggca actggtgcat 3060
gccctgttgc agtacctgcc cgactgcgcg cccgatgcgc gtgcggatct ggcccatgcc 3120
tggctgtcgc gcccggcggc ggggcttgcg cccgaactgc gtgatgaact ggtggcggag 3180
gtgctcgcgg tcatggagcg gccagagctt gcggccctgt ttgcgcctgg cagccgcgtg 3240
gagcagcccc tggccggaat cgtgggcgag caggtgatcg tggggcaggt ggaccgcatg 3300
gcggtcaatg ccgatacggt catggtgtgc gacttcaaga ccaaccgcca tccaccagcc 3360
gatattgggc agacccccgt gctctacctg cgccagatgg cggcctaccg cgccctgttg 3420
cgcggggtct atcccggcag gcaggttgtg tgcgtgctgg tctggaccga gggcgtgcgc 3480
gttgacatcc tgcccgcggc actgctggac cattatgcgc cggaccgggt tgccttaaag 3540
gggtcggtac gggcttga 3558
<210> 22
<211> 1185
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2950 (BcsA I)
<400> 22
Met Asp Ala Ile Gly Leu Ala Asn Arg Ser Gln Ala Gln Ala Ser Asp
1 5 10 15
Pro Gln Ala Ser Val Phe Val Ser Ala Ser Ala Gly Ser Gly Lys Thr
20 25 30
Lys Leu Leu Ile Asp Arg Leu Leu Arg Leu Met Leu Pro Arg Asp Val
35 40 45
Pro Asp Arg Asp Gly Val Pro Thr Arg Val Ala Gly Ser Asp Pro Gly
50 55 60
Arg Ile Leu Cys Leu Thr Phe Thr Lys Ala Ala Ala Ala Glu Met Ser
65 70 75 80
Ile Arg Leu Gln Asp Arg Leu Gly Gln Trp Val Met Leu Pro Asp Ala
85 90 95
Ala Leu Asp Gly Glu Leu Ala Arg Leu Ser Val Pro Val Asp Glu Arg
100 105 110
Thr Arg Glu Val Ala Arg Glu Leu Phe Ala Arg Val Leu Asp Leu Pro
115 120 125
Gly Gly Met Arg Ile Gly Thr Ile His Ala Phe Cys Gln Ser Leu Leu
130 135 140
Arg Arg Phe Pro Ile Glu Ala Ala Ile Ser Pro His Phe Thr Leu Ile
145 150 155 160
Glu Glu Thr Asp Ala Arg Leu Ala Gln Arg Ala Ala Val Glu Asp Val
165 170 175
Val Gly Ala Gly Gly Pro Ala Val Gly Leu Leu Ala Gly Gln Ile Gly
180 185 190
Met Gly Asp Phe Thr Ser Leu Ile Ala Arg Leu Gln Ala His Ala Arg
195 200 205
Arg Leu Leu Pro Val Ala Arg Gln Trp Val Arg Asp Arg Ala Ser Val
210 215 220
Glu Ala Ala Leu Met Arg Leu Leu Gly Ile Ser Gly Arg Ser Val Glu
225 230 235 240
Glu Val Leu Arg Gln Ala Cys Ala Thr Ile Pro Asp Glu Asp Ala Leu
245 250 255
Arg Asp Gly Leu Arg Tyr Ala Ala Gln Glu Gly Ser Pro Thr Val Arg
260 265 270
Thr Gln Ala Glu Ile Met Leu Ala Trp Leu Gly Gln Asp Ala Ala Ala
275 280 285
Arg Ala Ala Gln Trp Pro Val Trp Arg Lys Ala Leu Leu Lys Asn Asp
290 295 300
Gly Ala Pro Arg Gln Arg Gly Gly Leu Asn Ala Lys Leu Ala Ala Ala
305 310 315 320
Arg Pro Val Leu Val Glu Gln Leu Leu Ala Glu Ala Ala Arg Ile Ile
325 330 335
Ala Ile Glu Gln Gln Met Arg Ala Ile Thr Val Phe Glu Leu Thr Cys
340 345 350
Ala Leu Leu Ser Val Ala Gln Pro Val Leu Glu Arg Tyr Ala Thr Arg
355 360 365
Lys Ser Ala Gln Gly Met Val Asp Tyr Asp Asp Leu Ile Asp Arg Thr
370 375 380
Leu Glu Leu Leu Arg Asp Pro Gly Ala Ala Trp Val Leu Tyr Lys Leu
385 390 395 400
Asp Gly Gly Ile Asp His Leu Leu Leu Asp Glu Val Gln Asp Thr Ser
405 410 415
Phe Asp Gln Trp Ala Ile Ala Gly Gly Leu Thr Ala Glu Phe Phe Ala
420 425 430
Gly Glu Gly Thr His Asp Asp Glu Gly Thr Pro Arg Thr Ile Phe Ala
435 440 445
Val Gly Asp Tyr Lys Gln Ser Ile Tyr Ser Phe Gln Gly Ala Asp Pro
450 455 460
Glu Ala Phe Arg Ala Trp Arg Gln Arg Phe Arg His Ser Ala Ala Ala
465 470 475 480
Ala Gly Ala Leu Trp Arg Glu Pro Ala Leu Thr Val Ser Phe Arg Ser
485 490 495
Thr Ala Pro Val Leu Lys Leu Val Asp Ser Val Phe Ala Asn Ala Ala
500 505 510
Ala Ala Arg Gly Val Ala Glu Pro Asp Gly Thr Ile Pro Pro His Val
515 520 525
Thr Ala Arg Pro Gly Gln Gly Gly Arg Val Glu Ile Trp Pro Pro Val
530 535 540
Pro Val Glu Glu Asp Gly Glu Ala Val Ser Pro Trp Gln Ala Pro Ser
545 550 555 560
Gln Asn Ala Gly Gln Ser Thr Ala Gln Gln Arg Leu Ala Asp Thr Leu
565 570 575
Ala Ala Trp Ile Ala Ala Glu Leu Arg Arg Pro Pro Ala Pro Gly Glu
580 585 590
Ala Pro Leu Ala Pro Gly Asp Val Leu Ile Leu Val Pro Arg Arg Ser
595 600 605
Ala Phe Ala Arg Ala Leu Ile Arg Ala Leu Lys Thr Asn Asp Val Pro
610 615 620
Val Ala Thr Leu Val Arg Thr Val Leu Thr Asp Gln Leu Ala Val Gln
625 630 635 640
Asp Leu Met Ala Leu Cys Ala Cys Leu Leu Leu Pro Gln Asp Asp Leu
645 650 655
Thr Leu Ala Cys Val Leu Thr Ser Pro Ile Gly Gly Leu Asp Asp Glu
660 665 670
Ser Leu Met His Leu Ala Thr Gly Arg Asp Gly Lys Pro Leu Trp Ala
675 680 685
Val Leu Arg Ala Arg His Thr Glu Arg Pro Asp Trp Ala Ala Ala Trp
690 695 700
His Ile Leu Asn Thr Leu Phe Arg Gln Val Asp Tyr Ala Thr Pro Tyr
705 710 715 720
Gln Leu Leu Ala Glu Ala Leu Gly Pro Leu Gly Ala Arg Thr Arg Leu
725 730 735
Leu Ala Arg Leu Gly Pro Glu Ala Val Glu Pro Val Asp Glu Leu Leu
740 745 750
Ser Ala Ala Leu Arg Phe Glu Glu Ala His Ala Ile Ser Leu Gln Gly
755 760 765
Phe Leu His Trp Leu Asn Ala Ser Asp Glu Thr Val Arg His Glu Pro
770 775 780
Asp Ala Ser Ala Asn Met Val Arg Val Met Thr Ala His Gly Ala Lys
785 790 795 800
Gly Leu Gln Ala Arg Leu Val Val Leu Pro Asp Thr Ile Ala Ser Pro
805 810 815
Arg Ser Asp Thr Asn Ile Leu Trp Lys Lys Asp Gln Gln Thr Gly Leu
820 825 830
Asp Ile Pro Ile Trp Val Pro Arg Arg Glu Leu Thr Thr Asp Leu Thr
835 840 845
Ala Ala Leu Gln Asp Lys Ile Lys Gln Glu Ala Ala Glu Glu Tyr Asn
850 855 860
Arg Leu Leu Tyr Val Ala Leu Thr Arg Ala Ser Asp Arg Leu Val Ile
865 870 875 880
Cys Gly Trp Lys Pro Ser Arg Gly Val Pro Asp Gly Cys Trp Tyr Asp
885 890 895
Leu Cys His Arg Gly Phe Glu Gln Ala Gly Ala Glu Ala Arg Pro Phe
900 905 910
Asp Leu Gly Trp Glu Gly Glu Ser Leu Val Leu Glu Glu Lys Arg Ser
915 920 925
Val Ser Ala Pro Met Pro Arg Ser Gln Ala Pro Ala Leu Glu Val Glu
930 935 940
Pro Val Ala Leu Pro Glu Trp Met Gly His Ala Pro Leu Trp Arg Pro
945 950 955 960
Val Leu Pro Val Ala Glu Gly Pro Leu Ala Arg Pro Leu Ala Pro Ser
965 970 975
Arg Pro Asp Asp Val Ala Leu Gly Pro Gln Pro Ala Val Arg Ser Pro
980 985 990
Leu Val Ser Ala Ser Thr Val Arg Asp Arg Ala Asp Ala Thr Ala Arg
995 1000 1005
Arg Ala Arg Ala Leu Gln Arg Gly Gln Leu Val His Ala Leu Leu Gln
1010 1015 1020
Tyr Leu Pro Asp Cys Ala Pro Asp Ala Arg Ala Asp Leu Ala His Ala
1025 1030 1035 1040
Trp Leu Ser Arg Pro Ala Ala Gly Leu Ala Pro Glu Leu Arg Asp Glu
1045 1050 1055
Leu Val Ala Glu Val Leu Ala Val Met Glu Arg Pro Glu Leu Ala Ala
1060 1065 1070
Leu Phe Ala Pro Gly Ser Arg Val Glu Gln Pro Leu Ala Gly Ile Val
1075 1080 1085
Gly Glu Gln Val Ile Val Gly Gln Val Asp Arg Met Ala Val Asn Ala
1090 1095 1100
Asp Thr Val Met Val Cys Asp Phe Lys Thr Asn Arg His Pro Pro Ala
1105 1110 1115 1120
Asp Ile Gly Gln Thr Pro Val Leu Tyr Leu Arg Gln Met Ala Ala Tyr
1125 1130 1135
Arg Ala Leu Leu Arg Gly Val Tyr Pro Gly Arg Gln Val Val Cys Val
1140 1145 1150
Leu Val Trp Thr Glu Gly Val Arg Val Asp Ile Leu Pro Ala Ala Leu
1155 1160 1165
Leu Asp His Tyr Ala Pro Asp Arg Val Ala Leu Lys Gly Ser Val Arg
1170 1175 1180
Ala
118
<210> 23
<211> 258
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2951 (BcsB I)
<400> 23
gtggcggaac tggtctactg gcggctgacc ggcggccatg tgccagccct ggtgctcgac 60
gtggcgcgcg gggaggagct gaccgatctg atcgcgtcat gccgcgcggg gctgcgtgat 120
ctggtggccg gttacgacaa tcccgaccag ccctatctgt cgcaccccta tcccggcgag 180
gaaccccgct ttgccgatta cgcccatctg gcccgcgttg cggaatggag tgcggcgcgt 240
gaggagaatg gcggatga 258
<210> 24
<211> 85
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2951 (BcsB I)
<400> 24
Met Ala Glu Leu Val Tyr Trp Arg Leu Thr Gly Gly His Val Pro Ala
1 5 10 15
Leu Val Leu Asp Val Ala Arg Gly Glu Glu Leu Thr Asp Leu Ile Ala
20 25 30
Ser Cys Arg Ala Gly Leu Arg Asp Leu Val Ala Gly Tyr Asp Asn Pro
35 40 45
Asp Gln Pro Tyr Leu Ser His Pro Tyr Pro Gly Glu Glu Pro Arg Phe
50 55 60
Ala Asp Tyr Ala His Leu Ala Arg Val Ala Glu Trp Ser Ala Ala Arg
65 70 75 80
Glu Glu Asn Gly Gly
85
<210> 25
<211> 2823
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2952 (BcsC I)
<400> 25
gtgagccagc ccgaagcccc tgccctgcgc ggtcgggcgg ccgtcattcc gccgcatgtg 60
ccatttgtgg accagattgc cgcgcgctgg ctggcgcagg cggggcatga cgcgcaggcc 120
tgcggcaccg gcctgatcct gctgcccagc cgccgcgccg cccgcgccct gaccgaggcc 180
ttcgtgcggc aggtcgatgg tcgccccatc ctgctgccgc gcatcgcccc cattgccggg 240
cttgatgagg cggcccttgc gctctcgggt cgcaatgcgc ttgacctgcc gcccgcggtc 300
gaccccatcc gccgccttgc cacgcttacg ctgctggtca tgcaggcagg ccgcgccttt 360
ggtgatgtgc agggcgtaga ccaggcctgg ccgctggccc gcgcgctggc tgacctgatg 420
gatgaggcgg aatgggccga atgcgacctg tgcgagcgcc tgccccatgc cgccgagggc 480
gattttgccc agcactggca cctgaccgtg cagttcctgt ccatcatcac ccaggtctgg 540
cccgcatggc tggccgagca gggggtgatg aaccccgtcg cccgccagac tgccctgctg 600
catgcgcagg ccgcgcgctg gctggaggtg ccaccaccgg caggctaccc catctgggcg 660
gcaggttttt ccgatgccgt gccctccacc atcgccatgc tgcgcgccgt gctgtcgctg 720
cccgatgggc tgctggtgct gccgggcgtg gatatggact gcgccgataa cgtctggtgc 780
aacttgccgc ccgaccaccc gcaggcgggc accgcgcaca tgctggccga actcggcctt 840
gagcgggcct gcatggaaaa gtgggaggat gtgccaccgg gatgcgttgc cagcagcccc 900
atcccgcgcg ccagcctgct ggcccgcgcc ctgctgcccg cccatgcgct ggcgggctgg 960
cgcgaccccg aggctccggt catggccgat ggcctgtcgg tactgcgcag caccgaccag 1020
caggaggaag cggcggccat tgcgatggtg ctgcgccagg tgctcgagca gcccggcagg 1080
cgcgccgccc tcgtcacccc cgaccgtgcg ctggccgggc gcgttgcgac cgaactggtg 1140
cgctggggcg tcattgccga tgacagcgcg ggcgaaagcc tgctcaccat accgcagacc 1200
gctttcctgc ggctgatcat acaggcggtg gatggcgggc tttcgcccgt ggcgctgctt 1260
tcggtcatca agcacccgct ggcggcgtgt ggccttgcgc cgggcaactg ccgcgccagc 1320
gcccgccagc tcgagcggct ggtgctgcgc ggccccgccc cgccaccggg cattgccggg 1380
ctgaggggcg cgctggcgcg ggcggcgcaa gacccgcacg gcgcgctggc cgatgcgccc 1440
gacgcgccgg aggaaatcac cggcttcatc aaccggctcg aaacagcttt cggtccgctg 1500
ctcgccctgc cgcgcgcgag tctggtgccg gtttccaccc tgcttgccgc cctgatcgag 1560
accgcgcagg cgcttgccgc gaccgacacc accgatggcg ccgagcgcct gtgggccggt 1620
gaggaaggca acgcgctggg tcagcacatg agtggcatgc tggcatggtg cgacgtgctg 1680
cccgaggccc ggctgggcgc gctggacggg ctgctggcct cctcgctggc gggcatgacg 1740
gtgcaggggc ggcgcgcggt gcgtgggcgc gagggcacgg cggtgcatcc gcgcgtgttc 1800
atctggggcc tgcttgaagc gcgattgcag acggccgaca ccatcgtgct tggcggcctg 1860
gtcgagaccg tctggccccc cgccaccgat ccagggccat ggatgagccg ccccatgcgc 1920
acccgcgtgg gtctgccctc gccggaatgg gccataggcc aggccgcgca tgacttcgtc 1980
tcgtgcgcct gtgctgcgcc aagggtcgtg ctgtccatgg cggcacggcg gcagggcgcg 2040
ccgaccgtgc ccgcgcggtg gctggtcagg ctcaatgcct atctggcggg gcacggctac 2100
ggcctgccgc cgcaccccgc cctgcgctgg cttgacagcc tcgaccgccc gcccggcggg 2160
ctggtgcagc ctgccagccc gccgcgtccg tgcccggcag tcgccctgcg ccctcgcagc 2220
ctgtcagtga ccgagatcga gacatggatg cgcgacccct acgccatcta tgcccgccgc 2280
atcctgcgcc tcaaccgcct gcccgacctt gaggaactgg cggatgctgc ggattacggg 2340
cagatcgtgc acgcggccct tgatgagtgg ttcagcgccc accccaccga ctggccggca 2400
gagggcgcga ccgaaatgca ggccgtcttt accgatgtgc tgcgcagggc tgaactgcgc 2460
ccggcccttg ccgcctggtg ggcgccaagg ctggaacgca tcgccacatg gtgcgcccgg 2520
accgaacagg cgcggcgggc cacgggtggc gcgcgtgagg tgctgaccga actgagcgga 2580
cgcatgcaac tcgaaggcct gcccggcggc cccttcaccc tgcgcggccg ggccgaccgg 2640
attgatcgca acggtgatgg cacgctgagc ctgttcgatt acaagaccgg caccctgccc 2700
acgcggcgca gcgtgctgga gggctggcag tcgcaactgg tgcttgaggc cgcgatgatt 2760
gaaaatggcg gctttccgcc cctatcgcgg gcacggtggc ggaactggtc tactggcggc 2820
tga 2823
<210> 26
<211> 940
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2952 (BcsC I)
<400> 26
Met Ser Gln Pro Glu Ala Pro Ala Leu Arg Gly Arg Ala Ala Val Ile
1 5 10 15
Pro Pro His Val Pro Phe Val Asp Gln Ile Ala Ala Arg Trp Leu Ala
20 25 30
Gln Ala Gly His Asp Ala Gln Ala Cys Gly Thr Gly Leu Ile Leu Leu
35 40 45
Pro Ser Arg Arg Ala Ala Arg Ala Leu Thr Glu Ala Phe Val Arg Gln
50 55 60
Val Asp Gly Arg Pro Ile Leu Leu Pro Arg Ile Ala Pro Ile Ala Gly
65 70 75 80
Leu Asp Glu Ala Ala Leu Ala Leu Ser Gly Arg Asn Ala Leu Asp Leu
85 90 95
Pro Pro Ala Val Asp Pro Ile Arg Arg Leu Ala Thr Leu Thr Leu Leu
100 105 110
Val Met Gln Ala Gly Arg Ala Phe Gly Asp Val Gln Gly Val Asp Gln
115 120 125
Ala Trp Pro Leu Ala Arg Ala Leu Ala Asp Leu Met Asp Glu Ala Glu
130 135 140
Trp Ala Glu Cys Asp Leu Cys Glu Arg Leu Pro His Ala Ala Glu Gly
145 150 155 160
Asp Phe Ala Gln His Trp His Leu Thr Val Gln Phe Leu Ser Ile Ile
165 170 175
Thr Gln Val Trp Pro Ala Trp Leu Ala Glu Gln Gly Val Met Asn Pro
180 185 190
Val Ala Arg Gln Thr Ala Leu Leu His Ala Gln Ala Ala Arg Trp Leu
195 200 205
Glu Val Pro Pro Pro Ala Gly Tyr Pro Ile Trp Ala Ala Gly Phe Ser
210 215 220
Asp Ala Val Pro Ser Thr Ile Ala Met Leu Arg Ala Val Leu Ser Leu
225 230 235 240
Pro Asp Gly Leu Leu Val Leu Pro Gly Val Asp Met Asp Cys Ala Asp
245 250 255
Asn Val Trp Cys Asn Leu Pro Pro Asp His Pro Gln Ala Gly Thr Ala
260 265 270
His Met Leu Ala Glu Leu Gly Leu Glu Arg Ala Cys Met Glu Lys Trp
275 280 285
Glu Asp Val Pro Pro Gly Cys Val Ala Ser Ser Pro Ile Pro Arg Ala
290 295 300
Ser Leu Leu Ala Arg Ala Leu Leu Pro Ala His Ala Leu Ala Gly Trp
305 310 315 320
Arg Asp Pro Glu Ala Pro Val Met Ala Asp Gly Leu Ser Val Leu Arg
325 330 335
Ser Thr Asp Gln Gln Glu Glu Ala Ala Ala Ile Ala Met Val Leu Arg
340 345 350
Gln Val Leu Glu Gln Pro Gly Arg Arg Ala Ala Leu Val Thr Pro Asp
355 360 365
Arg Ala Leu Ala Gly Arg Val Ala Thr Glu Leu Val Arg Trp Gly Val
370 375 380
Ile Ala Asp Asp Ser Ala Gly Glu Ser Leu Leu Thr Ile Pro Gln Thr
385 390 395 400
Ala Phe Leu Arg Leu Ile Ile Gln Ala Val Asp Gly Gly Leu Ser Pro
405 410 415
Val Ala Leu Leu Ser Val Ile Lys His Pro Leu Ala Ala Cys Gly Leu
420 425 430
Ala Pro Gly Asn Cys Arg Ala Ser Ala Arg Gln Leu Glu Arg Leu Val
435 440 445
Leu Arg Gly Pro Ala Pro Pro Pro Gly Ile Ala Gly Leu Arg Gly Ala
450 455 460
Leu Ala Arg Ala Ala Gln Asp Pro His Gly Ala Leu Ala Asp Ala Pro
465 470 475 480
Asp Ala Pro Glu Glu Ile Thr Gly Phe Ile Asn Arg Leu Glu Thr Ala
485 490 495
Phe Gly Pro Leu Leu Ala Leu Pro Arg Ala Ser Leu Val Pro Val Ser
500 505 510
Thr Leu Leu Ala Ala Leu Ile Glu Thr Ala Gln Ala Leu Ala Ala Thr
515 520 525
Asp Thr Thr Asp Gly Ala Glu Arg Leu Trp Ala Gly Glu Glu Gly Asn
530 535 540
Ala Leu Gly Gln His Met Ser Gly Met Leu Ala Trp Cys Asp Val Leu
545 550 555 560
Pro Glu Ala Arg Leu Gly Ala Leu Asp Gly Leu Leu Ala Ser Ser Leu
565 570 575
Ala Gly Met Thr Val Gln Gly Arg Arg Ala Val Arg Gly Arg Glu Gly
580 585 590
Thr Ala Val His Pro Arg Val Phe Ile Trp Gly Leu Leu Glu Ala Arg
595 600 605
Leu Gln Thr Ala Asp Thr Ile Val Leu Gly Gly Leu Val Glu Thr Val
610 615 620
Trp Pro Pro Ala Thr Asp Pro Gly Pro Trp Met Ser Arg Pro Met Arg
625 630 635 640
Thr Arg Val Gly Leu Pro Ser Pro Glu Trp Ala Ile Gly Gln Ala Ala
645 650 655
His Asp Phe Val Ser Cys Ala Cys Ala Ala Pro Arg Val Val Leu Ser
660 665 670
Met Ala Ala Arg Arg Gln Gly Ala Pro Thr Val Pro Ala Arg Trp Leu
675 680 685
Val Arg Leu Asn Ala Tyr Leu Ala Gly His Gly Tyr Gly Leu Pro Pro
690 695 700
His Pro Ala Leu Arg Trp Leu Asp Ser Leu Asp Arg Pro Pro Gly Gly
705 710 715 720
Leu Val Gln Pro Ala Ser Pro Pro Arg Pro Cys Pro Ala Val Ala Leu
725 730 735
Arg Pro Arg Ser Leu Ser Val Thr Glu Ile Glu Thr Trp Met Arg Asp
740 745 750
Pro Tyr Ala Ile Tyr Ala Arg Arg Ile Leu Arg Leu Asn Arg Leu Pro
755 760 765
Asp Leu Glu Glu Leu Ala Asp Ala Ala Asp Tyr Gly Gln Ile Val His
770 775 780
Ala Ala Leu Asp Glu Trp Phe Ser Ala His Pro Thr Asp Trp Pro Ala
785 790 795 800
Glu Gly Ala Thr Glu Met Gln Ala Val Phe Thr Asp Val Leu Arg Arg
805 810 815
Ala Glu Leu Arg Pro Ala Leu Ala Ala Trp Trp Ala Pro Arg Leu Glu
820 825 830
Arg Ile Ala Thr Trp Cys Ala Arg Thr Glu Gln Ala Arg Arg Ala Thr
835 840 845
Gly Gly Ala Arg Glu Val Leu Thr Glu Leu Ser Gly Arg Met Gln Leu
850 855 860
Glu Gly Leu Pro Gly Gly Pro Phe Thr Leu Arg Gly Arg Ala Asp Arg
865 870 875 880
Ile Asp Arg Asn Gly Asp Gly Thr Leu Ser Leu Phe Asp Tyr Lys Thr
885 890 895
Gly Thr Leu Pro Thr Arg Arg Ser Val Leu Glu Gly Trp Gln Ser Gln
900 905 910
Leu Val Leu Glu Ala Ala Met Ile Glu Asn Gly Gly Phe Pro Pro Leu
915 920 925
Ser Arg Ala Arg Trp Arg Asn Trp Ser Thr Gly Gly
930 935 940
<210> 27
<211> 762
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2953 (BcsD I)
<400> 27
atgagcgtga acatgccccg taccgccatg gtttttgccg cagggctggg gcggcgcatg 60
cggccgctga gcgaagcggt gcccaagccg ttgctgcgcg tggcgggtca gccgattctc 120
gatcatgtgc ttgaccggct cgaggcggcg ggtgttgcgc aggtggtggt caatgcccac 180
tggcagcccg atgccatcca tgcggcgctg gccgcgcggg cggctgccca tcgtggcccc 240
cgcacggttg aacaggtgga ggaaaccctg cttgaaaccg gcggcagtgc cgcaagtgcc 300
ctgcgcgcgg gccggatcgg gccggacccg ttctttctgc tcaatggcga tgccatgtgg 360
ctcaacggcc cggtgcctgc cctgcggcgg ctggcggcgg cgttcgaccc tgccagcatg 420
gacgccatgc tgctgcttgg cggcatgacg cgtgcggtgg gcgaggtggg ccatggcgat 480
tttgccgtcg atgcccacgg caggccgcgc cgcccgcgcg cgggcgagat tacgccctat 540
atctttaccg gcgtgcagat ctgctcgccc cggctgttcg atgcagcgcc cgaaggcggc 600
ttcagcatga accggctgtg ggataaggca atggaggcag gccgcctggg tgtgatcgtg 660
catgattcgc tgtggttcca cctctcacgc ccggccgata tcgcggccgc cgagcgcgtg 720
ctgcattcaa ccctgaaccc cgattcggat tccggcctgt ga 762
<210> 28
<211> 253
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_2953 (BcsD I)
<400> 28
Met Ser Val Asn Met Pro Arg Thr Ala Met Val Phe Ala Ala Gly Leu
1 5 10 15
Gly Arg Arg Met Arg Pro Leu Ser Glu Ala Val Pro Lys Pro Leu Leu
20 25 30
Arg Val Ala Gly Gln Pro Ile Leu Asp His Val Leu Asp Arg Leu Glu
35 40 45
Ala Ala Gly Val Ala Gln Val Val Val Asn Ala His Trp Gln Pro Asp
50 55 60
Ala Ile His Ala Ala Leu Ala Ala Arg Ala Ala Ala His Arg Gly Pro
65 70 75 80
Arg Thr Val Glu Gln Val Glu Glu Thr Leu Leu Glu Thr Gly Gly Ser
85 90 95
Ala Ala Ser Ala Leu Arg Ala Gly Arg Ile Gly Pro Asp Pro Phe Phe
100 105 110
Leu Leu Asn Gly Asp Ala Met Trp Leu Asn Gly Pro Val Pro Ala Leu
115 120 125
Arg Arg Leu Ala Ala Ala Phe Asp Pro Ala Ser Met Asp Ala Met Leu
130 135 140
Leu Leu Gly Gly Met Thr Arg Ala Val Gly Glu Val Gly His Gly Asp
145 150 155 160
Phe Ala Val Asp Ala His Gly Arg Pro Arg Arg Pro Arg Ala Gly Glu
165 170 175
Ile Thr Pro Tyr Ile Phe Thr Gly Val Gln Ile Cys Ser Pro Arg Leu
180 185 190
Phe Asp Ala Ala Pro Glu Gly Gly Phe Ser Met Asn Arg Leu Trp Asp
195 200 205
Lys Ala Met Glu Ala Gly Arg Leu Gly Val Ile Val His Asp Ser Leu
210 215 220
Trp Phe His Leu Ser Arg Pro Ala Asp Ile Ala Ala Ala Glu Arg Val
225 230 235 240
Leu His Ser Thr Leu Asn Pro Asp Ser Asp Ser Gly Leu
245 250
<210> 29
<211> 387
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_717 (BcsAB II)
<400> 29
atgatgcgtg atgacggggc gctggccatc ttgttgtatg atggcgcgta tgcccgcgcg 60
cattatgcct ttgtggtggc tgcgggcgcg ctggccattg gccgcccggt catcatgttc 120
gcggcggggc ggggcgtgca cgcgctggcg cgcgactggc gtggcctgca tgatgcggag 180
gatgatgcag gcgtgcgtgc gcgtggcgtt gcgggcatcg acacgctgcg tgaagccacg 240
attgaactgg aggcgacgct catggtgtgc gaggccgcgc tgaaactgtg cgatcttgcg 300
cccgggcagt tgcttgatgg cgtacaggtg gccggtattc ccacttttct cgaagccgcc 360
cgggggcggc agatcataac cctttaa 387
<210> 30
<211> 128
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_717 (BcsAB II)
<400> 30
Met Met Arg Asp Asp Gly Ala Leu Ala Ile Leu Leu Tyr Asp Gly Ala
1 5 10 15
Tyr Ala Arg Ala His Tyr Ala Phe Val Val Ala Ala Gly Ala Leu Ala
20 25 30
Ile Gly Arg Pro Val Ile Met Phe Ala Ala Gly Arg Gly Val His Ala
35 40 45
Leu Ala Arg Asp Trp Arg Gly Leu His Asp Ala Glu Asp Asp Ala Gly
50 55 60
Val Arg Ala Arg Gly Val Ala Gly Ile Asp Thr Leu Arg Glu Ala Thr
65 70 75 80
Ile Glu Leu Glu Ala Thr Leu Met Val Cys Glu Ala Ala Leu Lys Leu
85 90 95
Cys Asp Leu Ala Pro Gly Gln Leu Leu Asp Gly Val Gln Val Ala Gly
100 105 110
Ile Pro Thr Phe Leu Glu Ala Ala Arg Gly Arg Gln Ile Ile Thr Leu
115 120 125
<210> 31
<211> 1104
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_1148 (BcsAB II)
<400> 31
atgcgcgtcc ctgaggaatc gatcggtacg ccttctgttt cctcctccgc gggcctgtca 60
gcttatgcgc gtgaggtgcg ggggcgctac catgggctgc tgcggcggcg catggggctg 120
cttggcctgc tgctcgcgct gatcgtggcc tcggtggtgc ttgatttctc gctcgggcca 180
tcggggcttt cgccttcagc cctcatccgc accctgctgc acccgcatga cgtgcccgcc 240
gggcagggcg tgatcgtgtg gcagatcagg ctaccctacg cgcttatggc cgtatgtgtc 300
ggggcgtcgc tggggctggc tggggcggaa atgcagaccg tgctcgccaa cccgctagca 360
agtcccttca cgctcggggt ctcggcggct gcggcgtttg gcgcgtcact cgccatcatt 420
cttggctggc ggctgcccgg cgtgcccgat gcgtgggtgg tgtcggggga tgcctttgtc 480
tttgccatag gctccgtgct gctgctcgac atggtctcgc gcaggcgcaa tgcgggcacc 540
ggcacggtgg tgctgtttgg cattgcgctg gtgttcgcct tccatgcgct ggtgtcgctg 600
ctgcagtttg tggccaatga agatgcgttg caggacctgg tgttctggac catgggcagc 660
ctgacacgcg caacatggcc caagctgggc ctgctggccg ccgcctgcgt gatcgtggcc 720
ccgctttcct ttgctgcgtc atggaagctg accgtgctgc gcatgggcga ggaacgtgcc 780
gcgagcctgg gcgtggacgt gccgcgcgtg cggcgtggcg cgttgctgcg ggtgagcatc 840
ctgtccgctc tggccgtgtc cttcgtgggt acgatcggtt tcgtggggtt ggtagcgccg 900
catatcgccc gccgcatgct gggcgaggac catcgtttct acctgccggg cagcatgctg 960
gtgggcgcgc tggtgatgtc gctttcatcc atcgcggcgc gcaacctgct gccaggcgtg 1020
gtcattccca ccgggatcgt gaccgcgctg gtgggcattc cgttctttct ggccattgtg 1080
ctgcgcaggc ggagcatgac ctga 1104
<210> 32
<211> 367
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_1148 (BcsAB II)
<400> 32
Met Arg Val Pro Glu Glu Ser Ile Gly Thr Pro Ser Val Ser Ser Ser
1 5 10 15
Ala Gly Leu Ser Ala Tyr Ala Arg Glu Val Arg Gly Arg Tyr His Gly
20 25 30
Leu Leu Arg Arg Arg Met Gly Leu Leu Gly Leu Leu Leu Ala Leu Ile
35 40 45
Val Ala Ser Val Val Leu Asp Phe Ser Leu Gly Pro Ser Gly Leu Ser
50 55 60
Pro Ser Ala Leu Ile Arg Thr Leu Leu His Pro His Asp Val Pro Ala
65 70 75 80
Gly Gln Gly Val Ile Val Trp Gln Ile Arg Leu Pro Tyr Ala Leu Met
85 90 95
Ala Val Cys Val Gly Ala Ser Leu Gly Leu Ala Gly Ala Glu Met Gln
100 105 110
Thr Val Leu Ala Asn Pro Leu Ala Ser Pro Phe Thr Leu Gly Val Ser
115 120 125
Ala Ala Ala Ala Phe Gly Ala Ser Leu Ala Ile Ile Leu Gly Trp Arg
130 135 140
Leu Pro Gly Val Pro Asp Ala Trp Val Val Ser Gly Asp Ala Phe Val
145 150 155 160
Phe Ala Ile Gly Ser Val Leu Leu Leu Asp Met Val Ser Arg Arg Arg
165 170 175
Asn Ala Gly Thr Gly Thr Val Val Leu Phe Gly Ile Ala Leu Val Phe
180 185 190
Ala Phe His Ala Leu Val Ser Leu Leu Gln Phe Val Ala Asn Glu Asp
195 200 205
Ala Leu Gln Asp Leu Val Phe Trp Thr Met Gly Ser Leu Thr Arg Ala
210 215 220
Thr Trp Pro Lys Leu Gly Leu Leu Ala Ala Ala Cys Val Ile Val Ala
225 230 235 240
Pro Leu Ser Phe Ala Ala Ser Trp Lys Leu Thr Val Leu Arg Met Gly
245 250 255
Glu Glu Arg Ala Ala Ser Leu Gly Val Asp Val Pro Arg Val Arg Arg
260 265 270
Gly Ala Leu Leu Arg Val Ser Ile Leu Ser Ala Leu Ala Val Ser Phe
275 280 285
Val Gly Thr Ile Gly Phe Val Gly Leu Val Ala Pro His Ile Ala Arg
290 295 300
Arg Met Leu Gly Glu Asp His Arg Phe Tyr Leu Pro Gly Ser Met Leu
305 310 315 320
Val Gly Ala Leu Val Met Ser Leu Ser Ser Ile Ala Ala Arg Asn Leu
325 330 335
Leu Pro Gly Val Val Ile Pro Thr Gly Ile Val Thr Ala Leu Val Gly
340 345 350
Ile Pro Phe Phe Leu Ala Ile Val Leu Arg Arg Arg Ser Met Thr
355 360 365
<210> 33
<211> 438
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_718 (BcsX)
<400> 33
atggcgcagt gcgtgcggca tgaattcctt gcgcgggcgg ccagcaggcc ctcgcgtgtc 60
acccggcggt gggggtatct ggcggcctgc gctgcggtgc tggccatggg ggcagggcca 120
gtacgggccg cgacggtggc ggcccaccat catgcccatg cggccgcgac caaggcagcg 180
accagtcttg gccacgccca tgtgcatggg gccgccagga ccgcaaaaac ggcggaaaaa 240
aaggctgaaa agaccacgca tgaggcaggc cgtcaccacc atgcggcagc ggttgccgcc 300
ggtgctggcg caggcgccgt ggcgggtgtg ggggttgctg cggctggcac ggcccatccg 360
gcccccgcca cgccaccacc tgccccccgg ccgatgccgc ggcactcgcg cccgttgata 420
acaccaaggg cagcgtga 438
<210> 34
<211> 145
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_718 (BcsX)
<400> 34
Met Ala Gln Cys Val Arg His Glu Phe Leu Ala Arg Ala Ala Ser Arg
1 5 10 15
Pro Ser Arg Val Thr Arg Arg Trp Gly Tyr Leu Ala Ala Cys Ala Ala
20 25 30
Val Leu Ala Met Gly Ala Gly Pro Val Arg Ala Ala Thr Val Ala Ala
35 40 45
His His His Ala His Ala Ala Ala Thr Lys Ala Ala Thr Ser Leu Gly
50 55 60
His Ala His Val His Gly Ala Ala Arg Thr Ala Lys Thr Ala Glu Lys
65 70 75 80
Lys Ala Glu Lys Thr Thr His Glu Ala Gly Arg His His His Ala Ala
85 90 95
Ala Val Ala Ala Gly Ala Gly Ala Gly Ala Val Ala Gly Val Gly Val
100 105 110
Ala Ala Ala Gly Thr Ala His Pro Ala Pro Ala Thr Pro Pro Pro Ala
115 120 125
Pro Arg Pro Met Pro Arg His Ser Arg Pro Leu Ile Thr Pro Arg Ala
130 135 140
Ala
145
<210> 35
<211> 291
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_719 (BcsY)
<400> 35
gtgaccggcc tgcccctgcc gcgctttgcc gccttccgcg ccgatgaggt caacctgcgc 60
accgggccgg ggcagcgtta ccccattgac tgggtgtacc accgccgggg cctgccggtg 120
aaaatcgagc gagaattcga tgtgtggcgc ctcgttgagg attcggacgg gcagaagggc 180
tgggtccatc aggcaaccct ggtgggaacc cgcacgtttg tcataccggg actgcccccc 240
agggtgatgc ccagcaggcg ggccagccca ccgccaagga gactgacgtg a 291
<210> 36
<211> 96
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_719 (BcsY)
<400> 36
Met Thr Gly Leu Pro Leu Pro Arg Phe Ala Ala Phe Arg Ala Asp Glu
1 5 10 15
Val Asn Leu Arg Thr Gly Pro Gly Gln Arg Tyr Pro Ile Asp Trp Val
20 25 30
Tyr His Arg Arg Gly Leu Pro Val Lys Ile Glu Arg Glu Phe Asp Val
35 40 45
Trp Arg Leu Val Glu Asp Ser Asp Gly Gln Lys Gly Trp Val His Gln
50 55 60
Ala Thr Leu Val Gly Thr Arg Thr Phe Val Ile Pro Gly Leu Pro Pro
65 70 75 80
Arg Val Met Pro Ser Arg Arg Ala Ser Pro Pro Pro Arg Arg Leu Thr
85 90 95
<210> 37
<211> 267
<212> DNA
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_720 (BcsC II)
<400> 37
gtgattggcc gggccgatac ccgcatcgta ggccacgtga cggatgtggc cgatgcggcg 60
gatatcaagg gcgcggtcat gctgcatgcg gatgccagca ccacatcggc cgtggtggcc 120
gtgctgcggc ccggcgtggt gggcacgctg cgccagtgcc aggcgggcac gccgtggtgc 180
aaggtttcgg tcaagcagta cagtggctgg atcgagcgca gcgccatgtg ggggcttttg 240
ccgcaggagg tcatagcgcc ctcctga 267
<210> 38
<211> 88
<212> PRT
<213> artificial sequence
<220>
<223> Acetobacter xylinum IFO13693_720 (BcsC II)
<400> 38
Met Ile Gly Arg Ala Asp Thr Arg Ile Val Gly His Val Thr Asp Val
1 5 10 15
Ala Asp Ala Ala Asp Ile Lys Gly Ala Val Met Leu His Ala Asp Ala
20 25 30
Ser Thr Thr Ser Ala Val Val Ala Val Leu Arg Pro Gly Val Val Gly
35 40 45
Thr Leu Arg Gln Cys Gln Ala Gly Thr Pro Trp Cys Lys Val Ser Val
50 55 60
Lys Gln Tyr Ser Gly Trp Ile Glu Arg Ser Ala Met Trp Gly Leu Leu
65 70 75 80
Pro Gln Glu Val Ile Ala Pro Ser
85

Claims (13)

1. A bacterial cellulose producing strain KOSS15, characterized in that it has a accession number of KCCM12270P and is classified and namedKomagataeibacter rhaeticusAnd the above bacterial cellulose producing strain KOSS15 has cellulose producing ability.
2. A composition for the preparation of cellulose tablets, characterized in that it comprises a bacterial cellulose-producing strain KOSS15 with deposit number KCCM12270P or a culture of said strain.
3. A method for producing cellulose sheets, comprising the step of culturing a bacterial cellulose-producing strain KOSS15 having a accession number of KCCM12270P.
4. The method for producing cellulose sheet according to claim 3, wherein the bacterial cellulose producing strain KOSS15 is cultured in a medium comprising (a) honey or (b) a sugar source of glucose and fructose and proline.
5. The method according to claim 4, wherein the sugar source is 0.1 to 5% by volume of (a) honey or 0.1 to 5% by weight of (b) glucose and fructose.
6. The method for producing a cellulose sheet according to claim 4 or 5, wherein the ratio of 2:3 comprises the glucose and fructose in a weight ratio.
7. A method for producing a bacterial cellulose sheet of bacterial KOSS15 strain using bacterial cellulose, comprising:
a preculture step (a) of culturing the strain in a preculture medium containing a sugar source and cellulase with stirring;
a main culture step (b) of adding the preculture solution of the above step to a main culture medium containing a sugar source and proline, and culturing under stirring;
a sheet transformation culturing step (c) of adding the main culture solution of the above step to a medium containing a sugar source and proline to perform stationary culture;
the strain has a accession number of KCCM12270P.
8. The method for producing bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 according to claim 7, wherein the preculture medium comprises 0.1 to 10.0% by weight of yeast extract, 0.002 to 0.2% by weight of magnesium sulfate, 0.002 to 0.2% by weight of calcium chloride, 0.2 to 20.0% by weight of ethanol, 0.0005 to 0.05% by weight of cellulase or a combination thereof.
9. The method for producing bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 according to claim 7, wherein the main medium and the medium in the step (c) comprise 0.01 to 1.0% by weight of proline, 0.002 to 0.2% by weight of magnesium sulfate, 0.002 to 0.2% by weight of calcium chloride, 0.01 to 1.0% by weight of sodium acetate, 0.02 to 2.0% by weight of acetic acid or a combination thereof.
10. The method for producing a bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 according to any one of claims 7 to 9, wherein the sugar source is (a) honey or (b) glucose and fructose.
11. The method for producing bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 as claimed in claim 7, wherein said sugar source is 0.1 to 5% by volume of (a) honey or 0.1 to 5% by weight of (b) glucose and fructose.
12. The method for producing a bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 according to claim 10, wherein the ratio of 2:3 comprises the glucose and fructose in a weight ratio.
13. The method for producing bacterial cellulose sheet using bacterial cellulose producing strain KOSS15 according to claim 7, wherein in said preculture step (a), the agitation culture is performed at 100 to 200rpm for 24 to 72 hours.
CN201980007631.7A 2018-09-17 2019-09-17 Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain Active CN111684057B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180111099A KR101970439B1 (en) 2018-09-17 2018-09-17 A novel Komagataeibacter rhaeticus Strain and Method for Producing Cellulose Sheet Using the Same
KR10-2018-0111099 2018-09-17
PCT/KR2019/012009 WO2020060164A1 (en) 2018-09-17 2019-09-17 Komagateibacter rhaeticus strain and cellulose sheet production method using same

Publications (2)

Publication Number Publication Date
CN111684057A CN111684057A (en) 2020-09-18
CN111684057B true CN111684057B (en) 2023-06-30

Family

ID=66285023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980007631.7A Active CN111684057B (en) 2018-09-17 2019-09-17 Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain

Country Status (3)

Country Link
KR (1) KR101970439B1 (en)
CN (1) CN111684057B (en)
WO (1) WO2020060164A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970439B1 (en) * 2018-09-17 2019-04-18 에스케이바이오랜드 주식회사 A novel Komagataeibacter rhaeticus Strain and Method for Producing Cellulose Sheet Using the Same
KR102262644B1 (en) * 2020-03-03 2021-06-09 주식회사 현대바이오랜드 Hybrid bacterial cellulose mask sheet having skin microbiome control effect and method for preparing the same
TWI776240B (en) * 2020-09-22 2022-09-01 財團法人食品工業發展研究所 Preparation method of microbial fiber
KR102499330B1 (en) 2022-04-26 2023-02-10 주식회사 현대바이오랜드 Cosmetic composition containing culture with complex strains separated from kombucha for skin barrier reinforcement
CN117965433A (en) * 2024-03-29 2024-05-03 四川大学华西第二医院 Method for improving survival rate and activity of sperms in vitro, product and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130569A (en) * 2013-04-23 2014-11-11 주식회사 산성앨엔에스 Komagataeibacter sp SFCB22-18 strain and methods of the production of baterial cellulose by using thereof
CN106265474A (en) * 2016-08-31 2017-01-04 百朗德生物化学(海门)有限公司 A kind of method utilizing microbial strains fermenting and producing facial film
EP3121265A1 (en) * 2015-07-23 2017-01-25 Latvijas Universitate Komagataeibacter rhaeticus p 1463 producer of bacterial cellulose
CN107937307A (en) * 2017-11-27 2018-04-20 天津工业大学 One plant of bacteria cellulose Producing Strain and its optimal fermentation condition
KR101970439B1 (en) * 2018-09-17 2019-04-18 에스케이바이오랜드 주식회사 A novel Komagataeibacter rhaeticus Strain and Method for Producing Cellulose Sheet Using the Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056929A (en) 2016-11-21 2018-05-30 삼성전자주식회사 Komagataeibacter genus microorganism having enhanced cellulose productivity, method for producing cellulose using the same, and method for producing the microorganism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130569A (en) * 2013-04-23 2014-11-11 주식회사 산성앨엔에스 Komagataeibacter sp SFCB22-18 strain and methods of the production of baterial cellulose by using thereof
EP3121265A1 (en) * 2015-07-23 2017-01-25 Latvijas Universitate Komagataeibacter rhaeticus p 1463 producer of bacterial cellulose
CN106265474A (en) * 2016-08-31 2017-01-04 百朗德生物化学(海门)有限公司 A kind of method utilizing microbial strains fermenting and producing facial film
CN107937307A (en) * 2017-11-27 2018-04-20 天津工业大学 One plant of bacteria cellulose Producing Strain and its optimal fermentation condition
KR101970439B1 (en) * 2018-09-17 2019-04-18 에스케이바이오랜드 주식회사 A novel Komagataeibacter rhaeticus Strain and Method for Producing Cellulose Sheet Using the Same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cellulose synthesis by Komagataeibacter rhaeticus strain P1463 isolated from Kombucha;Pavels Semjonovs 等;《Appl Microbiol Biotechnol》;20160927;第1-10页 *
Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production;Rachel T.A. Machado 等;《Industrial Crops & Products》;20180619;第638页右栏2.2 *
不同种驹形氏杆菌合成纤维素最适碳源;陈华美 等;《食品与机械》;20160430;第37-41页 *

Also Published As

Publication number Publication date
WO2020060164A1 (en) 2020-03-26
KR101970439B1 (en) 2019-04-18
CN111684057A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
CN111684057B (en) Bacterial cellulose high-yield bacterial strain and preparation method of cellulose tablet by using bacterial cellulose high-yield bacterial strain
Stredansky et al. Xanthan production by solid state fermentation
CN103025862B (en) Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same
EP2360238B1 (en) A yellow pigments generation deficient sphingomonas strain and its application in the production of gellan gum
KR20150114479A (en) Bacterial cellulose and bacterium producing same
CN102796673B (en) Feruloyl esterase production strain and method for producing feruloyl esterase by using same
JP2008538914A (en) Wood decay basidiomycetes for the production of lignin degrading enzymes
CN105567609B (en) One plant of high temperature resistant garden waste decomposer ST2 and its application
CN110484471A (en) The method that one plant height produces the acidproof bacterial strain of bacteria cellulose and its produces bacteria cellulose
WO2012110960A2 (en) A novel isolated bacterial strain of gluconacetobacter oboediens and an optimized economic process for microbial cellulose production therefrom
JPH0739386A (en) Production of bacterial cellulose
RU2673971C1 (en) Strain of bacteria paenibacillus species - a producer of xylanase
CN107325975B (en) Saccharomyces cerevisiae and application thereof in fermentation production of S-adenosylmethionine
CN112812978B (en) Edible fungus pleurotus eryngii and application thereof
JPWO2010024367A1 (en) Parachlorella new microalgae
CN115141760A (en) Inonotus obliquus fermentation extract, preparation method thereof and application thereof in preparation of cosmetics
CN108741208A (en) One plant of flavouring bacterium detached from reproduced tobacco concentrated liquid and its application
CN110903994B (en) Bacillus licheniformis for producing high-temperature protease and application thereof
CN107267476B (en) It a kind of lactic dehydrogenase and its is applied in preparing lactic acid
Ali et al. Isolation Of Pseudomonas Aeruginosa from Soil and Production of Lipase Enzyme
CN103275898A (en) Lipase high-producing strain, screening method thereof and method for producing lipase by using strain through fermentation
CN103074283A (en) Bacillussp., microbial agent and applications of Bacillussp. and microbial agent
Ezeagu et al. Determination of cellulolytic potentials of Aspergillus species isolated from central waste dump site of Nile University of Nigeria
CN108102926B (en) Aspergillus niger strain BFA010-7 for high-yield levorotatory lactone hydrolase and application thereof in preparation of D-pantolactone
Parati et al. A circular bioprocess application of algal-based substrate for Bacillus subtilis natto production of γ-PGA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Han Guozhongqingbeidao

Applicant after: Hyundai belander Co.,Ltd.

Applicant after: HYUNDAI BIOLAND(Jiangsu) Co.,Ltd.

Address before: Han Guozhongqingnandao

Applicant before: Elsevier BRAND Corp.

Applicant before: SK BIOLAND BIOTECHNOLOGY (HAIMEN) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant