CN111682744B - 一种具有负载斜坡补偿功能的纹波衰减电路 - Google Patents

一种具有负载斜坡补偿功能的纹波衰减电路 Download PDF

Info

Publication number
CN111682744B
CN111682744B CN202010614827.7A CN202010614827A CN111682744B CN 111682744 B CN111682744 B CN 111682744B CN 202010614827 A CN202010614827 A CN 202010614827A CN 111682744 B CN111682744 B CN 111682744B
Authority
CN
China
Prior art keywords
resistor
chip
filter unit
slope compensation
load slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010614827.7A
Other languages
English (en)
Other versions
CN111682744A (zh
Inventor
杨涛
师贺
金育东
郝英杰
孙娟
周文军
邰阳
吴超
顾亮
杨帆
朱其安
汪思群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI JIERUIZHAO NEW INFORMATION TECHNOLOGY CO.,LTD.
Original Assignee
Shanghai Jieruizhao New Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jieruizhao New Information Technology Co ltd filed Critical Shanghai Jieruizhao New Information Technology Co ltd
Priority to CN202010614827.7A priority Critical patent/CN111682744B/zh
Publication of CN111682744A publication Critical patent/CN111682744A/zh
Application granted granted Critical
Publication of CN111682744B publication Critical patent/CN111682744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Conversion In General (AREA)

Abstract

一种具有负载斜坡补偿功能的纹波衰减电路,包括无源滤波单元、有源滤波单元、负载斜坡补偿电路及辅助源;无源滤波单元的输入端与输入电压的正极相连,无源滤波单元的输出端通过负载斜坡补偿电路与有源滤波单元连接,负载斜坡补偿电路的输入端还与辅助源的输入端连接,辅助源的输出端分别与负载斜坡补偿电路的供电正极和有源滤波单元的供电正极连接。本发明通过设无源滤波单元,能有效衰减输入电压的低频纹波,通过设有源滤波单元,使功率场效应管Q工作在线性区,等效为“可变电阻”,可以动态改变其阻抗以保持恒定的输出电压来实现有源衰减;当负载电流变化时,通过负载斜坡补偿电路,调节输入电压和输出电压之间压差,以减小损耗。

Description

一种具有负载斜坡补偿功能的纹波衰减电路
技术领域
本发明属于电子设备技术领域,特别涉及一种具有负载斜坡补偿功能的纹波衰减电路。
背景技术
开关电源在电子设备领域应用广泛,为了减少传导干扰和辐射干扰,用电设备对开关电源的输出纹波要求越来越高。传统开关电源因其技术原因,输出电压纹波较大,很难达到应用要求。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种具有电压纹波衰减功能,且能实现负载斜坡补偿功能,降低功耗的纹波衰减电路。
本发明所要解决的技术问题是通过以下的技术方案来实现的,本发明是一种具有负载斜坡补偿功能的纹波衰减电路,其特点是,包括无源滤波单元、有源滤波单元、负载斜坡补偿电路及辅助源;所述无源滤波单元的输入端与输入电压的正极相连,无源滤波单元的输出端通过负载斜坡补偿电路与有源滤波单元连接,负载斜坡补偿电路的输入端还与辅助源的输入端连接,辅助源的输出端分别与负载斜坡补偿电路的供电正极和有源滤波单元的供电正极连接,辅助源为负载斜坡补偿电路和有源滤波单元提供电能。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述无源滤波单元包括电感L和电容C1,电感L的输入端与输入电压的正极连接,电感L的输出端分别与负载斜坡补偿电路的输入端和电容C1的一端相接,电容C1的另一端接地。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述有源滤波单元包括芯片U2、功率场效应管Q、三极管Q1及稳压管D1,芯片U2的同相输入端分别与负载斜坡补偿电路的输出端和电容C3的一端相接,电容C3的另一端与功率场效应管Q的D极相接,芯片U2的反相输入端通过电阻R6、电容C2与芯片U2的输出端相连,芯片U2的输出端与功率场效应管Q的G极相连,功率场效应管Q的D极与芯片U2的反相输入端相连,芯片U2的供电负极与三极管Q1的发射机相连,三极管Q1的集电极通过电阻R7接地,三极管Q1的基极分别与电阻R8的一端和稳压管D1的一端相连,电阻R8的另一端接地,稳压管D1的另一端和芯片U2的供电正极均与辅助源的输出端相连。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述负载斜坡补偿电路包括芯片U1以及电阻R1、R2、R3、R4、R5、R9,芯片U1的同相输入端分别与电阻R3一端和电阻电阻R2的一端相接,电阻R3的另一端与功率场效应管Q的D极相接,电阻R2的另一端与无源滤波单元中电感L的输出端相连,芯片U1的反相输入端分别与电阻R9的一端和电阻R4的一端相接,电阻R9另一端通过电阻R1与无源滤波单元中电感L的输出端相连,电阻R4的另一端与芯片U1的输出端相连,芯片U1的输出端通过电阻R10与电阻R5一端相连,电阻R5的另一端与输入电压的正极相连,芯片U1的供电正极与辅助源的输出端相连,芯片U1的供电负极与功率场效应管Q的D极相接。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述有源滤波单元中芯片U2的同相输入端连接有适用于不同输入电压的外围电阻,外围电阻的另一端接地。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述的无源滤波单元为采用LC滤波电路的无源滤波器。
本发明所要解决的技术问题还可以通过以下的技术方案来实现的,所述辅助源采用升压拓扑结构的供电单元。
与现有技术相比,本发明通过设无源滤波单元,能有效衰减输入电压的低频纹波,通过设有源滤波单元,使功率场效应管Q工作在线性区,等效为“可变电阻”,可以动态改变其阻抗以保持恒定的输出电压来实现有源衰减;当负载电流变化时,通过负载斜坡补偿电路,调节输入电压和输出电压之间压差,以减小损耗,具有电压纹波衰减功能,使输出的电压纹波较小,达到应用要求。
附图说明
图1是本发明所述纹波衰减电路的电路原理图。
具体实施方式
以下参照附图,进一步描述本发明的具体技术方案,以便于本领域的技术人员进一步地理解本发明,而不构成对其权利的限制。
参照图1,一种具有负载斜坡补偿功能的纹波衰减电路,包括无源滤波单元1、有源滤波单元2、负载斜坡补偿电路3及辅助源4;所述无源滤波单元1的输入端与输入电压的正极相连,无源滤波单元1的输出端通过负载斜坡补偿电路3与有源滤波单元2连接,负载斜坡补偿电路3的输入端还与辅助源4的输入端连接,辅助源4的输出端分别与负载斜坡补偿电路3的供电正极和有源滤波单元2的供电正极连接,辅助源4为负载斜坡补偿电路3和有源滤波单元2提供电能。
所述无源滤波单元1包括电感L和电容C1,电感L的输入端与输入电压的正极连接,电感L的输出端分别与负载斜坡补偿电路的输入端和电容C1的一端相接,电容C1的另一端接地。
所述负载斜坡补偿电路3包括芯片U1以及电阻R1、R2、R3、R4、R5、R9,芯片U1的同相输入端分别与电阻R3一端和电阻电阻R2的一端相接,电阻R3的另一端与功率场效应管Q的D极相接,电阻R2的另一端与无源滤波单元中电感L的输出端相连,芯片U1的反相输入端分别与电阻R9的一端和电阻R4的一端相接,电阻R9另一端通过电阻R1与无源滤波单元中电感L的输出端相连,电阻R4的另一端与芯片U1的输出端相连,芯片U1的输出端通过电阻R10与电阻R5一端相连,电阻R5的另一端与输入电压的正极相连,芯片U1的供电正极与辅助源的输出端相连,芯片U1的供电负极与功率场效应管Q的D极相接。
所述有源滤波单元2包括芯片U2、功率场效应管Q、三极管Q1及稳压管D1,芯片U2的同相输入端分别与电阻R10的输出端和电容C3的一端相接,电容C3的另一端与功率场效应管Q的D极相接,芯片U2的反相输入端通过电阻R6、电容C2与芯片U2的输出端相连,芯片U2的输出端与功率场效应管Q的G极相连,功率场效应管Q的D极与芯片U2的反相输入端相连,芯片U2的供电负极与三极管Q1的发射机相连,三极管Q1的集电极通过电阻R7接地,三极管Q1的基极分别与电阻R8的一端和稳压管D1的一端相连,电阻R8的另一端接地,稳压管D1的另一端和芯片U2的供电正极均与辅助源的输出端相连。
所述有源滤波单元中芯片U2的同相输入端连接有适用于不同输入电压的外围电阻,外围电阻的另一端接地,针对不同输入电压应接相应阻值的外围电阻,以达到更好的纹波衰减效果。
本发明所述纹波衰减电路基本工作原理如下:
1.无源滤波原理
无源滤波器采用LC滤波电路,属于低通滤波器,对20MHz频率以下的纹波噪声具有有效衰减;
2.有源滤波原理
控制功率场效应管Q工作在线性区,功率场效应管等效为“可变电阻”,可以动态改变其阻抗以保持恒定的输出电压来实现有源衰减。静差电压变化范围有最小值和最大值限制,下限基于输入输出之间的路径电阻和通过的电流的乘积上限受场效应管的体二极管压降限制。静差电压的设置,需满足以下要求:静差电压减去纹波峰峰值的一半,不超过最小电位差电压限制;静差电压加上纹波峰峰值的一半,不超过体二极管压降,必须在二极管导通点以下设置裕量。如果静差电压设置过低或者过高,导致静差电压耗尽或者体二极管导通。因此,不同的输入电压需外接对应阻值的外围电阻,外围电阻接在芯片U2的同相输入端与地之间。
电阻RHR与静差电压VHR的计算公式如式1:
Figure BDA0002563380700000051
输出电压反馈接芯片U2的方向输入端,当输入较低时,有源控制环路会降低功率场效应管Q的阻抗,从而降低衰减模块上的整体电压降;当输入较高时,电阻增加,从而增加衰减模块上的压降;以此得到低纹波的输出电压。
三极管Q1、稳压管D1、电阻R7和R8的作用为将芯片U2的供电电压Vcc嵌位在某个浮地的电压值,一方面为功率场效应管Q提供一个浮地的驱动电压,另一方面防止U2的供电电压超过其最大值。
3.负载斜坡补偿原理
电阻R1为电流采样电阻,电流增大,采样电压增大,通过运放芯片U1及其外围电路的运算,芯片U1的输出电压增大,芯片U2输出电压增大,功率场效应管Q阻抗减小,输出电压增大,静差电压减小。静差电压变化斜率计算公式如式2:
Figure BDA0002563380700000061
本发明的无源滤波器采用LC滤波电路,可以在低频范围内提供有效衰减;所述的有源滤波单元通过使用功率场效应管Q作为可变电阻,可以动态改变其阻抗以保持恒定的输出电压来实现有源衰减,针对不同输入电压值,需外接外围电阻;本发明所述纹波衰减电路的输入电压和输出电压之间的差值定义为静差电压,所述负载补偿电路功能为当负载电流增加时,斜坡补偿电路将以一定的斜率减小静差电压,以减小损耗;所述辅助源采用升压拓扑结构,为上述功能电路提供电能。

Claims (5)

1.一种具有负载斜坡补偿功能的纹波衰减电路,其特征在于:包括无源滤波单元、有源滤波单元、负载斜坡补偿电路及辅助源;所述无源滤波单元的输入端与输入电压的正极相连,无源滤波单元的输出端通过负载斜坡补偿电路与有源滤波单元连接,负载斜坡补偿电路的输入端还与辅助源的输入端连接,辅助源的输出端分别与负载斜坡补偿电路的供电正极和有源滤波单元的供电正极连接,辅助源为负载斜坡补偿电路和有源滤波单元提供电能;
所述负载斜坡补偿电路包括芯片U1以及电阻R1、R2、R3、R4、R5、R9,所述有源滤波单元包括芯片U2、功率场效应管Q、三极管Q1及稳压管D1,
芯片U1的同相输入端分别与电阻R3一端和电阻R2的一端相接,电阻R3的另一端与功率场效应管Q的D极相接,电阻R2的另一端与无源滤波单元中电感L的输出端相连,芯片U1的反相输入端分别与电阻R9的一端和电阻R4的一端相接,芯片U1的输出端通过电阻R10连接电阻R5的一端,电阻R5的一端又连接至有源滤波单元中的芯片U2的同相输入端,芯片U2的输出端连接至功率场效应管Q的G极,功率场效应管Q的S极连接至电阻R1的一端和电阻R9的另一端,功率场效应管Q的D极与芯片U2的反相输入端相连,电阻R1的另一端连接至无源滤波单元中的电感L的输出端,芯片U1的供电正极与辅助源的输出端相连,芯片U1的供电负极与功率场效应管Q的D极相接;
芯片U2的同相输入端分别与电阻R10的一端和电容C3的一端相接,电阻R10的另一端连接至芯片U1的输出端,电容C3的另一端接地,芯片U2的反相输入端通过电阻R6、电容C2与芯片U2的输出端相连,芯片U2的供电负极与三极管Q1的发射极相连,三极管Q1的集电极通过电阻R7接地,三极管Q1的基极分别与电阻R8的一端和稳压管D1的一端相连,电阻R8的另一端接地,稳压管D1的另一端和芯片U2的供电正极均与辅助源的输出端相连。
2.根据权利要求1所述的纹波衰减电路,其特征在于:所述无源滤波单元包括电感L和电容C1,电感L的输入端与输入电压的正极连接,电感L的输出端分别与负载斜坡补偿电路的输入端和电容C1的一端相接,电容C1的另一端接地。
3.根据权利要求1所述的纹波衰减电路,其特征在于:所述有源滤波单元中芯片U2的同相输入端连接适用于不同输入电压的外围电阻的一端,外围电阻的另一端接地。
4.根据权利要求1所述的纹波衰减电路,其特征在于:所述的无源滤波单元为采用LC滤波电路的无源滤波器。
5.根据权利要求1所述的纹波衰减电路,其特征在于:所述辅助源为采用升压拓扑结构的供电单元。
CN202010614827.7A 2020-06-30 2020-06-30 一种具有负载斜坡补偿功能的纹波衰减电路 Active CN111682744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010614827.7A CN111682744B (zh) 2020-06-30 2020-06-30 一种具有负载斜坡补偿功能的纹波衰减电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010614827.7A CN111682744B (zh) 2020-06-30 2020-06-30 一种具有负载斜坡补偿功能的纹波衰减电路

Publications (2)

Publication Number Publication Date
CN111682744A CN111682744A (zh) 2020-09-18
CN111682744B true CN111682744B (zh) 2022-03-22

Family

ID=72437435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010614827.7A Active CN111682744B (zh) 2020-06-30 2020-06-30 一种具有负载斜坡补偿功能的纹波衰减电路

Country Status (1)

Country Link
CN (1) CN111682744B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109611B (zh) * 2021-04-15 2022-09-13 歌瑞宇航电子(天津)有限公司 一种中低电压电源测试用有源负载
CN113765348B (zh) * 2021-10-19 2024-02-02 上海联影医疗科技股份有限公司 一种高压电源以及医疗影像设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759372U (zh) * 2012-04-25 2013-02-27 深圳Tcl新技术有限公司 有源滤波电路及电源电路
US9608508B2 (en) * 2013-07-29 2017-03-28 Microsemi P.O.E Ltd. Integrated limiter and active filter
CN103973086B (zh) * 2014-05-06 2016-08-24 中国电子科技集团公司第四十一研究所 一种程控直流电源的纹波抑制器电路
CN108923627B (zh) * 2018-08-08 2020-07-28 钜微电源技术(深圳)有限公司 一种电源跟随滤波电路

Also Published As

Publication number Publication date
CN111682744A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN111682744B (zh) 一种具有负载斜坡补偿功能的纹波衰减电路
CN108923627B (zh) 一种电源跟随滤波电路
CN107171647A (zh) 具有低损耗和温度补偿的自适应偏置电路及无线发射系统
CN103354419B (zh) 基于恒定跨导放大器和电容乘法器的片上全集成补偿网络
CN112671353B (zh) 一种应用于大功率范围的低失真d类功放
CN203287806U (zh) 混合型稳压电源
CN107124148A (zh) 一种控制电路、偏置电路及控制方法
CN108712067B (zh) 一种抑制开关电源输出高频电压纹波的有源滤波电路
CN103399608B (zh) 集成摆率增强电路的低压差线性稳压器
CN107222174A (zh) 一种低损耗自适应偏置电路及无线发射系统
CN102478873B (zh) 一种电源调制器
CN101328948A (zh) 一种磁流变阻尼器驱动器
CN104184425A (zh) 单端输入的d类音频功率放大器
CN103123511B (zh) 混合型稳压电源
CN105553428A (zh) 一种运算放大器动态供电电路及供电方法
CN203773393U (zh) 一种负压恒流源电路
CN213783248U (zh) 应用于平均功率跟踪的Doherty功率放大电路与电子设备
CN201887729U (zh) 一种应用于射频微波电路的负电容电路
CN104656728A (zh) 一种负压恒流源电路
CN206948274U (zh) 一种控制电路、偏置电路
CN201110983Y (zh) 一种低压差线性稳压电路及电子设备
CN109765955B (zh) 一种电压反馈控制电路
CN203289321U (zh) 一种高温高端恒流源电路
CN207251478U (zh) 一种基于恒流源的直流电源噪声调理电路
CN107888189B (zh) 控制超高频谐振逆变器输出电压相位可调的驱动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220118

Address after: 200120 building C, No. 888, Huanhu West 2nd Road, Lingang New Area, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Applicant after: SHANGHAI JIERUIZHAO NEW INFORMATION TECHNOLOGY CO.,LTD.

Address before: No. 18, St. Lake Road, Haizhou District, Lianyungang, Jiangsu

Applicant before: LIANYUNGANG JIERUI ELECTRONIC Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant