CN111680466A - 一种用于对集成电路器件进行仿真的方法及装置 - Google Patents

一种用于对集成电路器件进行仿真的方法及装置 Download PDF

Info

Publication number
CN111680466A
CN111680466A CN202010410521.XA CN202010410521A CN111680466A CN 111680466 A CN111680466 A CN 111680466A CN 202010410521 A CN202010410521 A CN 202010410521A CN 111680466 A CN111680466 A CN 111680466A
Authority
CN
China
Prior art keywords
sub
target temperature
device model
integrated circuit
temperature interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010410521.XA
Other languages
English (en)
Inventor
卜建辉
王成成
李垌帅
刘海南
赵发展
韩郑生
罗家俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202010410521.XA priority Critical patent/CN111680466A/zh
Publication of CN111680466A publication Critical patent/CN111680466A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本申请提供一种用于对集成电路器件进行仿真的方法及装置,方法包括:根据集成电路器件的历史仿真结果确定至少一个温度区间;针对不同的温度区间,提取出对应的器件模型参数,根据模型参数建立对应的子器件模型;合并子器件模型,获得当前半导体器件模型;当需要再次对集成电路器件进行仿真时,接收仿真所需的目标温度,确定所目标温度所属的目标温度区间以及当前半导体器件模型中目标温度区间对应的子器件模型;利用对应的子器件模型对集成电路器件进行仿真;如此,因不同的温度区间对应的有不同的子器件模型,这样在对集成电路器件进行仿真时,无论温度是在什么范围内,都可以找到合适的子器件模型对集成电路器件进行仿真,确保仿真精度。

Description

一种用于对集成电路器件进行仿真的方法及装置
技术领域
本申请属于半导体器件技术领域,尤其涉及一种用于对集成电路器件进行仿真的方法及装置。
背景技术
随着集成电路技术的发展和越来越广泛的应用,集成电路设计时必须考虑其高可靠性、高性能、低成本的要求。
目前一般是利用IC CAD仿真软件中的器件模型对集成电路进行仿真测试的。在ICCAD软件中,MOSFET的器件模型是将集成电路器件设计和集成电路器件产品功能与性能联系起来的关键纽带。伴随着集成器件尺寸越来越小,集成规模越来越大,集成电路工序越来越复杂,对器件模型的精度要求也越来越高。
随着集成电路在极端高温及极端低温领域的应用,需要半导体器件模型能够在更宽泛的温度区域内进行仿真,但是现有技术的器件模型一般都只在一定温度范围内适用,超过一定的温度范围则仿真精度就可能不满足仿真要求。
发明内容
针对现有技术存在的问题,本申请实施例提供了一种用于对集成电路器件进行仿真的方法及装置,用于解决现有技术中的半导体器件模型只能在一定的温度范围内适用,导致在更宽泛的温度范围内对集成电路器件进行仿真时,仿真精度得不到确保的技术问题。
本申请提供一种用于对集成电路器件进行仿真的方法,所述方法包括:
根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;
针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
合并所述子器件模型,获得当前半导体器件模型;
当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中目标温度区间对应的子器件模型;
利用所述对应的子器件模型对所述集成电路器件进行仿真。
可选的,所述根据所述模型参数建立对应的子器件模型后,还包括:
根据每个所述温度区间以及每个所述温度区间对应的子器件模型生成映射表;所述映射表中存储有所述温度区间以及所述子器件模型之间的对应关系。
可选的,所述确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中所述目标温度区间对应的子器件模型,包括:
遍历所述映射表,将所述目标温度与所述映射表中的各温度区间进行一一比较,确定所述目标温度所属的目标温度区间;
基于所述目标温度区间与所述当前半导体器件模型中所述子器件模型之间的对应关系确定出所述目标温度区间对应的子器件模型。
可选的,所述根据集成电路器件的历史仿真结果确定至少一个温度区间,包括:
根据所述历史仿真结果与性能测试数据之间的拟合度确定出所述至少一个温度区间。
可选的,所述针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型,包括:
针对不同的温度区间,基于预设的拟合度将各温度区间对应的历史子仿真结果与所述性能测试数据进行拟合;
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
本发明还提供一种用于对集成电路器件进行仿真的装置,所述装置包括:
第一确定单元,用于根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;
建立单元,用于针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
合并单元,用于合并所述子器件模型,获得当前半导体器件模型;
第二确定单元,用于当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中所述目标温度区间对应的子器件模型;
仿真单元,用于利用所述对应的子器件模型对所述集成电路器件进行仿真。
可选的,所述建立单元,还用于:
根据每个所述温度区间以及每个所述温度区间对应的子器件模型生成映射表;所述映射表中存储有所述温度区间以及所述子器件模型之间的对应关系。
可选的,所述建立单元具体用于:
遍历所述映射表,将所述目标温度与所述映射表中的各温度区间进行一一比较,确定所述目标温度所属的目标温度区间;
基于所述目标温度区间与所述子器件模型之间的对应关系确定出所述目标温度区间对应的子器件模型。
可选的,所述第一确定单元具体用于:
根据所述历史仿真结果与性能测试数据之间的拟合度确定出所述至少一个温度区间;所述性能测试数据为对所述集成电路器件进行仿真时所需的数据。
可选的,所述建立单元具体用于:
针对不同的温度区间,基于预设的拟合度将各温度区间对应的历史子仿真结果与所述性能测试数据进行拟合;
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
本申请提供一种用于对集成电路器件进行仿真的方法及装置,方法包括:根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;合并所述子器件模型,获得当前半导体器件模型;当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及当前半导体器件模型中所述目标温度区间对应的子器件模型;利用所述对应的子器件模型对所述集成电路器件进行仿真;如此,因不同的温度区间对应的有不同的子器件模型,这样在对集成电路器件进行仿真时,无论温度是在什么范围内,都可以找到合适的子器件模型对集成电路器件进行仿真,确保仿真精度,满足仿真要求。
附图说明
图1为本申请实施例提供的用于对集成电路器件进行仿真的方法流程示意图;
图2为本申请实施例提供的历史半导体器件模型对MOSFET器件进行仿真的历史仿真结果图;
图3为本申请实施例提供的利用当前半导体器件模型对MOSFET器件进行仿真的结果图;
图4为本申请实施例提供的用于对集成电路器件进行仿真的装置结构示意图。
具体实施方式
为了解决现有技术中半导体器件模型只能在一定的温度范围内适用,导致在更宽泛的温度范围内对集成电路进行仿真时,仿真精度得不到确保的技术问题。本申请提供了一种用于对集成电路器件进行仿真的方法及装置。
下面通过附图及具体实施例对本申请的技术方案做进一步的详细说明。
实施例一
本实施例提供一种用于对集成电路器件进行仿真的方法,如图1所示,方法包括:
S110,根据集成电路器件的历史仿真结果确定至少一个温度区间;
在利用器件模型对集成电路器件进行仿真时,主要是对集成电路器件的性能测试数据进行仿真,并获得仿真结果,仿真结果一般可以以曲线呈现。这里所述的历史仿真结果是利用历史半导体器件模型对性能测试数据进行仿真时获得的仿真结果;性能测试数据为对所述集成电路器件进行仿真时所需的数据。
作为一种可选的实施例,根据器件的历史仿真结果确定至少一个温度区间,包括:
根据历史仿真结果与性能测试数据之间的拟合度确定出至少一个温度区间所性能测试数据为对集成电路器件进行仿真时所需的数据。
具体的,可参考图2,图2为利用现有的半导体器件模型对某个MOSFET器件进行仿真的历史仿真结果,图2中的曲线为仿真结果,图2中的形状“■”为性能测试数据。
从图2中可以看出,在-93℃到27℃的温度区间内,历史仿真结果与性能测试数据的拟合度较好(重合度高);在-253℃到-93℃的温度区间内,历史仿真结果与性能测试数据的拟合度较差(重合度低)。因此,可以根据拟合度确定出两个温度区间,分别为-93℃~27℃以及-253℃~-93℃。
温度区间确定出之后,每个温度区间均对应一个历史子仿真结果,各历史子仿真结果合并在一起形成历史仿真结果。
S111,针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
为了使得模型可以应用于宽泛的温度范围,提高模型的仿真精度。针对不同的温度区间,均建立一个对应的子器件模型;这样无论需要的仿真温度是多少,均可以找到一个合适的模型进行仿真。
具体的,针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型。其中,器件模型参数主要包括:阈值电压和温度系数等。
那么作为一种可选的实施例,针对不同的温度区间,提取出对应的器件模型参数,根据模型参数建立对应的子器件模型,包括:
针对不同的温度区间,基于预设的拟合度将各温度区间对应的历史子仿真结果与所述性能测试数据进行拟合;
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
因为针对有些温度区间来说,历史子仿真结果的精度并没有达到仿真需求,因此为了确保建立的子器件模型的仿真精度,需要基于预设的拟合度将温度区间对应的历史子仿真结果与性能测试数据进行重新拟合。
如图2所示,因历史子仿真结果在某个温度区间是一条具有线性关系的直线(该直线的斜率及各参数均可以确定出),那么可以基于重新拟合后的仿真结果提取出该温度区间内的目标温度系数和阈值电压。
值得注意的是,在有些温度区间中,对应的历史子仿真结果可以达到预设的仿真精度,因此针对这些温度区间,无需基于预设的拟合度重新将对应的子仿真结果与性能测试数据重新拟合。
继续以上述所说的MOSFET器件为例,在-93℃到27℃的温度区间内提取器件模型参数,建立子器件模型的实现如下:
.model nmos1 nmos
+level=49version=3.3 vth0=0.534669
+kt1=-0.181427
在-253℃到-93℃的温度区间内提取器件模型参数,建立子器件模型的实现如下:
.model nmos2 nmos
+level=49version=3.3 vth0=0.554029
kt1=-0.111882
其中,nmos1为-93℃到27℃温度区间对应的子器件模型名称,nmos2为-253℃到-93℃温度区间对应的子器件模型名称,vt为阈值电压,kt为温度系数。
作为一种可选的实施例,建立各个温度区间对应的子器件模型后,为了在仿真时可以快速找到合适的子器件模型,根据模型参数建立对应的子器件模型后,还包括:
根据每个温度区间以及每个温度区间对应的子器件模型生成映射表;映射表中存储有温度区间以及子器件模型之间的对应关系。
举例来说,比如温度区间可以包括:-93℃到27℃的温度区间以及-253℃到-93℃的温度区间。那么可以这两个温度区间对应的子器件模型、温度区间生成映射表。
S112,合并所述子器件模型,获得当前半导体器件模型;
各温度区间对应的子器件模型建立好之后,合并各子器件模型,获得一个整体的半导体器件模型。
继续以上述的MOSFET器件为例,合并后的半导体器件模型为:
.lib TT
.subckt nmos d g s b w=20u l=20u
.if((Temper1<=27)&&(Temper1>-93))
M1 d g s b nmos1 w=w l=l
.elseif((Temper1>-253)&&(Temper1<=-93))
M1 d g s b nmos2 w=w l=l
.endif
.ends
.model nmos1 nmos
+level=49version=3.3 vth0=0.534669
+kt1=-0.181427
.model nmos2 nmos
+level=49version=3.3vth0=0.554029
kt1=-0.111882
.endl TT
其中,本申请是将各个子器件模型以子电路的方式合并在一起,形成半导体器件模型;其中,subckt为子电路,Temper1为目标温度。
这里,因仿真软件中自带的温度参数Temper不能直接用到if语句中,因此需要将Temper转换为本申请中的Temper1,假设目标温度为27,那么转换方法如下:
.param temper1=27
.temp temper
S113,当需要再次对集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及当前半导体模型中所述目标温度区间对应的子器件模型;
当需要对集成电路器件进行再次仿真时,用户可以根据将仿真所需要的目标温度输入至仿真软件中。
仿真软件中的器件模型接收到目标温度后,会确定目标温度所属的目标温度区间以及目标温度区间对应的子器件模型。
作为一种可选的实施例,确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中目标温度区间对应的子器件模型,包括:
遍历映射表,将目标温度与映射表中的各温度区间进行一一比较,确定目标温度所属的目标温度区间;
基于目标温度区间与所述当前半导体器件模型中子器件模型之间的对应关系确定出目标温度区间对应的子器件模型。
需要说明的是,当需要在不同的温度下进行仿真时,用户输入多个目标温度即可。
S114,利用所述对应的子器件模型对所述集成电路器件进行仿真。
子器件模型确定出之后,可以利用对应的子器件模型对集成电路器件进行仿真。这里,以上述的MOSFET器件为例,仿真结果可如图3所示。
由图3可以看出,性能测试数据与仿真结果的拟合度较高,因此说明本申请的半导体器件模型的仿真精度可以适用于宽泛的温度区间,并且可以保证仿真精度。
基于同样的发明构思,本申请还提供一种半导体器件模型的建模装置,详见实施例二。
实施例二
本实施例提供一种半导体器件模型的建模装置,如图4所示,装置包括:第一确定单元41、建立单元42、合并单元43、第二确定单元44及仿真单元45;
第一确定单元41,用于根据集成电路器件的历史仿真结果确定至少一个温度区间;
建立单元42,用于针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
合并单元43,用于合并子器件模型,获得半导体器件模型;
第二确定单元44,用于当需要再次对集成电路器件进行仿真时,接收温度区间的当前标识值,根据当前标识值在半导体器件模型中确定出对应的子器件模型;
仿真单元45,用于利用对应的子器件模型对集成电路器件进行仿真。
具体的,在利用器件模型对集成电路器件进行仿真时,主要是对集成电路器件的性能测试数据进行仿真,并获得仿真结果,仿真结果一般可以以曲线呈现。这里所述的历史仿真结果是利用历史半导体器件模型对性能测试数据进行仿真时获得的仿真结果;性能测试数据为对集成电路器件进行仿真时所需的数据。
作为一种可选的实施例,第一确定单元41具体用于:
根据历史仿真结果与性能测试数据之间的拟合度确定出至少一个温度区间所性能测试数据为对集成电路器件进行仿真时所需的数据。
具体的,可参考图2,图2为利用现有的半导体器件模型对某个MOSFET器件进行仿真的历史仿真结果,图2中的曲线为仿真结果,图2中的形状“■”为性能测试数据。
从图2中可以看出,在-93℃到27℃的温度区间内,历史仿真结果与性能测试数据的拟合度较好(重合度高);在-253℃到-93℃的温度区间内,历史仿真结果与性能测试数据的拟合度较差(重合度低)。因此,可以根据拟合度确定出两个温度区间,分别为-93℃~27℃以及-253℃~-93℃。
温度区间确定出之后,每个温度区间均对应一个历史子仿真结果,各历史子仿真结果合并在一起形成历史仿真结果。
为了使得模型可以应用于宽泛的温度范围,提高模型的仿真精度。针对不同的温度区间,建立单元42均建立一个对应的子器件模型;这样无论需要的仿真温度是多少,均可以找到一个合适的模型进行仿真。
具体的,针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型。其中,器件模型参数主要包括:阈值电压和温度系数等。
那么作为一种可选的实施例,建立单元42具体用于:
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
因为针对有些温度区间来说,历史子仿真结果的精度并没有达到仿真需求,因此为了确保建立的子器件模型的仿真精度,需要基于预设的拟合度将温度区间对应的历史子仿真结果与性能测试数据进行重新拟合。
如图2所示,因历史子仿真结果在某个温度区间是一条具有线性关系的直线(该直线的斜率及各参数均可以确定出),那么可以基于重新拟合后的仿真结果提取出该温度区间内的目标温度系数和阈值电压。
值得注意的是,在有些温度区间中,对应的历史子仿真结果可以达到预设的仿真精度,因此针对这些温度区间,无需基于预设的拟合度重新将对应的子仿真结果与性能测试数据重新拟合。
继续以上述所说的MOSFET器件为例,在-93℃到27℃的温度区间内提取器件模型参数,建立子器件模型的实现如下:
.model nmos1 nmos
+level=49version=3.3 vth0=0.534669
+kt1=-0.181427
在-253℃到-93℃的温度区间内提取器件模型参数,建立子器件模型的实现如下:
.model nmos2 nmos
+level=49version=3.3 vth0=0.554029
kt1=-0.111882
其中,nmos1为-93℃到27℃温度区间对应的子器件模型名称,nmos2为-253℃到-93℃温度区间对应的子器件模型名称,vt为阈值电压,kt为温度系数。
作为一种可选的实施例,建立各个温度区间对应的子器件模型后,为了在仿真时可以快速找到合适的子器件模型,根据模型参数建立对应的子器件模型后,建立单元42还用于:
根据每个温度区间以及每个温度区间对应的子器件模型生成映射表;映射表中存储有温度区间以及子器件模型之间的对应关系。
举例来说,比如温度区间可以包括:-93℃到27℃的温度区间以及-253℃到-93℃的温度区间。那么可以这两个温度区间对应的子器件模型、温度区间生成映射表。
各温度区间对应的子器件模型建立好之后,合并单元43用于合并各子器件模型,获得一个整体的当前半导体器件模型。
继续以上述的MOSFET器件为例,合并后的当前半导体器件模型为:
.lib TT
.subckt nmos d g s b w=20u l=20u
.if((Temper1<=27)&&(Temper1>-93))
M1 d g s b nmos1 w=w l=l
.elseif((Temper1>-253)&&(Temper1<=-93))
M1 d g s b nmos2 w=w l=l
.endif
.ends
.model nmos1 nmos
+level=49version=3.3 vth0=0.534669
+kt1=-0.181427
.model nmos2 nmos
+level=49version=3.3 vth0=0.554029
kt1=-0.111882
.endl TT
其中,本申请是将各个子器件模型以子电路的方式合并在一起,形成当前半导体器件模型;其中,subckt为子电路,Temper1为目标温度。
这里,因仿真软件中自带的温度参数Temper不能直接用到if语句中,因此需要将Temper转换为本申请中的Temper1,假设目标温度为27,那么转换方法如下:
.param temper1=27
.temp temper
当需要对集成电路器件进行再次仿真时,当需要对集成电路器件进行再次仿真时,用户可以根据将仿真所需要的目标温度输入至仿真软件中。
仿真软件中的器件模型接收到目标温度后,会确定目标温度所属的目标温度区间以及目标温度区间对应的子器件模型。
作为一种可选的实施例,第二确定单元44具体用于:
遍历映射表,将目标温度与映射表中的各温度区间进行一一比较,确定目标温度所属的目标温度区间;
基于目标温度区间与当前半导体器件模型中子器件模型之间的对应关系确定出目标温度区间对应的子器件模型。
需要说明的是,当需要在不同的温度下进行仿真时,用户输入多个目标温度即可。
子器件模型确定出之后,仿真单元45可以利用对应的子器件模型对集成电路器件进行仿真。这里,以上述的MOSFET器件为例,仿真结果可如图3所示。
由图3可以看出,性能测试数据与仿真结果的拟合度较高,因此说明本申请的半导体器件模型的仿真精度可以适用于宽泛的温度区间,并且可以保证仿真精度。
本申请提供的半导体器件模型的建模方法及装置能带来的有益效果至少是:
本申请提供一种用于对集成电路器件进行仿真的方法及装置,方法包括:根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;合并所述子器件模型,获得当前半导体器件模型;当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及当前半导体器件模型中目标温度区间对应的子器件模型;利用所述对应的子器件模型对所述集成电路器件进行仿真;如此,因不同的温度区间对应的有不同的子器件模型,这样在对集成电路器件进行仿真时,无论温度是在什么范围内,都可以找到合适的子器件模型对集成电路器件进行仿真,确保仿真精度,满足仿真要求。并且用户在需要对集成电路器件进行仿真时,只需输入目标温度即可匹配出合适的子器件模型对其进行仿真,仿真效率也可得到保证。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种用于对集成电路器件进行仿真的方法,其特征在于,所述方法包括:
根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;
针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
合并所述子器件模型,获得当前半导体器件模型;
当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中目标温度区间对应的子器件模型;
利用所述对应的子器件模型对所述集成电路器件进行仿真。
2.如权利要求1所述的方法,其特征在于,所述根据所述模型参数建立对应的子器件模型后,还包括:
根据每个所述温度区间以及每个所述温度区间对应的子器件模型生成映射表;所述映射表中存储有所述温度区间以及所述子器件模型之间的对应关系。
3.如权利要求2所述的方法,其特征在于,所述确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中所述目标温度区间对应的子器件模型,包括:
遍历所述映射表,将所述目标温度与所述映射表中的各温度区间进行一一比较,确定所述目标温度所属的目标温度区间;
基于所述目标温度区间与所述当前半导体器件模型中所述子器件模型之间的对应关系确定出所述目标温度区间对应的子器件模型。
4.如权利要求1所述的方法,其特征在于,所述根据集成电路器件的历史仿真结果确定至少一个温度区间,包括:
根据所述历史仿真结果与性能测试数据之间的拟合度确定出所述至少一个温度区间。
5.如权利要求1所述的方法,其特征在于,所述针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型,包括:
针对不同的温度区间,基于预设的拟合度将各温度区间对应的历史子仿真结果与所述性能测试数据进行拟合;
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
6.一种用于对集成电路器件进行仿真的装置,其特征在于,所述装置包括:
第一确定单元,用于根据集成电路器件的历史仿真结果确定至少一个温度区间;所述历史仿真结果为利用历史半导体器件模型对性能测试数据进行仿真的结果,所述性能测试数据为对所述集成电路器件进行仿真时所需的数据;
建立单元,用于针对不同的温度区间,提取出对应的器件模型参数,根据所述模型参数建立对应的子器件模型;
合并单元,用于合并所述子器件模型,获得当前半导体器件模型;
第二确定单元,用于当需要再次对所述集成电路器件进行仿真时,接收仿真所需的目标温度,确定所述目标温度所属的目标温度区间以及所述当前半导体器件模型中所述目标温度区间对应的子器件模型;
仿真单元,用于利用所述对应的子器件模型对所述集成电路器件进行仿真。
7.如权利要求6所述的装置,其特征在于,所述建立单元,还用于:
根据每个所述温度区间以及每个所述温度区间对应的子器件模型生成映射表;所述映射表中存储有所述温度区间以及所述子器件模型之间的对应关系。
8.如权利要求7所述的装置,其特征在于,所述建立单元具体用于:
遍历所述映射表,将所述目标温度与所述映射表中的各温度区间进行一一比较,确定所述目标温度所属的目标温度区间;
基于所述目标温度区间与所述子器件模型之间的对应关系确定出所述目标温度区间对应的子器件模型。
9.如权利要求7所述的装置,其特征在于,所述第一确定单元具体用于:
根据所述历史仿真结果与性能测试数据之间的拟合度确定出所述至少一个温度区间;所述性能测试数据为对所述集成电路器件进行仿真时所需的数据。
10.如权利要求6所述的装置,其特征在于,所述建立单元具体用于:
针对不同的温度区间,基于预设的拟合度将各温度区间对应的历史子仿真结果与所述性能测试数据进行拟合;
基于拟合后的所述历史子仿真结果,获得目标阈值电压和目标温度系数;
根据所述目标阈值电压和目标温度系数建立对应的子器件模型。
CN202010410521.XA 2020-05-15 2020-05-15 一种用于对集成电路器件进行仿真的方法及装置 Pending CN111680466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010410521.XA CN111680466A (zh) 2020-05-15 2020-05-15 一种用于对集成电路器件进行仿真的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010410521.XA CN111680466A (zh) 2020-05-15 2020-05-15 一种用于对集成电路器件进行仿真的方法及装置

Publications (1)

Publication Number Publication Date
CN111680466A true CN111680466A (zh) 2020-09-18

Family

ID=72434132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010410521.XA Pending CN111680466A (zh) 2020-05-15 2020-05-15 一种用于对集成电路器件进行仿真的方法及装置

Country Status (1)

Country Link
CN (1) CN111680466A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116151093A (zh) * 2022-11-28 2023-05-23 小米汽车科技有限公司 零部件模型的获取方法、零部件的检测方法及其相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881508A (zh) * 2014-11-27 2015-09-02 苏州能讯高能半导体有限公司 一种基于查表法的半导体器件的建模方法和系统
CN108846171A (zh) * 2018-05-28 2018-11-20 北京智芯微电子科技有限公司 仿真mosfet温度电学特性的子电路模型的建立方法
CN109117528A (zh) * 2018-07-27 2019-01-01 上海华力微电子有限公司 基于bsim4模型的mos器件子电路温度模型及建模方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881508A (zh) * 2014-11-27 2015-09-02 苏州能讯高能半导体有限公司 一种基于查表法的半导体器件的建模方法和系统
CN108846171A (zh) * 2018-05-28 2018-11-20 北京智芯微电子科技有限公司 仿真mosfet温度电学特性的子电路模型的建立方法
CN109117528A (zh) * 2018-07-27 2019-01-01 上海华力微电子有限公司 基于bsim4模型的mos器件子电路温度模型及建模方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116151093A (zh) * 2022-11-28 2023-05-23 小米汽车科技有限公司 零部件模型的获取方法、零部件的检测方法及其相关设备

Similar Documents

Publication Publication Date Title
US20050273309A1 (en) Circuit simulation method, device model, and simulation circuit
US20050289497A1 (en) Layout designing/characteristic analyzing apparatus for a wiring board
CN111125947B (zh) 一种压接型igbt热网络模型建模方法和相关装置
CN106104234B (zh) 用于计算rf功率mosfet的结温的方法和装置
CN111680466A (zh) 一种用于对集成电路器件进行仿真的方法及装置
CN108846171A (zh) 仿真mosfet温度电学特性的子电路模型的建立方法
CN111428335B (zh) 电池模组的联合仿真方法及装置
JP2022504862A (ja) 温度推定モデル決定方法および装置、温度推定モデルが適用されたバッテリ管理システム
CN104615808B (zh) 一种待测试硬件运算部件的测试方法及参考模型装置
CN111680465A (zh) 一种半导体器件模型的建模方法及装置
CN108155908A (zh) 一种数模转换器的熔丝修调测试方法
CN107765202A (zh) 集成电路测试系统中交流测量单元的在线校准系统及方法
CN110442904A (zh) 一种fpga的功耗模型校准装置和校准方法
CN104881508B (zh) 一种基于查表法的半导体器件的建模方法和系统
US20040073879A1 (en) Modeling devices in consideration of process fluctuations
CN107480331A (zh) 一种半导体器件统计模型的建模方法及装置
Noebauer Creating compact models using standard spreadsheet software
CN104102526A (zh) Pscad与第三方仿真软件或硬件协同仿真的协同接口
RU2015144655A (ru) Процесс проверки достоверности ограничений
Ji et al. The design of data acquisition system based on virtual instrument
CN110989357B (zh) 一种复杂机电系统的辨识控制方法和系统
CN116611378A (zh) 电路模型的仿真模拟方法及装置、计算机设备和存储介质
US20110126052A1 (en) Generation of Test Information for Testing a Circuit
CN203133115U (zh) 多加速度计智能参数辨识、匹配与硬件生成系统
CN111651354A (zh) 一种实时仿真的不确定度量化加速方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination