CN111679363A - Silicon waveguide end-face coupling structure and fabrication method thereof - Google Patents
Silicon waveguide end-face coupling structure and fabrication method thereof Download PDFInfo
- Publication number
- CN111679363A CN111679363A CN202010484964.3A CN202010484964A CN111679363A CN 111679363 A CN111679363 A CN 111679363A CN 202010484964 A CN202010484964 A CN 202010484964A CN 111679363 A CN111679363 A CN 111679363A
- Authority
- CN
- China
- Prior art keywords
- silicon
- waveguide
- ridge
- silicon nitride
- silicon waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1228—Tapered waveguides, e.g. integrated spot-size transformers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12176—Etching
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明涉及光子集成器件技术领域,公开了硅波导端面耦合结构及其制作方法。该结构包括由下至上依次叠放的衬底硅、氧化层、硅波导和氮化硅层,氮化硅层的端部构造为脊形结构以形成脊形氮化硅波导,脊形氮化硅波导用于与普通单模光纤端面耦合。该方法包括:利用绝缘体上硅衬底中位于衬底硅上表面氧化层之上的薄膜硅层制备硅波导;在硅波导与光纤耦合的一端制备成宽度逐渐收窄的尖锥结构以形成硅波导尖锥结构;在硅波导与氧化层上方沉积一层氮化硅层;通过对氮化硅层进行浅刻蚀制备出脊形结构以形成脊形氮化硅波导。本发明的脊形氮化硅波导变换模场可以与普通单模光纤匹配,适合硅光子芯片封装过程中硅波导与普通单模光纤的低损耗耦合。
The invention relates to the technical field of photonic integrated devices, and discloses a silicon waveguide end face coupling structure and a manufacturing method thereof. The structure includes a substrate silicon, an oxide layer, a silicon waveguide and a silicon nitride layer stacked in sequence from bottom to top. The end of the silicon nitride layer is configured as a ridge structure to form a ridge silicon nitride waveguide. The ridge nitride Silicon waveguides are used for coupling with common single-mode fiber endfaces. The method includes: preparing a silicon waveguide by using a thin-film silicon layer in a silicon-on-insulator substrate located on an oxide layer on the upper surface of the substrate silicon; preparing a tapered structure with a gradually narrowed width at one end of the silicon waveguide coupled with the optical fiber to form a silicon waveguide Waveguide tip-taper structure; depositing a silicon nitride layer over the silicon waveguide and the oxide layer; preparing a ridge-shaped structure by performing shallow etching on the silicon nitride layer to form a ridge-shaped silicon nitride waveguide. The transformation mode field of the ridge-shaped silicon nitride waveguide of the present invention can be matched with the common single-mode optical fiber, and is suitable for the low-loss coupling between the silicon waveguide and the common single-mode optical fiber in the packaging process of the silicon photonic chip.
Description
技术领域technical field
本发明涉及光子集成器件技术领域,特别是涉及一种硅波导端面耦合结构及其制作方法。The invention relates to the technical field of photonic integrated devices, in particular to a silicon waveguide end-face coupling structure and a manufacturing method thereof.
背景技术Background technique
以硅波导为基础的硅光子集成已经成为发展高性能和低成本光通信组件和光子集成器件的关键技术。这种硅光子芯片一般在绝缘体上硅(silicon on insulator,简称:SOI)衬底上制备,采用硅材料作为波导芯区部分,芯区横截面尺寸在百纳米量级。波导包层材料一般采用二氧化硅。由于晶体硅和二氧化硅之间有较高折射率对比度,这种硅波导模场面积一般小于1平方微米,因此可以支持高密度的光子集成,在高性能和低成本的光通信组件和光子集成器件方面具有广阔的应用前景。Silicon photonics integration based on silicon waveguides has become a key technology for the development of high-performance and low-cost optical communication components and photonic integrated devices. Such a silicon photonic chip is generally prepared on a silicon on insulator (SOI) substrate, and a silicon material is used as the core region of the waveguide, and the cross-sectional size of the core region is in the order of 100 nanometers. The waveguide cladding material is generally silicon dioxide. Due to the high refractive index contrast between crystalline silicon and silicon dioxide, the mode field area of this silicon waveguide is generally less than 1 square micrometer, so it can support high-density photonic integration in high-performance and low-cost optical communication components and photonics Integrated devices have broad application prospects.
在硅光子芯片的实际应用中,硅波导需要与单模光纤之间实现低损耗的光耦合。然而,普通单模光纤的模场面积在80平方微米左右,硅波导非常小的模场面积使得它与普通单模光纤直接耦合非常困难。理论计算和实验表明,硅波导与普通单模光纤直接耦合会由于模场失配引入超过10dB的耦合损耗。这极大的限制了硅光子芯片的实际应用。In practical applications of silicon photonic chips, silicon waveguides need to achieve low-loss optical coupling with single-mode fibers. However, the mode field area of ordinary single-mode fiber is about 80 square microns, and the very small mode field area of silicon waveguide makes it very difficult to directly couple with ordinary single-mode fiber. Theoretical calculations and experiments show that direct coupling between silicon waveguides and ordinary single-mode fibers will introduce more than 10 dB of coupling loss due to mode field mismatch. This greatly limits the practical application of silicon photonic chips.
因此,实现硅波导与普通单模光纤的高效率耦合是硅光子集成技术走向实际应用的关键问题。目前,硅波导与普通单模光纤的耦合主要采用两种技术路线。第一种是在硅波导上制备向上衍射的光栅实现硅波导与普通单模光纤之间的垂直耦合,通过调整硅波导的尺寸和光栅的设计,可以使得向上衍射的光场有效面积与普通单模光纤的模场匹配,从而提高耦合效率。然而,这种垂直耦合的技术路线工作带宽受到光栅衍射带宽的限制,同时由于存在向其他方向的散射使得耦合效率有很大限制,且具有偏振相关性。此外,光栅的制备工艺也较复杂。第二种技术路线是采用端面耦合,这种方法耦合带宽较宽且偏振无关,具有更广泛的适应性。然而,由于硅波导和光纤模场失配很大,需要在硅波导的一侧设计模场变换结构,使得波导的输出模场与光纤匹配,从而减小耦合损耗。通常采用将硅波导的一端设计成锥形结构来改善光纤和波导之间的模场失配。锥形结构中随着硅波导尺寸逐渐变小,硅波导的模场逐渐变大,可以起到模场变换的作用。然而由于微细加工的限制,硅波导尺寸难以做到非常小,使得单纯的锥形结构模场变换能力有限。进一步发展出锥形结构外面包裹大尺寸氮化硅波导或聚合物波导的模场变换结构。然而,这种结构为了避免氮化硅波导或聚合物波导形成多模传输,尺寸不能做大。此外,氮化硅刻蚀工艺在刻蚀深度上的限制也制约了模场变换结构支持的模场尺寸。因此,这种基于锥形结构的模场变换结构用于硅波导和普通单模光纤的耦合依然会引入较大的损耗。因此,有必要发展一种制备工艺简单,模场变换尺寸与普通单模光纤匹配的端面耦合结构用于硅波导和普通单模光纤之间的低损耗耦合。Therefore, achieving high-efficiency coupling between silicon waveguides and ordinary single-mode fibers is a key issue for the practical application of silicon photonics integration technology. At present, the coupling between silicon waveguide and ordinary single-mode fiber mainly adopts two technical routes. The first is to prepare an upward diffraction grating on a silicon waveguide to realize the vertical coupling between the silicon waveguide and ordinary single-mode fiber. By adjusting the size of the silicon waveguide and the design of the grating, the effective area of the upward diffracted light field can be made the same as that of ordinary single-mode optical fibers. The mode field of the mode fiber is matched, thereby improving the coupling efficiency. However, the working bandwidth of this vertical coupling technology route is limited by the diffraction bandwidth of the grating, and the coupling efficiency is greatly limited due to the existence of scattering to other directions, and it is polarization dependent. In addition, the fabrication process of the grating is also complicated. The second technical route is to use end-face coupling, which has a wider coupling bandwidth and is polarization independent, and has wider adaptability. However, due to the large mismatch between the mode fields of the silicon waveguide and the fiber, it is necessary to design a mode field conversion structure on one side of the silicon waveguide, so that the output mode field of the waveguide matches the fiber, thereby reducing the coupling loss. One end of the silicon waveguide is usually designed into a tapered structure to improve the mode field mismatch between the fiber and the waveguide. In the tapered structure, as the size of the silicon waveguide gradually becomes smaller, the mode field of the silicon waveguide gradually becomes larger, which can play the role of mode field transformation. However, due to the limitation of microfabrication, the size of the silicon waveguide is difficult to be very small, which makes the mode field conversion capability of the simple tapered structure limited. A mode field conversion structure in which a large-sized silicon nitride waveguide or a polymer waveguide is wrapped around the tapered structure is further developed. However, in order to avoid the multi-mode transmission of silicon nitride waveguides or polymer waveguides, the size of this structure cannot be increased. In addition, the limitation on the etching depth of the silicon nitride etching process also restricts the mode field size supported by the mode field conversion structure. Therefore, the mode field conversion structure based on the tapered structure will still introduce a large loss when it is used for the coupling of the silicon waveguide and the ordinary single-mode fiber. Therefore, it is necessary to develop an end-face coupling structure with a simple preparation process and a mode field transformation size that matches that of common single-mode fibers for low-loss coupling between silicon waveguides and common single-mode fibers.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
本发明实施例的目的是提供一种硅波导端面耦合结构及其制作方法,以解决现有技术中存在的硅波导模场尺寸小,和普通单模光纤耦合损耗较大的技术问题。The purpose of the embodiments of the present invention is to provide a silicon waveguide end-face coupling structure and a manufacturing method thereof, so as to solve the technical problems of small size of silicon waveguide mode field and large coupling loss of common single-mode fiber in the prior art.
(二)技术方案(2) Technical solutions
为了解决上述技术问题,本发明实施例提供一种硅波导端面耦合结构,包括:由下至上依次叠放的衬底硅、氧化层、硅波导和氮化硅层,所述氮化硅层的端部构造为脊形结构以形成脊形氮化硅波导,所述脊形氮化硅波导用于与普通单模光纤端面耦合。In order to solve the above technical problems, an embodiment of the present invention provides a silicon waveguide end-face coupling structure, including: a substrate silicon, an oxide layer, a silicon waveguide and a silicon nitride layer stacked in sequence from bottom to top, and the silicon nitride layer has The ends are configured as ridges to form ridged silicon nitride waveguides for coupling with common single mode fiber endfaces.
其中,还包括二氧化硅保护层,所述二氧化硅保护层位于所述氧化层与所述氮化硅层之间,且所述二氧化硅保护层覆盖于所述硅波导的上表面。A silicon dioxide protective layer is also included, the silicon dioxide protective layer is located between the oxide layer and the silicon nitride layer, and the silicon dioxide protective layer covers the upper surface of the silicon waveguide.
其中,所述硅波导的端部构造为尖锥形以形成硅波导尖锥结构,所述硅波导尖锥结构的尖端朝向所述普通单模光纤。Wherein, the end of the silicon waveguide is configured as a sharp taper to form a silicon waveguide taper structure, and the tip of the silicon waveguide taper structure faces the common single-mode optical fiber.
其中,所述硅波导的高度取值范围为200纳米至340纳米,宽度取值范围为350纳米至500纳米。Wherein, the height of the silicon waveguide ranges from 200 nanometers to 340 nanometers, and the width ranges from 350 nanometers to 500 nanometers.
其中,所述硅波导尖锥结构的长度取值范围为100微米至300微米,尖端的宽度小于150纳米。Wherein, the length of the silicon waveguide tip cone structure ranges from 100 microns to 300 microns, and the width of the tip is less than 150 nanometers.
其中,所述二氧化硅保护层的厚度取值范围为120纳米至400纳米。Wherein, the thickness of the silicon dioxide protective layer ranges from 120 nanometers to 400 nanometers.
其中,所述氮化硅层的厚度取值范围为5微米至9微米。Wherein, the thickness of the silicon nitride layer ranges from 5 microns to 9 microns.
其中,所述脊形氮化硅波导的宽度取值范围为3微米至9微米,所述脊形氮化硅波导两侧的深度取值范围为0.5微米至3微米。Wherein, the width of the ridge-shaped silicon nitride waveguide ranges from 3 microns to 9 microns, and the depths on both sides of the ridge-shaped silicon nitride waveguide ranges from 0.5 microns to 3 microns.
本发明实施例还公开了一种硅波导端面耦合结构的制作方法,所述硅波导端面耦合结构的制作方法用于制备如本发明实施例的硅波导端面耦合结构,所述硅波导端面耦合结构的制作方法包括:The embodiment of the present invention also discloses a method for fabricating a silicon waveguide end-face coupling structure, and the method for fabricating the silicon waveguide end-face coupling structure is used to fabricate the silicon waveguide end-face coupling structure according to the embodiment of the present invention, and the silicon waveguide end-face coupling structure The production methods include:
S1、利用绝缘体上硅衬底中位于衬底硅上表面氧化层之上的薄膜硅层制备硅波导;S1, using the thin-film silicon layer in the silicon-on-insulator substrate located on the oxide layer on the upper surface of the silicon substrate to prepare a silicon waveguide;
S2、在所述硅波导与光纤耦合的一端制备成宽度逐渐收窄的尖锥结构以形成硅波导尖锥结构;S2, preparing a tapered structure with a gradually narrowed width at the coupling end of the silicon waveguide and the optical fiber to form a tapered silicon waveguide structure;
S3、在所述硅波导与所述氧化层上方沉积一层二氧化硅保护层;S3, depositing a silicon dioxide protective layer over the silicon waveguide and the oxide layer;
S4、在所述二氧化硅保护层上方沉积一层氮化硅层;S4, depositing a silicon nitride layer on the silicon dioxide protective layer;
S5、通过对所述氮化硅层进行浅刻蚀制备出脊形结构以形成脊形氮化硅波导。S5. A ridge-shaped structure is prepared by performing shallow etching on the silicon nitride layer to form a ridge-shaped silicon nitride waveguide.
(三)有益效果(3) Beneficial effects
本发明实施例提供的一种硅波导端面耦合结构及其制作方法,通过浅刻蚀工艺在氮化硅层构造形成脊形氮化硅波导,实现模场变换,模场与普通单模光纤匹配的单模传输,解决了传统方案大尺寸矩形氮化硅波导中多模传输的问题和需要对氮化硅层进行深刻蚀的工艺难点。本发明实施例的制备工艺简单,变换模场可以与普通单模光纤匹配,特别适合硅光子芯片封装过程中硅波导与普通单模光纤的低损耗耦合。The embodiment of the present invention provides a silicon waveguide end-face coupling structure and a manufacturing method thereof. A ridge-shaped silicon nitride waveguide is formed on a silicon nitride layer through a shallow etching process, so as to realize mode field transformation, and the mode field is matched with a common single-mode optical fiber. It solves the problem of multi-mode transmission in the traditional large-size rectangular silicon nitride waveguide and the process difficulty that requires deep etching of the silicon nitride layer. The preparation process of the embodiment of the present invention is simple, the transformed mode field can be matched with the common single-mode fiber, and is especially suitable for the low-loss coupling between the silicon waveguide and the common single-mode fiber during the packaging process of the silicon photonic chip.
附图说明Description of drawings
图1为本发明实施例一种硅波导端面耦合结构的三维示意图;1 is a three-dimensional schematic diagram of a silicon waveguide end-face coupling structure according to an embodiment of the present invention;
图2为本发明实施例一种硅波导端面耦合结构的主视图;2 is a front view of a silicon waveguide end-face coupling structure according to an embodiment of the present invention;
图3为本发明实施例一种硅波导端面耦合结构的俯视图。FIG. 3 is a top view of a silicon waveguide end-face coupling structure according to an embodiment of the present invention.
附图标记:Reference number:
1:衬底硅;2:氧化层;3:二氧化硅保护层;4:硅波导尖锥结构;5:脊形氮化硅波导;6:硅波导;7:氮化硅层。1: substrate silicon; 2: oxide layer; 3: silicon dioxide protective layer; 4: silicon waveguide taper structure; 5: ridge-shaped silicon nitride waveguide; 6: silicon waveguide; 7: silicon nitride layer.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实例用于说明本发明,但不用来限制本发明的范围。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
如图1至图3所示,本发明实施例公开了一种硅波导端面耦合结构,包括:由下至上依次叠放的衬底硅1、氧化层2、硅波导6和氮化硅层7,氮化硅层7的端部构造为脊形结构以形成脊形氮化硅波导5,脊形氮化硅波导5用于与普通单模光纤端面耦合。As shown in FIG. 1 to FIG. 3 , an embodiment of the present invention discloses a silicon waveguide end face coupling structure, including: a
具体地,本发明实施例在氮化硅层7的端部通过浅刻蚀工艺制备出浅脊形结构,该脊形结构一直延伸到达芯片端面,实现单模传输的有效模场面积与普通单模光纤匹配的波导,脊形氮化硅波导5和普通单模光纤之间通过模场匹配实现高效率的端面耦合,从而该硅波导端面耦合结构实现硅波导6和普通单模光纤之间的高效率耦合。Specifically, in the embodiment of the present invention, a shallow ridge structure is prepared at the end of the
在本实施例中,利用绝缘体上硅(SOI)衬底上薄膜硅层制备硅波导6。In this embodiment, the
本发明实施例提供的一种硅波导端面耦合结构及其制作方法,通过浅刻蚀工艺在氮化硅层7构造形成脊形氮化硅波导5,实现模场变换,模场与普通单模光纤匹配的单模传输,解决了传统方案大尺寸矩形氮化硅波导中多模传输的问题和需要对氮化硅层7进行深刻蚀的工艺难点。本发明实施例的制备工艺简单,变换模场可以与普通单模光纤匹配,特别适合硅光子芯片封装中硅波导与普通单模光纤的低损耗耦合。The embodiment of the present invention provides a silicon waveguide end-face coupling structure and a manufacturing method thereof. A ridge-shaped
其中,本实施例的硅波导端面耦合结构还包括二氧化硅保护层3,二氧化硅保护层3位于氧化层2与氮化硅层7之间,且二氧化硅保护层3覆盖于硅波导6和下述实施例中的硅波导尖锥结构4的上表面。具体地,本实施例中硅波导6和硅波导尖锥结构4设置在二氧化硅保护层3与氧化层2之间,二氧化硅保护层3的作用是减小氮化硅层7对硅波导6传输特性的影响,避免了采用矩形氮化硅波导的传统方案中清除硅波导6上方氮化硅层7的要求,并可以大大降低对氮化硅层7沉积工艺的要求。The silicon waveguide end-face coupling structure of this embodiment further includes a silicon dioxide
其中,硅波导6的端部构造为尖锥形以形成硅波导尖锥结构4,硅波导尖锥结构4的尖端朝向普通单模光纤,也即硅波导6与光纤耦合的一端制备成宽度逐渐收窄长度有限的尖锥结构,硅波导6和脊形氮化硅波导5之间通过尖锥结构实现高效率光学绝热变换耦合。具体地,脊形氮化硅波导5位于硅波导尖锥结构4的上方,脊形氮化硅波导5进一步延伸至芯片端面。Wherein, the end of the
其中,硅波导6的高度取值范围为200纳米至340纳米,宽度取值范围为350纳米至500纳米。The height of the
其中,硅波导尖锥结构4的长度取值范围为100微米至300微米,尖端的宽度小于150纳米。具体地,硅波导尖锥结构4的一端与硅波导6相连,宽度与硅波导6相同,硅波导尖锥结构4随着向光纤耦合的一端宽度逐渐缩窄。Wherein, the length of the silicon waveguide
其中,二氧化硅保护层3的厚度取值范围为120纳米至400纳米。The thickness of the silicon dioxide
其中,氮化硅层7的厚度取值范围为5微米至9微米。The thickness of the
其中,脊形氮化硅波导5的宽度取值范围为3微米至9微米,脊形氮化硅波导5两侧的深度取值范围为0.5微米至3微米。The width of the ridge-shaped
基于上述实施例的硅波导6、硅波导尖锥结构4、二氧化硅保护层3、氮化硅层7和脊形氮化硅波导5的尺寸可根据实际情况设置,本发明不局限于此。The dimensions of the
本发明提供一种尺寸类型的硅波导端面耦合结构,本实施例中硅光子芯片采用薄膜硅层厚度为220纳米的绝缘体上硅(SOI)衬底制备。硅波导6高度220纳米,宽度460纳米。硅波导尖锥结构4高度220纳米,长200微米,尖锥结构的尖端宽度为120纳米。二氧化硅保护层3厚度200纳米。氮化硅层7厚度7微米,脊形氮化硅波导5脊宽7微米,脊深2微米。基于本实施例中的硅波导端面耦合结构,理论计算发现:在硅波导6中传播的光波通过尖锥结构可以通过高效率的绝热变换耦合到脊形氮化硅波导5中;脊形氮化硅波导5中光场以基模形式存在,模场面积大约42.58平方微米,与普通单模光纤模场面积大致匹配。通过脊形氮化硅波导5模场和普通单模光纤模场的交叠积分可以计算得到,通过该结构实现的硅波导6与普通单模光纤之间的耦合损耗仅为1.97dB。The present invention provides a type of silicon waveguide end-face coupling structure. In this embodiment, the silicon photonic chip is prepared by using a silicon-on-insulator (SOI) substrate with a thin-film silicon layer thickness of 220 nanometers. The
本发明实施例还公开了一种硅波导端面耦合结构的制作方法,硅波导端面耦合结构的制作方法用于制备上述实施例的硅波导端面耦合结构,硅波导端面耦合结构的制作方法包括:The embodiment of the present invention further discloses a method for fabricating a silicon waveguide end-face coupling structure. The fabrication method for the silicon waveguide end-face coupling structure is used to fabricate the silicon waveguide end-face coupling structure of the above-mentioned embodiment, and the fabrication method for the silicon waveguide end-face coupling structure includes:
S1、利用绝缘体上硅(SOI)衬底中位于衬底硅1上表面氧化层2之上的薄膜硅层制备硅波导6;S1, a
S2、在硅波导6与光纤耦合的一端制备成宽度逐渐收窄的尖锥结构以形成硅波导尖锥结构4;S2, preparing a tapered structure with a gradually narrowed width at one end where the
S3、在硅波导6与氧化层2上方沉积一层二氧化硅保护层3;S3, depositing a silicon dioxide
S4、在二氧化硅保护层3上方沉积一层氮化硅层7;S4, depositing a layer of
S5、通过对氮化硅层7进行浅刻蚀制备出脊形结构以形成脊形氮化硅波导5。S5 , a ridge structure is prepared by performing shallow etching on the
本实施例的制作方法为:利用绝缘体上硅(SOI)衬底上薄膜硅层制备硅波导6,硅波导6与光纤耦合的一端制备成宽度逐渐收窄长度有限的硅波导尖锥结构4,硅波导6上沉积一层二氧化硅保护层3,二氧化硅保护层3上沉积一层较厚的氮化硅层7。在硅波导尖锥结构4上方通过对氮化硅层7进行浅刻蚀制备出脊形氮化硅波导5。脊形氮化硅波导5与普通单模光纤实现端面耦合。The manufacturing method of this embodiment is as follows: a
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010484964.3A CN111679363B (en) | 2020-06-01 | 2020-06-01 | Silicon waveguide end-face coupling structure and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010484964.3A CN111679363B (en) | 2020-06-01 | 2020-06-01 | Silicon waveguide end-face coupling structure and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111679363A true CN111679363A (en) | 2020-09-18 |
CN111679363B CN111679363B (en) | 2021-06-15 |
Family
ID=72453020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010484964.3A Active CN111679363B (en) | 2020-06-01 | 2020-06-01 | Silicon waveguide end-face coupling structure and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111679363B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112630996A (en) * | 2020-12-22 | 2021-04-09 | 长沙理工大学 | Silicon nitride ridge waveguide-based embedded graphene optical modulator and manufacturing method thereof |
CN113885132A (en) * | 2021-10-22 | 2022-01-04 | 清华大学 | Optical fiber and optical waveguide coupled spot-size converter and manufacturing method thereof |
CN113917613A (en) * | 2021-10-14 | 2022-01-11 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN114035270A (en) * | 2021-11-08 | 2022-02-11 | 浙江光特科技有限公司 | Method for optimizing metal etching and improving device performance |
CN114397730A (en) * | 2022-01-26 | 2022-04-26 | 北京邮电大学 | Double-cantilever inverted cone spot conversion structure for waveguide coupling |
US11567262B2 (en) | 2021-01-29 | 2023-01-31 | Cisco Technology, Inc. | End-face coupling structures underneath a photonic layer |
WO2023039892A1 (en) * | 2021-09-18 | 2023-03-23 | 华为技术有限公司 | Optical chip and preparation method therefor, and communication device |
CN116207463A (en) * | 2022-12-29 | 2023-06-02 | 西北核技术研究所 | A Compact Coplanar Codirectional Rectangular Waveguide TE10 to TE20 Mode Converter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012083446A (en) * | 2010-10-08 | 2012-04-26 | National Institute Of Advanced Industrial & Technology | Optical conversion element |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
US20160062039A1 (en) * | 2014-09-02 | 2016-03-03 | Tyco Electronics Corporation | Mode size converters and optical assemblies |
CN105607185A (en) * | 2016-03-21 | 2016-05-25 | 中国科学院半导体研究所 | Structure for improving the coupling efficiency between submicron silicon waveguide and common single-mode fiber |
CN205723580U (en) * | 2016-05-09 | 2016-11-23 | 厦门市计量检定测试院 | Si base Ge Hybrid waveguide photodetector |
CN106461986A (en) * | 2014-04-07 | 2017-02-22 | 株式会社藤仓 | Optical waveguide device and method of manufacturing the same |
CN109031518A (en) * | 2018-09-06 | 2018-12-18 | 南通赛勒光电科技有限公司 | A kind of cantilever style end coupling device |
-
2020
- 2020-06-01 CN CN202010484964.3A patent/CN111679363B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012083446A (en) * | 2010-10-08 | 2012-04-26 | National Institute Of Advanced Industrial & Technology | Optical conversion element |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
CN106461986A (en) * | 2014-04-07 | 2017-02-22 | 株式会社藤仓 | Optical waveguide device and method of manufacturing the same |
US20160062039A1 (en) * | 2014-09-02 | 2016-03-03 | Tyco Electronics Corporation | Mode size converters and optical assemblies |
CN105607185A (en) * | 2016-03-21 | 2016-05-25 | 中国科学院半导体研究所 | Structure for improving the coupling efficiency between submicron silicon waveguide and common single-mode fiber |
CN205723580U (en) * | 2016-05-09 | 2016-11-23 | 厦门市计量检定测试院 | Si base Ge Hybrid waveguide photodetector |
CN109031518A (en) * | 2018-09-06 | 2018-12-18 | 南通赛勒光电科技有限公司 | A kind of cantilever style end coupling device |
Non-Patent Citations (1)
Title |
---|
ANATOL KHILO AND FRANZ X.KÄRTNER: "Efficient Planar Single-Mode Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution", 《OSA/CLEO/QELS 2010》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112630996A (en) * | 2020-12-22 | 2021-04-09 | 长沙理工大学 | Silicon nitride ridge waveguide-based embedded graphene optical modulator and manufacturing method thereof |
US11567262B2 (en) | 2021-01-29 | 2023-01-31 | Cisco Technology, Inc. | End-face coupling structures underneath a photonic layer |
WO2023039892A1 (en) * | 2021-09-18 | 2023-03-23 | 华为技术有限公司 | Optical chip and preparation method therefor, and communication device |
CN113917613A (en) * | 2021-10-14 | 2022-01-11 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN113917613B (en) * | 2021-10-14 | 2023-03-14 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN113885132A (en) * | 2021-10-22 | 2022-01-04 | 清华大学 | Optical fiber and optical waveguide coupled spot-size converter and manufacturing method thereof |
CN114035270A (en) * | 2021-11-08 | 2022-02-11 | 浙江光特科技有限公司 | Method for optimizing metal etching and improving device performance |
CN114035270B (en) * | 2021-11-08 | 2023-10-13 | 浙江光特科技有限公司 | Method for etching metal in optical waveguide |
CN114397730A (en) * | 2022-01-26 | 2022-04-26 | 北京邮电大学 | Double-cantilever inverted cone spot conversion structure for waveguide coupling |
CN116207463A (en) * | 2022-12-29 | 2023-06-02 | 西北核技术研究所 | A Compact Coplanar Codirectional Rectangular Waveguide TE10 to TE20 Mode Converter |
CN116207463B (en) * | 2022-12-29 | 2024-06-11 | 西北核技术研究所 | Compact coplanar homodromous rectangular waveguide TE 10-TE 20 mode converter |
Also Published As
Publication number | Publication date |
---|---|
CN111679363B (en) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111679363B (en) | Silicon waveguide end-face coupling structure and fabrication method thereof | |
US7251406B2 (en) | Optical waveguide termination with vertical and horizontal mode shaping | |
CN112904481B (en) | End-face coupler and semiconductor device | |
CN109324372B (en) | Silicon optical waveguide end face coupler | |
CN109407229B (en) | End face coupler | |
CN108535807A (en) | With the optical fiber-silicon optical chip coupler and preparation method for tilting Waveguide end face | |
CN111458793A (en) | LNOI-based ridge-type optical waveguide end-face coupling structure and its application | |
CN113568105B (en) | Waveguide interlayer coupling structure and preparation method thereof | |
CA2734614A1 (en) | Optical mode transformer, in particular for coupling an optical fiber and a high-index contrast waveguide | |
CN111562650A (en) | End face coupler based on double-trident sub-wavelength grating structure | |
CN105180917A (en) | Silica-based hybrid integrated homotaxial fiber-optic gyroscope optical chip and preparing method thereof | |
CN104459890A (en) | Optical fiber and silicon waveguide coupling structure based on polymer waveguides and manufacturing method thereof | |
CN105607185B (en) | Improve the structure of sub-micron silicon waveguide and general single mode fiber coupling efficiency | |
CN111487715A (en) | L NOI-based optical waveguide end face coupling structure and application thereof | |
CN108983352A (en) | A kind of end coupling device and preparation method thereof | |
CN117192686A (en) | High-efficiency thin-film lithium niobate conical sub-wavelength grating end surface coupler and preparation method thereof | |
CN111367014A (en) | An on-chip edge coupler with mode-spot conversion for optical interconnect | |
CN116794768B (en) | Adiabatic mode coupler | |
CN209117912U (en) | A kind of silicon optical waveguide end coupling device | |
CN113917613B (en) | Silicon waveguide end face coupling structure and preparation method thereof | |
CN116256842B (en) | Polarization Beam Splitter Rotator | |
CN114924348B (en) | Three-dimensional edge coupler based on silicon dioxide optical waveguide | |
CN210572857U (en) | Polarization insensitive type spot size converter | |
WO2022044101A1 (en) | Optical waveguide component and method for manufacturing same | |
CN101131450A (en) | An Embedded Coupling Optical Ring Cavity Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |