CN111676392B - 一种高电阻率、高延伸率的合金材料及其制备方法 - Google Patents

一种高电阻率、高延伸率的合金材料及其制备方法 Download PDF

Info

Publication number
CN111676392B
CN111676392B CN202010471007.7A CN202010471007A CN111676392B CN 111676392 B CN111676392 B CN 111676392B CN 202010471007 A CN202010471007 A CN 202010471007A CN 111676392 B CN111676392 B CN 111676392B
Authority
CN
China
Prior art keywords
alloy material
resistivity
alloy
boron
chemical components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010471007.7A
Other languages
English (en)
Other versions
CN111676392A (zh
Inventor
姚海华
王鲁
王本鹏
薛云飞
周正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010471007.7A priority Critical patent/CN111676392B/zh
Publication of CN111676392A publication Critical patent/CN111676392A/zh
Application granted granted Critical
Publication of CN111676392B publication Critical patent/CN111676392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Abstract

本发明涉及一种高电阻率、高延伸率的合金材料及其制备方法,属于合金材料领域。以所述合金材料的总质量为100%计,所述合金材料的化学成分质量百分比为:铁:17‑25%,钴:14‑25%,铬:10‑19%,铝:0.5‑6%,非金属元素:0.2‑2%,余量为镍和不可避免的杂质;其中,所述非金属元素为硼、碳和硅中的一种以上。原料经熔炼、重熔和浇铸后得到一种高电阻率、高延伸率的合金材料。通过调控各元素的含量,获得单一相结构的同时,提高了合金材料电阻率并改善了其机械性能,有助于实现不同需求的加工变形,具有广阔的应用前景。

Description

一种高电阻率、高延伸率的合金材料及其制备方法
技术领域
本发明涉及一种高电阻率、高延伸率的合金材料及其制备方法,属于合金材料领域。
背景技术
电热合金是利用材料电阻特性产生焦耳效应将电能转变成热能的一类材料,如典型的镍铬合金电阻丝。但随着工业的发展,人们对各类电热元件的性能要求越来越高。包括需要合金具有更高的电阻率以实现高的热转换效率,以及更好的加工性能以满足不同服役环境对材料形状的需求,同时保持更低的成本,而现有的镍铬合金越来越难满足这些需求。
发明内容
针对现有技术的问题,本发明的目的是提供一种高电阻率、高延伸率的合金材料及其制备方法。通过调控各元素的含量,获得单一相结构的同时,提高合金电阻率并改善其机械性能,有助于实现不同需求的加工变形,具有广阔的应用前景。
本发明的目的是通过以下技术方案实现的:
一种高电阻率、高延伸率的合金材料,以所述合金材料的总质量为100%计,所述合金材料的化学成分质量百分比为:铁:17-25%,钴:14-25%,铬:10-19%,铝:0.5-6%,非金属元素:0.2-2%,余量为镍和不可避免的杂质;其中,所述非金属元素为硼、碳和硅中的一种以上。
优选的,所述铝的质量百分比为2-4%。
优选的,所述非金属元素的质量百分比为0.4-1.3%。
本发明所述的一种高电阻率、高延伸率的合金材料的制备方法,所述方法步骤如下:
(1)熔炼:按照所述高电阻率合金材料的化学成分称量原料,在氩气保护下通过真空感应熔炼的方法制备得到母合金锭;
(2)重熔、浇铸:在氩气保护下,将所述母合金锭加热至1400-1600℃进行重熔,并通过翻转浇铸的方法制备得到一种高电阻率合金材料;其中,翻转浇铸时电流为500-600A;
其中,熔炼、重熔和浇铸过程中的真空度小于等于2.5×10-3Pa。
优选的,当所述合金材料含有非金属元素硼时,化学成分硼的原料采用硼含量大于等于18wt.%的硼铁,其余化学成分的原料纯度均大于等于99.5wt.%;当所述合金材料不含非金属元素硼时,化学成分的原料纯度均大于等于99.5wt.%。
有益效果
本发明所述高电阻率合金材料的合金相结构为单相固溶体,具有高电阻率与较好的机械性能易于实现加工。合金性能的提升得益于成分的设计与各元素的合理配合。本发明中的合金材料是一种包含镍、铁、钴、铬的多主元合金,其中几种过渡族金属的设计是考虑到它们原子半径较为接近可以实现较好的互溶,以期获得单相固溶体组织,为合金具有较好的塑性变性能力提供保障;适量铝元素的引入该合金系中可以增大合金晶格畸变,可以提高合金整体电阻率,同时其与铬元素共同作用下也有益于提高合金的抗高温氧化能力;另外,适量非金属元素的添加能够为液态合金提供更多形核质点,抑制合金晶粒长大,改善加工性能同时提高合金电阻率。
本发明与常规的镍铬合金相比,本发明所述合金材料:(1)电阻率显著提升,铸态条件下可以达到130μΩcm以上,高于传统镍铬合金(约100~115μΩcm)。(2)机械性能得到明显改善,尤其是延伸率,合金铸态条件下拉伸强度保持在600MPa以上同时延伸率超过30%。(3)优异的塑性变形能力有益于实现后续拉拔轧制等加工。
附图说明
图1为实施例5和7以及对比例1和2的X射线衍射(XRD)谱图。
图2为实施例5和7以及对比例1和2的静态拉伸应力-应变曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中:
(1)原材料选用:镍、铁、钴、铝、铬、碳和硅的纯度分别为99.9wt.%;非金属元素硼的原料硼铁中硼含量为20wt.%。
(2)一种高电阻率、高延伸率的合金材料的制备方法,所述方法步骤如下:
①熔炼:按照所述高电阻率合金材料的化学成分称量原料,在氩气保护下通过真空感应熔炼的方法制备得到母合金锭;
②重熔、浇铸:在氩气保护下,将所述母合金锭加热至1400-1600℃进行重熔,并通过翻转浇铸的方法制备得到一种高电阻率合金材料,其中,翻转浇铸时电流为550A;
熔炼、重熔和浇铸过程中的真空度为2.0×10-3Pa,所述合金材料尺寸为50mm×13mm×40mm。
(3)对所制备的合金材料在同等条件下进行组织结构表征、电阻率和力学性能测试:相结构采用的是布鲁克公司的X射线衍射仪(D8 ADVANCE),测试样品尺寸为10×10×2mm3;电阻率测试为四点探针法,仪器采用日本真空技术公司(ULVAC)ZEM-2型电导仪,样品尺寸为18×3×2mm3;力学性能测试采用的是CMT4305型微机电子万能试验机进行室温准静态拉伸试验,测试试样依据GB/T228.1-2010金属材料室温拉伸试验方法中有关规定制成工字试样,样品厚1.0mm,宽3.14mm,平行段长度10mm,标距长度5mm,应变率为10-3s-1
实施例1
本实施例中合金材料中化学成分及其质量百分比为:铁:25%,钴:14%,铬:10%,铝:0.5%,非金属元素硅:0.5%和硼:0.5%,余量为镍以及不可避免的杂质。
实施例2
本实施例中合金材料中化学成分及其质量百分比为:铁:17%,钴:25%,铬:18%,铝:5%,硅:0.3%,硼:0.8%,余量为镍以及不可避免的杂质。
实施例3
本实施例中合金材料中化学成分及其质量百分比为:铁:20%,钴:20%,铬:15%,铝:2%,硅:0.7%、碳:0.3%,硼:0.5%,余量为镍以及不可避免的杂质。
实施例4
本实施例中合金材料中化学成分及其质量百分比为:铁:18%,钴:20%,铬:17%,铝:4%,碳:0.45%,硼:0.3%,余量为镍以及不可避免的杂质。
实施例5
本实施例中合金材料中化学成分及其质量百分比为:铁:22%,钴:20%,铬:17%,铝:2.5%,硅:0.3%,硼:0.2%,余量为镍以及不可避免的杂质。
实施例6
本实施例中合金材料中化学成分及其质量百分比为:铁:24%,钴:15%,铬:16%,铝:5%,硼:0.4%,余量为镍以及不可避免的杂质。
实施例7
本实施例中合金材料中化学成分及其质量百分比为:铁:17%,钴:17%,铬:12%,铝:3%,碳:0.1%,硼:0.4%,余量为镍以及不可避免的杂质。
实施例8
本实施例中合金材料中化学成分及其质量百分比为:铁:21%,钴:17%,铬:11%,铝:1.5%,硅:0.6%,硼:0.6%,余量为镍以及不可避免的杂质。
对比例1
本对比例中合金材料中化学成分及其质量百分比为:铁:22%,钴:20%,铬:17%,铝:2.5%,余量为镍以及不可避免的杂质。
对比例2
本对比例中合金材料中化学成分及其质量百分比为:铁:17%,钴:10%,铬:8%,铝:7%,硅:0.2%,硼:1.0%,余量为镍以及不可避免的杂质。
实施例5、实施例7、对比例1和对比例2的XRD测试结果如图1所示,从图中可得出所述合金材料的相结构;实施例5、实施例7、对比例1和对比例2的静态拉伸应力-应变曲线如图2所示,从图中可得出所述合金材料的延伸率和抗拉强度,实施例1-8与对比例1-2的合金材料相结构结果、电阻率和拉伸性能测试结果如表1所示。
表1
Figure BDA0002514299520000041
Figure BDA0002514299520000051
综上所述,发明包括但不限于以上实施例,凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

Claims (4)

1.一种高电阻率、高延伸率的合金材料,其特征在于:以所述合金材料的总质量为100%计,所述合金材料的化学成分质量百分比为:铁:17-25%,钴:14-25%,铬:10-19%,铝:0.5-6%,硼:0.2-0.8%,硅:0-0.7%,碳:0-0.45%,余量为镍和不可避免的杂质;所述合金材料为Fcc单相固溶体结构;所述合金材料通过以下方法制备得到,所述方法步骤如下:
(1)熔炼:按照所述高电阻率合金材料的化学成分称量原料,在氩气保护下通过真空感应熔炼的方法制备得到母合金锭;
(2)重熔、浇铸:在氩气保护下,将所述母合金锭加热至1400-1600℃进行重熔,并通过翻转浇铸的方法制备得到一种高电阻率合金材料;翻转浇铸时电流为500-600A;
其中,熔炼、重熔和浇铸过程中的真空度小于等于2.5×10-3Pa。
2.如权利要求1所述的一种高电阻率、高延伸率的合金材料,其特征在于:所述铝的质量百分比为2-4%。
3.如权利要求1所述的一种高电阻率、高延伸率的合金材料,其特征在于:所述非金属元素的质量百分比为0.4-1.3%。
4.如权利要求1所述的一种高电阻率、高延伸率的合金材料,其特征在于:化学成分硼的原料采用硼含量大于等于18wt.%的硼铁,其余化学成分的原料纯度均大于等于99.5wt.%。
CN202010471007.7A 2020-05-28 2020-05-28 一种高电阻率、高延伸率的合金材料及其制备方法 Active CN111676392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010471007.7A CN111676392B (zh) 2020-05-28 2020-05-28 一种高电阻率、高延伸率的合金材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010471007.7A CN111676392B (zh) 2020-05-28 2020-05-28 一种高电阻率、高延伸率的合金材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111676392A CN111676392A (zh) 2020-09-18
CN111676392B true CN111676392B (zh) 2022-04-12

Family

ID=72434399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010471007.7A Active CN111676392B (zh) 2020-05-28 2020-05-28 一种高电阻率、高延伸率的合金材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111676392B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024478A (zh) * 2022-10-20 2023-04-28 北京工业大学 一种用于热控涂层的高熵合金材料和涂层及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2398212A1 (en) * 2000-01-24 2001-07-26 Inco Alloys International, Inc. High temperature thermal processing alloy
CN108441710A (zh) * 2018-05-29 2018-08-24 丹阳市曙光镍材有限公司 一种高性能镍铬铁合金的制备工艺
CN109055823A (zh) * 2018-07-02 2018-12-21 江苏新华合金电器有限公司 新型高电阻电热合金Cr20Ni80Al及其制备方法

Also Published As

Publication number Publication date
CN111676392A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2019127610A1 (zh) 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法
CN106756407B (zh) 一种CrMnFeCoNiZr高熵合金及其制备方法
CN113174509B (zh) 一种高强度铍铜合金棒及其制备工艺
CN106636734B (zh) 高强度、高导电、高抗应力松弛铜合金弹性材料及其制备方法
CN105714139A (zh) 铜-石墨烯复合材料及其制备方法
WO2023050860A1 (zh) 一种高强韧多组分精密高电阻合金及其制备方法
US11242585B2 (en) Iron-based superalloy for high temperature 700 ° C. with coherent precipitation of cuboidal B2 nanoparticles
CN102212712A (zh) 铍铜合金及非晶和/或纳米晶带材生产设备用铜套和制备方法
CN110157945A (zh) 一种抗软化的铜合金及其制备方法和应用
Wang et al. Synchronous improvement of electrical and mechanical performance of A356 alloy reinforced by boron coupling nano-AlNp
CN111676392B (zh) 一种高电阻率、高延伸率的合金材料及其制备方法
CN107034381A (zh) 一种Cu‑Ni‑Co‑Sn‑P铜合金及其制备方法
CN111020380A (zh) 架空导线用合金钢芯线及其制备方法
CN115233042A (zh) 一种耐高温氧化的钴基Co-Fe-Ni-Al共晶中熵合金及其制备方法和应用
CN113106286B (zh) 一种5g通信用高导电铍铜合金棒及其制备工艺
CN114657439A (zh) 一种具有良好室温塑性的难熔高熵合金及其制备方法
CN106676318B (zh) 一种异步牵引电机转子导条用含锆黄铜材料及其制备方法
CN105838915B (zh) 铜合金条、具备该铜合金条的大电流用电子元件以及散热用电子元件
CN115652132B (zh) 铜合金材料及其应用和制备方法
CN106756208A (zh) 一种铜铬锆镧合金
CN112048640B (zh) 一种钛合金及其制备方法
CN108165780A (zh) 一种Ni-Cr-Al-Fe系高温合金的制备方法
CN106676320B (zh) 一种用于高速列车牵引电机收缩环的新材料及其制备方法
CN113088774B (zh) 一种高电阻Al-Mg-Mn-Ti铝合金及其制备工艺
CN109355529A (zh) 一种铜合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant