CN111679307A - 一种卫星定位信号解算方法及装置 - Google Patents

一种卫星定位信号解算方法及装置 Download PDF

Info

Publication number
CN111679307A
CN111679307A CN202010674358.8A CN202010674358A CN111679307A CN 111679307 A CN111679307 A CN 111679307A CN 202010674358 A CN202010674358 A CN 202010674358A CN 111679307 A CN111679307 A CN 111679307A
Authority
CN
China
Prior art keywords
cycle slip
module
satellite positioning
positioning signal
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010674358.8A
Other languages
English (en)
Other versions
CN111679307B (zh
Inventor
孙国良
卓越东
温丽芳
张井合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Hangda Beidou Application Technology Co ltd
Original Assignee
Jinhua Hangda Beidou Application Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Hangda Beidou Application Technology Co ltd filed Critical Jinhua Hangda Beidou Application Technology Co ltd
Priority to CN202010674358.8A priority Critical patent/CN111679307B/zh
Publication of CN111679307A publication Critical patent/CN111679307A/zh
Application granted granted Critical
Publication of CN111679307B publication Critical patent/CN111679307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种卫星定位信号解算方法及装置,包括惯性测量模块,用于获取加速度计测量值;计算模块,用于使用所述加速度计测量值计算姿态信息,还用于使用姿态信息和加速度计测量值计算移动站的加速度,使用所述移动站的加速度计算周跳检验量;比较模块,用于比较阈值S与周跳检验量;定位解算模块,当周跳检验量小于S时,定位解算模块进行定位解算;当周跳检验量大于S时,重置定位解算模块的整周模糊度,进行定位解算。本发明主要针对现有技术中周跳探测不准的问题,其结算方法避免了IMU累积误差对周跳的影响,提高了周跳的准确度,从而提高了定位的精度。

Description

一种卫星定位信号解算方法及装置
技术领域
本发明属于卫星定位技术领域,具体涉及一种卫星定位信号解算方法及装置。
背景技术
近年来基于全球导航卫星系统GNSS(the Global Navigation SatelliteSystem)的定位方法由于其高精度的定位结果广泛应用于各领域,要获得高精度的定位结果需要使用GNSS载波相位测量值,而在实际应用场景中,由于卫星信号的中断、信噪比过低、卫星高度角偏低、电离层变化比较剧烈和多径误差较大等原因,GNSS载波相位测量值的整周计数很容易发生跳变或中断(即周跳)。载波相位测量值只有在正确探测修复周跳的条件下才具有可用性,才能得到高精度的定位结果。因此探测周跳是GNSS定位中非常重要的一个环节。
目前,GNSS周跳探测已有多种方法,其中,多项式拟合法、高次差法、三差法等难以用于动态情况;MW组合法(Melbourne和Wubbena于1985年提的组合观测值算法)、电离层残差法及三频组合法无法探测单频周跳,而伪距相位组合法探测不到小周跳,而利用惯导位置和速度进行周跳探测的方法会受惯性导航系统(INS,简称惯导)的累积误差的影响。
在使用惯导位置和速度进行周跳探测时,需要使用加速度信息。惯性测量单元IMU的加速度计输出移动站的加速度信息,现有技术会对其积分得到速度信息,再根据相邻时刻的速度平均值与时间间隔的乘积来计算出位置增量。这种方法由于使用积分存在较大的累积误差。
发明内容
本发明主要针对现有技术中周跳探测不准的问题,发明了一种卫星定位信号解算方法及装置,避免了IMU累积误差对周跳的影响,提高了周跳的准确度,从而提高了定位的精度。
本发明的上述技术问题是通过以下技术方案得以实施的:一种卫星定位信号解算装置,其特征在于,包括:
惯性测量模块,用于获取加速度计测量值;
计算模块,用于使用所述加速度计测量值计算姿态信息,还用于使用姿态信息和加速度计测量值计算移动站的加速度,使用所述移动站的加速度计算周跳检验量;
比较模块,用于比较阈值S与周跳检验量;
定位解算模块,当周跳检验量小于S时,定位解算模块进行定位解算;当周跳检验量大于S时,重置定位解算模块的整周模糊度,进行定位解算。
作为优选,还包括位置检测模块,用于获取移动站的位置信息,所述位置信息包括当地水平坐标系下的重力向量。
一种卫星定位信号解算方法,采用上述的卫星定位信号解算装置,其特征在于,解算方法如下:
使用所述惯性测量模块获取加速度计测量值;
使用所述计算模块根据所述加速度计测量值计算姿态信息;
使用所述计算模块根据姿态信息及惯性测量单元的加速度计测量值计算装置的加速度,根据装置加速度计算周跳检验量;
使用所述比较模块比较阈值S与周跳检验量,当周跳检验量小于S时,定位解算模块进行定位解算;
使用所述比较模块比较阈值S与周跳检验量,当周跳检验量大于S时,重置整周模糊度,进行定位解算。
作为优选,使用所述位置检测模块获取移动站的位置信息,所述位置信息包括当地水平坐标系下的重力向量;
作为优选,所述计算模块根据基于位置信息以及惯性测量单元的加速度计测量值作为观测向量建立观测方程,确定姿态信息。
作为优选,所述阈值S在0到1之间。
作为优选,所述计算模块使用
Figure BDA0002583514460000031
计算周跳检验量,其中,p、q为不同卫星,u为移动站,r为基站,e为方向余弦,
Figure BDA0002583514460000032
Figure BDA0002583514460000033
分别为卫星p、q和移动站的加速度,λ为载波相位波长,
Figure BDA0002583514460000034
为载波相位双差的加速变化率。
作为优选,所述观测方程为
Figure BDA0002583514460000035
以IMU的加速度计测量值作为测量向量,姿态信息作为状态向量滤波得到姿态信息。
作为优选,采用RTK定位技术进行卫星定位。
综上所述,本发明与现有技术相比具有如下优点:
本发明使用IMU加速度计测量值建立观测向量,通过滤波得到了较为准确的姿态信息,避免使用IMU直接输出姿态产生累积误差。
本发明设置了周跳检验量和周跳检验阈值,当周跳检验量超过所设阈值时,通过重置模糊度操作改善了定位结果。
本发明通过避免IMU累积误差的影响得到跟准确的姿态信息。
本发明通过避免IMU累积误差的影响准确探测出周跳。
附图说明
图1是根据本申请的一些实施例的卫星定位信号解算流程图。
图2是本申请的一些实施例的静态条件载波相位双差值变化图。
图3是本申请的一些实施例的静态条件周跳检验量变化图。
图4是本申请的一些实施例的动态条件载波相位双差值变化图。
图5是本申请的一些实施例的动态条件周跳检验量变化图。
具体实施方式
在下面的详细描述中,通过示例阐述了本申请的许多具体细节,以便提供对相关披露的透彻理解。然而,对于本领域的普通技术人员来讲,本申请显而易见的可以在没有这些细节的情况下实施。应当理解的是,本申请中使用“系统”、“装置”、“单元”和/或“模块”术语,是用于区分在顺序排列中不同级别的不同部件、元件、部分或组件的一种方法。然而,如果其他表达式可以实现相同的目的,这些术语可以被其他表达式替换。
应当理解的是,当设备、单元或模块被称为“在……上”、“连接到”或“耦合到”另一设备、单元或模块时,其可以直接在另一设备、单元或模块上,连接或耦合到或与其他设备、单元或模块通信,或者可以存在中间设备、单元或模块,除非上下文明确提示例外情形。例如,本申请所使用的术语“和/或”包括一个或多个相关所列条目的任何一个和所有组合。
参看下面的说明以及附图,本申请的这些或其他特征和特点、操作方法、结构的相关元素的功能、部分的结合以及制造的经济性可以被更好地理解,其中说明和附图形成了说明书的一部分。然而,可以清楚地理解,附图仅用作说明和描述的目的,并不意在限定本申请的保护范围。可以理解的是,附图并非按比例绘制。
本申请中使用了多种结构图用来说明根据本申请的实施例的各种变形。应当理解的是,前面或下面的结构并不是用来限定本申请。本申请的保护范围以权利要求为准。
下面结合附图和实施例对本发明进一步说明。
实施例1:
图1所示,一种卫星定位信号解算方法及装置,其中,卫星定位信号解算装置包括惯性测量模块、计算模块、比较模块、定位解算模块、位置检测模块。
所述惯性测量模块用于获取加速度计测量值;所述计算模块用于使用所述加速度计测量值计算姿态信息;所述计算模块还用于使用姿态信息和加速度计测量值计算移动站的加速度,根据所述移动站加速度计算周跳检验量。
所述比较模块用于比较阈值S与周跳检验量,当周跳检验量小于S时,定位解算模块进行定位解算;当周跳检验量大于S时,重置定位解算模块的整周模糊度,进行定位解算。
所述位置检测模块根据基于位置的状态空间模型,以惯性测量单元的加速度计测量值作为观测向量建立观测方程,确定姿态信息。
所述位置检测模块还用于获取移动站所处位置的重力向量。
本实施例,使用RTK(Real-time kinematic,实时动态)载波相位差分技术进行卫星定位,具体步骤为:
1.通过当地水平坐标系里导航方程的状态空间模型得到方程
Figure BDA0002583514460000051
式中,gL为当地水平坐标系下的重力向量。
Figure BDA0002583514460000052
为B系到L系的坐标变换矩阵,
Figure BDA0002583514460000053
Figure BDA0002583514460000054
为角速度
Figure BDA0002583514460000055
Figure BDA0002583514460000056
相应的反对称矩阵,fb为加速度计的比例测量值,
Figure BDA0002583514460000057
和VL为RTK输出的速度和加速度。具体地:
Figure BDA0002583514460000061
其中,
Figure BDA0002583514460000062
仅有姿态信息
Figure BDA0002583514460000063
为未知量,因此将fb作为观测向量,姿态角(俯仰角p、横滚角r和航向角y)为状态向量的观测方程,有:
Figure BDA0002583514460000064
其中,
Figure BDA0002583514460000065
上式中,p,r,y分别为俯仰角、横滚角和航向角。
2.基于观测方程
Figure BDA0002583514460000066
建立滤波模型
Figure BDA0002583514460000067
其中b代表IMU,u代表移动站,e为方向余弦,
Figure BDA0002583514460000068
为IMU加速度计测量值,
Figure BDA0002583514460000069
为移动站的加速度。以IMU的加速度计测量值作为测量向量,姿态角为状态向量滤波;最终得到姿态信息
Figure BDA00025835144600000610
3.基于步骤2得到的较为准确姿态信息结合IMU的加速度计测量值获得准确的移动站加速度,进一步基于双差加速变化率的计算值和测量值构造周跳检验量:
Figure BDA00025835144600000611
其中,p、q为不同卫星,u代表移动站,r代表基站,e为方向余弦,
Figure BDA00025835144600000612
Figure BDA00025835144600000613
Figure BDA00025835144600000614
分别为卫星p、q和移动站的加速度,λ为载波相位波长,
Figure BDA00025835144600000615
为载波相位双差的加速变化率。
4.进一步设置周跳检验阈值为0.4,当周跳检验量没有超过所设阈值时,直接进行定位解算,当周跳检验量超过所设阈值时,则重置模糊度,进一步进行RTK定位解算。
本发明的优势在于,使用IMU加速度计测量值建立观测向量,通过滤波得到了较为准确的姿态信息,避免使用IMU直接输出姿态产生累积误差。
本发明的优势还在于,设置了周跳检验量和周跳检验阈值,当周跳检验量超过所设阈值时,通过重置模糊度操作改善了定位结果。
图2,图3,图4,图5为本实施例的实验数据图。
在静态条件下,载波相位测量值加入3mm测量误差时,在第50,150历元处给第二颗卫星分别加入半周、一周跳变,在第80历元处给第三颗卫星加入2周跳变时,载波相位双差值如图2所示,周跳检验量的变化情况如图3所示。
由图2,图3可知,在静态条件下,本发明可以准确的探测出半周及其以上周跳发生的位置。
在动态条件下,载波相位测量值加入3mm测量误差时,在第50,150历元处给第二颗卫星分别加入半周、一周跳变,在第80历元处给第三颗卫星加入2周跳变时,载波相位双差值如图4所示,周跳检验量的变化情况如图5所示。
由图4,图5可知,在动态条件下,本发明可以准确的探测出半周及其以上周跳发生的位置。
本发明相比于现有技术,具有如下有益效果:
一、通过避免IMU累积误差的影响得到跟准确的姿态信息。
二、通过避免IMU累积误差的影响准确探测出周跳。
应当理解的是,本申请的上述具体实施方式仅仅用于示例性说明或解释本申请的原理,而不构成对本申请的限制。因此,在不偏离本申请的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。此外,本申请所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (8)

1.一种卫星定位信号解算装置,其特征在于,包括:
惯性测量模块,用于获取加速度计测量值;
计算模块,用于使用所述加速度计测量值计算姿态信息,还用于使用姿态信息和加速度计测量值计算移动站的加速度,使用所述移动站的加速度计算周跳检验量;
比较模块,用于比较阈值S与周跳检验量;
定位解算模块,当周跳检验量小于S时,定位解算模块进行定位解算;当周跳检验量大于S时,重置定位解算模块的整周模糊度,进行定位解算。
2.根据权利要求1所述的卫星定位信号解算装置,其特征在于,还包括位置检测模块,用于获取移动站的位置信息,所述位置信息包括当地水平坐标系下的重力向量。
3.一种卫星定位信号解算方法,采用权利要求1至2所述的卫星定位信号解算装置,其特征在于,解算方法如下:
使用所述惯性测量模块获取加速度计测量值;
使用所述计算模块根据所述加速度计测量值计算姿态信息;
使用所述计算模块根据姿态信息及惯性测量单元的加速度计测量值计算装置的加速度,根据装置加速度计算周跳检验量;
使用所述比较模块比较阈值S与周跳检验量,当周跳检验量小于S时,定位解算模块进行定位解算;
使用所述比较模块比较阈值S与周跳检验量,当周跳检验量大于S时,重置整周模糊度,进行定位解算。
4.根据权利要求3所述的卫星定位信号解算方法,其特征在于,使用所述位置检测模块获取移动站的位置信息,所述位置信息包括当地水平坐标系下的重力向量;
所述计算模块根据基于位置信息以及惯性测量单元的加速度计测量值作为观测向量建立观测方程,确定姿态信息。
5.根据权利要求3所述的卫星定位信号解算方法,其特征在于,所述阈值S在0到1之间。
6.根据权利要求3所述的卫星定位信号解算方法,其特征在于,所述所述计算模块使用
Figure FDA0002583514450000021
计算周跳检验量,其中,p、q为不同卫星,u为移动站,r为基站,e为方向余弦,
Figure FDA0002583514450000022
Figure FDA0002583514450000023
分别为卫星p、q和移动站的加速度,λ为载波相位波长,
Figure FDA0002583514450000024
为载波相位双差的加速变化率。
7.根据权利要求4所述的卫星定位信号解算方法,其特征在于,所述观测方程为
Figure FDA0002583514450000025
以IMU的加速度计测量值作为测量向量,姿态信息作为状态向量滤波得到姿态信息。
8.根据权利要求1-7任意一项所述的卫星定位信号解算方法,其特征在于,采用RTK定位技术进行卫星定位。
CN202010674358.8A 2020-07-14 2020-07-14 一种卫星定位信号解算方法及装置 Active CN111679307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010674358.8A CN111679307B (zh) 2020-07-14 2020-07-14 一种卫星定位信号解算方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010674358.8A CN111679307B (zh) 2020-07-14 2020-07-14 一种卫星定位信号解算方法及装置

Publications (2)

Publication Number Publication Date
CN111679307A true CN111679307A (zh) 2020-09-18
CN111679307B CN111679307B (zh) 2023-08-25

Family

ID=72438523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010674358.8A Active CN111679307B (zh) 2020-07-14 2020-07-14 一种卫星定位信号解算方法及装置

Country Status (1)

Country Link
CN (1) CN111679307B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852972A (zh) * 2021-09-13 2021-12-28 金华航大北斗应用技术有限公司 一种基于波束共享的高速移动终端波束调度方法
CN116087869A (zh) * 2022-12-30 2023-05-09 泰斗微电子科技有限公司 一种基于加速度计的卫星定向方法、设备及可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234885A1 (en) * 2012-03-08 2013-09-12 Raytheon Company Global Positioning System (GPS) Carrier Phase Cycle Slip Detection and Correction
US20140002299A1 (en) * 2007-06-22 2014-01-02 Trimble Navigation Limited Combined cycle slip indicators for regionally augmented gnss
US20150219767A1 (en) * 2014-02-03 2015-08-06 Board Of Regents, The University Of Texas System System and method for using global navigation satellite system (gnss) navigation and visual navigation to recover absolute position and attitude without any prior association of visual features with known coordinates
CN106405592A (zh) * 2016-12-09 2017-02-15 惠州市组合科技有限公司 车载北斗载波相位周跳检测与修复方法及系统
CN106842236A (zh) * 2015-12-04 2017-06-13 航天恒星科技有限公司 Gnss接收机周跳探测与修复处理方法及装置
CN106932793A (zh) * 2017-03-31 2017-07-07 武汉大学 一种北斗三频信号的实时周跳探测与修复方法
CN108169774A (zh) * 2017-12-26 2018-06-15 北方信息控制研究院集团有限公司 支持rtppp和rtk的多模gnss单频周跳探测与修复方法
EP3336584A1 (en) * 2016-12-19 2018-06-20 Trimble Inc. Outlier-tolerant navigation satellite system positioning method and system
CN108267135A (zh) * 2017-12-25 2018-07-10 中铁第四勘察设计院集团有限公司 用于轨道自动测量车的精确定位方法及系统
US20190391274A1 (en) * 2018-06-21 2019-12-26 Unicore Communications Technology Corporation Real-time kinematic using standalone global navigation satellite system receiver

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140002299A1 (en) * 2007-06-22 2014-01-02 Trimble Navigation Limited Combined cycle slip indicators for regionally augmented gnss
US20130234885A1 (en) * 2012-03-08 2013-09-12 Raytheon Company Global Positioning System (GPS) Carrier Phase Cycle Slip Detection and Correction
US20150219767A1 (en) * 2014-02-03 2015-08-06 Board Of Regents, The University Of Texas System System and method for using global navigation satellite system (gnss) navigation and visual navigation to recover absolute position and attitude without any prior association of visual features with known coordinates
CN106842236A (zh) * 2015-12-04 2017-06-13 航天恒星科技有限公司 Gnss接收机周跳探测与修复处理方法及装置
CN106405592A (zh) * 2016-12-09 2017-02-15 惠州市组合科技有限公司 车载北斗载波相位周跳检测与修复方法及系统
EP3336584A1 (en) * 2016-12-19 2018-06-20 Trimble Inc. Outlier-tolerant navigation satellite system positioning method and system
CN106932793A (zh) * 2017-03-31 2017-07-07 武汉大学 一种北斗三频信号的实时周跳探测与修复方法
CN108267135A (zh) * 2017-12-25 2018-07-10 中铁第四勘察设计院集团有限公司 用于轨道自动测量车的精确定位方法及系统
CN108169774A (zh) * 2017-12-26 2018-06-15 北方信息控制研究院集团有限公司 支持rtppp和rtk的多模gnss单频周跳探测与修复方法
US20190391274A1 (en) * 2018-06-21 2019-12-26 Unicore Communications Technology Corporation Real-time kinematic using standalone global navigation satellite system receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOPING HUO: "Cycle-slip Detection of GPS Carrier Phase with Methodology of SA4 Multi-wavelet Transform", vol. 25, no. 25, pages 227 - 235 *
刘帅 等: "基于北斗卫星的海上定位解算方法的研究", vol. 31, no. 31, pages 80 - 82 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852972A (zh) * 2021-09-13 2021-12-28 金华航大北斗应用技术有限公司 一种基于波束共享的高速移动终端波束调度方法
CN113852972B (zh) * 2021-09-13 2023-10-10 金华航大北斗应用技术有限公司 一种基于波束共享的高速移动终端波束调度方法
CN116087869A (zh) * 2022-12-30 2023-05-09 泰斗微电子科技有限公司 一种基于加速度计的卫星定向方法、设备及可读存储介质

Also Published As

Publication number Publication date
CN111679307B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN105607093B (zh) 一种组合导航系统及获取导航坐标的方法
CN109459778B (zh) 基于抗差方差分量估计的码伪距/多普勒联合测速方法及其应用
CN108508461B (zh) 基于gnss载波相位高精度定位完好性监测方法
CN101943758B (zh) 位置计算方法和位置计算装置
CN108196281A (zh) 一种基于位置域曲线约束的单频动态周跳探测与修复方法
CN108919321B (zh) 一种基于尝试法的gnss定位粗差探测方法
CN102116867A (zh) 一种在动态环境下探测并修复gps载波相位周跳的方法
CN113138402B (zh) 基于rtk的模糊度固定方法及装置、存储介质
CN109471143B (zh) 自适应容错的列车组合定位方法
CN110542438B (zh) 一种基于sins/dvl组合导航误差标定的方法
CN107367744B (zh) 基于自适应测量噪声方差估计的星载gps定轨方法
CN111679307A (zh) 一种卫星定位信号解算方法及装置
CN101464157A (zh) 一种组合定位仪
CN114624741A (zh) 一种定位精度评估方法及装置
CN112731496B (zh) 一种面向智能终端的gnss精密单点定位数据质量控制方法
CN104613966A (zh) 一种地籍测量事后数据处理方法
CN115902963A (zh) 一种单点定位数据处理方法、装置、电子设备及存储介质
Chai et al. A novel method of ambiguity resolution and cycle slip processing for single-frequency GNSS/INS tightly coupled integration system
CN112540393A (zh) 海上精密单点定位保护水平质量检核方法及系统
RU2717566C1 (ru) Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе
CN112649818A (zh) 卫星导航接收机的检测方法、装置、终端设备及介质
CN112230250B (zh) 基于动态长基线差分模拟器的差分接收机测试评测方法
CN113671551B (zh) Rtk定位解算方法
CN113819863A (zh) 一种变形监测方法及系统
CN111399019B (zh) 一种gnss中卫星定位方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant