CN111667148A - 一种led产线品质管控方法 - Google Patents

一种led产线品质管控方法 Download PDF

Info

Publication number
CN111667148A
CN111667148A CN202010402519.8A CN202010402519A CN111667148A CN 111667148 A CN111667148 A CN 111667148A CN 202010402519 A CN202010402519 A CN 202010402519A CN 111667148 A CN111667148 A CN 111667148A
Authority
CN
China
Prior art keywords
target
mass production
bin
center
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010402519.8A
Other languages
English (en)
Inventor
顾铠
李伟英
钱燕妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yunke Zhizao Technology Co ltd
Original Assignee
Zhejiang Yunke Zhizao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Yunke Zhizao Technology Co ltd filed Critical Zhejiang Yunke Zhizao Technology Co ltd
Priority to CN202010402519.8A priority Critical patent/CN111667148A/zh
Publication of CN111667148A publication Critical patent/CN111667148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Algebra (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Factory Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)

Abstract

本发明涉及一种LED产线品质管控方法,包括步骤:S1、结合历史生产数据,判断历史分光打靶图中的打靶点是否满足高斯二维正态分布;S2、当判断历史分光打靶图中的打靶点满足高斯二维正态分布时,根据历史生产数据,利用高斯二维正态分布的概率密度函数计算实际打靶中心的落BIN率;S3、根据实际打靶中心的落BIN率,对目标打靶图的目标中心点进行平移,得到实际打靶中心在不同目标落BIN率下的椭圆方程;S4、根据椭圆方程和试样数据进行试样转量产判断。该LED产线品质管控方法通过计算实际打靶中心的落BIN率,并对目标中心点进行平移,得到椭圆方程,然后再进行试样转量产判断,避免了人为经验设置距离而导致的误差,进而确保了产品的品质。

Description

一种LED产线品质管控方法
技术领域
本发明属于LED制造业技术领域,具体涉及一种LED产线品质管控方法。
背景技术
在LED光源制造领域,色温是衡量发光材料的重要特性参数,在LED点胶的试产量产过程中常用来作为品质监控的重要指标。光学中可以通过1931CIE色坐标系表示色温,色温在1931CIE色坐标系上不是一个区块,是一条线;就是说同一个色温值的LED,发出来的颜色其实不一定是一样的,因此需要引入色坐标这个值来准确对应一颗LED,尤其是白光颜色的LED。在LED封装生产的分光工序中,分光机可以得到每一个颗粒的色坐标。有了色坐标,可以在1931CIE色坐标系上确定一个点,所有颗粒的色坐标确定的点和1931CIE色坐标系就构成了打靶图。
打靶图体现了每个颗粒的色温情况,因此在LED生产过程中,打靶图是用来评价和监控产品品质的重要工具。根据实际数据可知,打靶图为斜椭圆形,椭圆的中心反映了LED产品整体色坐标在什么范围,椭圆的离散程度反映加工工艺的水平。LED客户会基于色坐标提出出货标准,出货标准明确了色坐标范围,即规定了目标中心和目标椭圆。实际数据的打靶中心要求尽量与目标中心重合,而且实际打靶图的椭圆范围要尽量多的落入目标椭圆范围内,打靶图落在目标椭圆内的数量反映了LED产品品质,落在目标椭圆里的LED颗粒为良品,椭圆内LED颗粒占总打靶点的比率越高,说明落BIN率越高,良品率越高。因此打靶图在评价LED产品品质上起了非常重要的作用。
LED制造商通过打靶图对产品品质进行管控,主要体现在两个方面:一方面通过打靶图判断荧光粉配比是否可以试样转量产;另一方面在量产过程中,通过打靶图判断LED产品品质是否有异常。
请参见图1,图1为现有技术提供的一种LED产品的打靶图,目前在利用打靶图进行产品品质管控时,主要通过目标椭圆中心T0与打靶图中心T1的距离d3、打靶图中心到目标椭圆长轴a的距离d1或者打靶中心T1到目标椭圆短轴b的距离d2进行管控。通常,根据人为经验对每种产品的d1、d2、d3设定一个标准距离,当实际中心与目标中心的距离小于这个标准时认为该产品为良品,可以进行试样转量产,或者量产正常。
然而,通过人为经验设置距离的判断方式缺乏理论依据,在判断的准确性上存在着不足。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种LED产线品质管控方法。本发明要解决的技术问题通过以下技术方案实现:
本发明实施例提供了一种LED产线品质管控方法,包括步骤:
S1、结合历史生产数据,判断历史分光打靶图中的打靶点是否满足高斯二维正态分布;
S2、当判断所述历史分光打靶图中的所述打靶点满足所述高斯二维正态分布时,根据所述历史生产数据,利用所述高斯二维正态分布的概率密度函数计算实际打靶中心的落BIN率;
S3、根据所述实际打靶中心的落BIN率,对目标打靶图的目标中心点进行平移,得到所述实际打靶中心在不同目标落BIN率下的椭圆方程;
S4、根据所述椭圆方程和试样数据进行试样转量产判断。
在本发明的一个实施例中,步骤S1包括:
S11、将所述打靶点分解成第一二维主成分和第二二维主成分;
S12、判断所述第一二维主成分和所述第二二维主成分是否分别满足一维正态分布,并且判断所述第一二维主成分和所述第二二维主成分之间是否具有相互独立性;
S13、当判断所述第一二维主成分和所述第二二维主成分分别满足一维正态分布,且所述第一二维主成分和所述第二二维主成分之间具有相互独立性时,所述历史分光打靶图中的所述打靶点满足所述高斯二维正态分布。
在本发明的一个实施例中,所述实际打靶中心的落BIN率为:
Figure BDA0002490041360000031
其中,S表示落BIN率,a表示目标打靶图的椭圆长轴的长度,b表示目标打靶图的椭圆短轴的长度,f(x,y)表示概率密度函数:
Figure BDA0002490041360000032
Figure BDA0002490041360000033
μ1、μ2表示实际打靶中心的坐标,σ1表示x方向离散度,σ2表示y方向离散度,ρ表示x和y的相关系数。
在本发明的一个实施例中,步骤S3包括:
S31、设定所述目标落BIN率;
S32、将所述目标中心点沿第一方向平移至所述目标落BIN率处,然后将所述第一方向旋转目标角度,将所述目标中心点沿旋转后的所述第一方向平移至所述目标落BIN率处,重复上述步骤,直至所述第一方向旋转360°,得到所述实际打靶中心在目标落BIN率下的椭圆方程;
S33、设定不同的所述目标落BIN率,重复步骤S32,得到所述实际打靶中心在不同所述目标落BIN率下的椭圆方程。
在本发明的一个实施例中,步骤S4包括:
S41、设定试样转量产的落BIN率标准,并根据所述落BIN率标准选择一所述椭圆方程作为标准目标;
S42、根据所述试样数据计算试样打靶中心;
S43、判断所述试样打靶中心是否位于所述标准目标内,并根据判断结果进行试样转量产判断。
在本发明的一个实施例中,步骤S3之后还包括:
S5、根据所述椭圆方程和若干组量产数据进行量产过程监控。
在本发明的一个实施例中,步骤S5包括:
S51、获取所述量产数据,并根据所述量产数据获取若干量产打靶图数据;
S52、根据所述量产数据判断量产过程是否满足目标条件;
S53、当判断所述量产过程不满足所述目标条件时,则根据若干所述量产打靶图数据和所述椭圆方程计算若干量产落BIN率和若干量产打靶中心,并对若干所述量产落BIN率和若干所述量产打靶中心分别进行分析用分析;
S54、当判断所述量产过程满足所述目标条件时,则根据若干所述量产打靶图数据中的目标打靶图数据和所述椭圆方程计算待分析落BIN率和待分析打靶中心,并根据若干所述量产落BIN率和若干所述量产打靶中心对所述待分析落BIN率和所述待分析打靶中心分别进行控制用分析。
在本发明的一个实施例中,所述目标条件包括连续25批量产数据处于受控状态。
在本发明的一个实施例中,步骤S53包括:
S531、根据若干所述量产打靶图数据计算若干所述量产打靶中心,并根据若干所述量产打靶中心和所述椭圆方程计算若干所述量产落BIN率;
S532、计算若干所述量产落BIN率的第一控制线,然后结合所述第一控制线,依据目标准则对若干所述量产落BIN率进行受控判断;
S533、计算若干所述量产打靶中心的第二控制线和第三控制线,然后结合所述第二控制线和所述第三控制线,依据所述目标准则对若干所述量产打靶中心进行受控判断。
在本发明的一个实施例中,步骤S54包括:
S541、根据所述目标打靶图数据计算所述待分析打靶中心,并根据所述待分析打靶中心和所述椭圆方程计算所述待分析落BIN率;
S542、结合所述第一控制线,依据所述目标准则对所述待分析落BIN率进行受控判断;
S543、结合所述第二控制线和所述第三控制线,依据所述目标准则对所述待分析打靶中心进行受控判断。
与现有技术相比,本发明的有益效果:
本发明的LED产线品质管控方法利用数据统计技术,通过计算实际打靶中心的落BIN率,并对目标中心点进行平移,得到椭圆方程,然后再进行试样转量产判断,可以精确的判断产品品质,避免了人为经验设置距离而导致的误差,进而确保了产品的品质。
附图说明
图1为现有技术提供的一种LED产品的打靶图;
图2为本发明实施例提供的一种LED产线品质管控方法的流程示意图;
图3a-图3b为发明实施例提供的一种第一二维主成分Z1和第二二维主成分Z2的Q-Q图;
图4为本发明实施例提供的一种目标打靶图与实际打靶图的分布示意图;
图5为本发明实施例提供的一种打靶图椭圆曲线进行旋转变换的示意图;
图6为本发明实施例提供的一种目标打靶图平移示意图;
图7为本发明实施例提供的一种实际打靶中心在不同落BIN率下的椭圆曲线示意图;
图8为本发明实施例提供的另一种LED产线品质管控方法的流程示意图;
图9为本发明实施例提供的一种量产过程监控的流程示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
本发明实施例通过对现场数据的研究,找到打靶图的分布规律,证明打靶图是满足高斯二维正态分布的,从而提出通过概率密度计算落BIN率的方法,并以此方法为基础,提供试验转量产以及对量产结果进行监控的科学依据。
实施例一
请参见图2,图2为本发明实施例提供的一种LED产线品质管控方法的流程示意图。该LED产线品质管控方法包括步骤:
S1、结合历史生产数据,判断历史分光打靶图中的打靶点是否满足高斯二维正态分布。具体包括步骤:
S11、将打靶点分解成第一二维主成分和第二二维主成分。
具体地,二维随机向量(X,Y)T服从二维正态分布的充要条件是各变量服从一维正态分布且相互独立,对于二维打靶点,X变量与Y变量相关性强不独立,将打靶点分解成互不相关的二维主成分,若二维主成分满足正态独立性检验,则说明打靶点满足二维正态分布。
以某一历史分光打靶图数据进行分析说明,该历史分光打靶图数据共350个点,计算这350个打靶点的相关系数,结果如表1所示,表1中两变量相关系数为0.677且显著相关。
表1 相关性分析结果
Figure BDA0002490041360000071
然后,利用主成分分析法进行主成分提取,得到两变量的二维主成分,两个二维主成分的特征值和方差贡献率见表2,由表2可知,两主成分的特征值分别是1.677、0.323。
表2 主成分特征值
Figure BDA0002490041360000072
经过主成分分析后各主成分的成分系数见表3。
表3 主成分成分矩阵
Figure BDA0002490041360000081
由表3得到两个二维主成分可用式(1)表示:
Figure BDA0002490041360000082
其中,Z1表示第一二维主成分,Z2表示第二二维主成分。
S12、判断第一二维主成分和第二二维主成分是否分别满足一维正态分布,并且判断第一二维主成分和第二二维主成分之间是否具有相互独立性。
进一步地,证明Z1和Z2服从一维正态分布且相互独立,即可说明打靶点满足二维正态分布。
首先,证明Z1和Z2服从一维正态分布。
具体地,本实施例利用Q-Q图进行正态性检验,请参见图3a-图3b,图3a-图3b为发明实施例提供的一种第一二维主成分Z1和第二二维主成分Z2的Q-Q图,从图3a-图3b中可以看出,散点与斜线的吻合度较高,说明Z1、Z2均符合正态分布。
其次,证明Z1和Z2之间具有独立性。
具体地,为检验两主成分的独立性,将主成分Z1、Z2离散化,获取Z1和Z2的列联表,如表4所示。
表4 Z1和Z2列联表
Figure BDA0002490041360000091
然后利用卡方检验验证两主成分独立性,卡方检验结果如表5所示,从表5中可知,sig=0.876>0.05,则说明卡方检验的原假设成立,接收原假设,从而说明Z1和Z2之间具有独立性。
表5 Z1和Z2独立性检验结果
Figure BDA0002490041360000092
S13、当判断第一二维主成分和第二二维主成分分别满足一维正态分布,且第一二维主成分和所述第二二维主成分具有相互独立性时,历史分光打靶图中的打靶点满足高斯二维正态分布。
具体地,通过证明上述Z1和Z2服从一维正态分布并且Z1和Z2之间具有独立性,验证了打靶点(X,Y)T服从高斯二维正态分布。
进一步地,若历史分光打靶图中的打靶点不满足高斯二维正态分布,则结束该方法。
S2、当判断历史分光打靶图中的打靶点满足高斯二维正态分布时,根据历史生产数据,利用高斯二维正态分布的概率密度函数计算实际打靶中心的落BIN率。
具体地,当历史分光打靶图中的打靶点满足高斯二维正态分布时,高斯二维正态分布有如下概率密度函数公式:
Figure BDA0002490041360000101
其中,μ1、μ2表示历史分光打靶图的打靶中心点,σ1、σ2、ρ分别表示x方向离散度、y方向离散度、x和y的相关系数。
式(2)中,打靶中心点μ1、μ2与实际生产结果相关,σ1、σ2、ρ这三个参数由LED产品和其原材料决定,即对于同一LED产品、相同原材料组合,其生产得到的打靶图形状相同,但中心点不同。进一步地,对可以通过对同一LED产品,不同原材料组合下多组生产的打靶图数据进行统计分析证明,统计结果如表6所示。
表6 同产品下打靶图统计数据
Figure BDA0002490041360000102
由表6可知,对于同一LED产品、相同原材料组合σ1、σ2、ρ标准偏差较小,μ1、μ2标准偏差偏大,因此,可以认为对于同一LED产品、相同原材料组合σ1、σ2、ρ是定值。
请参见图4,图4为本发明实施例提供的一种目标打靶图与实际打靶图的分布示意图。图4中,当实际打靶图的椭圆曲线与目标打靶图的椭圆曲线完全相同(椭圆曲线形貌相同),即目标打靶图椭圆曲线的打靶中心T0与实际打靶图椭圆曲线的打靶中心T1重合时,落bin率为100%;当T1与T0存在距离差(任意方向、任意大小的距离差),落bin率小于100%。
假设实际打靶图椭圆曲线的打靶中心T1确定(即μ1、μ2已知)时,落bin率为S(0<=S<=1),则S可用概率密度函数积分得到,如式(3)所示:
Figure BDA0002490041360000111
其中,f(x,y)为概率密度函数,Xmin、Xmax、Ymin、Ymax为积分上下限。
请参见图5,图5为本发明实施例提供的一种打靶图椭圆曲线进行旋转变换的示意图,左边为旋转前,右边为旋转后。由于实际打靶图和目标打靶图均为斜椭圆,不便于计算积分上下限,因此,旋转斜椭圆对斜椭圆的坐标进行变换;具体地,以目标打靶图的打靶中心T0为坐标中心、长轴为x坐标、短轴为y坐标对斜椭圆的坐标进行变换,旋转前后的结果如图5所示。
旋转后,实际打靶图的坐标如式(4)所示:
Figure BDA0002490041360000112
其中,μx、μy为目标打靶图椭圆曲线的打靶中心,θ为目标打靶图椭圆曲线的倾斜角度。
式(4)中,μx、μy、θ均为已知值。
进一步地,旋转后,目标打靶图和实际打靶图的斜椭圆变为标准椭圆,则有椭圆公式
Figure BDA0002490041360000121
其中,a表示目标打靶图的椭圆长轴的长度,b表示目标打靶图的椭圆短轴的长度,由此得到,Xmin=-a,Xmax=a,
Figure BDA0002490041360000122
Figure BDA0002490041360000123
则实际打靶中心的落BIN率S可以变换为式(5):
Figure BDA0002490041360000124
其中,S表示落BIN率,a表示目标打靶图的椭圆长轴的长度,b表示目标打靶图的椭圆短轴的长度,f(x,y)表示概率密度函数。
式(5)中,μ1、μ2可由实际打靶图得到,σ1、σ2、ρ对于同一LED产品、相同原材料组合认为不变,可由历史数据求得,因此,对于指定的实际打靶图的落BIN率即可通过式(5)求得。
S3、根据所述实际打靶中心的落BIN率,对目标打靶图的目标中心点进行平移,得到所述实际打靶中心在不同落BIN率下的椭圆方程。
S31、设定目标落BIN率。
具体地,设定目标落BIN率为y。
S32、将目标中心点沿第一方向平移至目标落BIN率处,然后将第一方向旋转目标角度,将目标中心点沿旋转后的第一方向平移至目标落BIN率处,重复上述步骤,直至第一方向旋转360°,得到实际打靶中心在目标落BIN率下的椭圆方程。
请参见图6,图6为本发明实施例提供的一种目标打靶图平移示意图,其中,T0为目标中心点,T1为实际打靶中心。
具体地,将T0沿第一方向T0A向外偏移,规定移动的步长为t,则每次移动可得到一个落BIN率S,当S=y时,记录一个T1值;然后,把第一方向T0A旋转目标角度(例如1°),得到旋转后的第一方向T0B,将目标中心点T0B方向偏移,使得S=y;直至第一方向T0A旋转360°,此时T1也旋转了360°,从而得到目标落BIN率为y的一组打靶中心数据。接着,将这组打靶中心数据进行拟合,得到该组打靶中心数据的椭圆系数(椭圆中心点、椭圆长轴、椭圆短轴和倾斜角度),便可得到一个实际打靶中心在目标落BIN率y下的椭圆方程。
S33、设定不同的目标落BIN率,重复步骤S32,得到实际打靶中心在不同目标落BIN率下的椭圆方程。
具体地,设定目标落BIN率y为不同的数值,重复步骤S32,得到实际打靶中心在不同目标落BIN率y下的若干组打靶中心数据;然后对若干组打靶中心数据进行拟合,得到若干组打靶中心数据的椭圆系数,如表7所示,从而由椭圆系数得到实际打靶中心在不同目标落BIN率y下的椭圆方程。
表7 椭圆方程系数
Figure BDA0002490041360000131
请参见图7,图7为本发明实施例提供的一种实际打靶中心在不同落BIN率下的椭圆曲线示意图,其中,三色容差曲线是指目标打靶图曲线。图7描绘了当目标落BIN率分别为70%、80%、85%、90%时的几组椭圆曲线,这几组椭圆曲线均为斜椭圆。另外,图7中的方框是指边长为0.002的正方形,代表目前LED制造商判断品质时设定的距离范围,以此作为试产转量产的标准,可见在这个距离范围内对应的落BIN率存在较大差异,如图7中A点是满足该距离范围的,但A点代表的落BIN率并不高,存在较大误差。因此,本实施例采用椭圆方程设定距离范围,通过计算实际打靶图的中心与椭圆方程的关系,以此进行试样转量产判断。
S4、根据椭圆方程和试样数据进行试样转量产判断。具体包括步骤:
S41、设定试样转量产的落BIN率标准,并根据落BIN率标准选择一椭圆方程作为标准目标。
具体地,LED制造商可根据产品实际生产情况选择合理的椭圆方程;即根据每个LED产品,设定一个转量产的落BIN率标准,此时可以根据落BIN率标准查询到该落BIN率对应的椭圆方程,把该椭圆方程形成的椭圆轨迹作为标准目标。
S42、根据试样数据计算试样打靶中心。
具体地,LED制造商根据试样数据获得少量打靶中心,再由少量打靶数据求得试样打靶中心。
S43、判断试样打靶中心是否位于标准目标内,并根据判断结果进行试样转量产判断。
具体地,当判断试样打靶中心位于标准目标(即椭圆方程)内,则可以进行试样转量产;当判断试样打靶中心未位于标准目标内,则无法进行试样转量产。
本实施例的LED产线品质管控方法利用数据统计技术,通过计算实际打靶中心的落BIN率,并对目标中心点进行平移,得到椭圆方程,然后再进行试样转量产判断,可以精确的判断产品品质,避免了人为经验设置距离而导致的误差,进而确保了产品的品质。
实施例二
在实施例一的基础上,请参见图8,图8为本发明实施例提供的另一种LED产线品质管控方法的流程示意图。该LED产线品质管控方法包括步骤:
S1、结合历史生产数据,判断历史分光打靶图中的打靶点是否满足高斯二维正态分布。
S2、当判断历史分光打靶图中的打靶点满足高斯二维正态分布时,根据历史生产数据,利用高斯二维正态分布的概率密度函数计算实际打靶中心的落BIN率。
S3、根据所述实际打靶中心的落BIN率,对目标打靶图的目标中心点进行平移,得到所述实际打靶中心在不同落BIN率下的椭圆方程。
S4、根据所述椭圆方程和若干组量产数据进行量产过程监控。
具体地,当判断可以进行试样转量产后对LED产品进行量产生产,在量产生产的过程中进行量产过程监控。
为保障LED点胶量产品品质的稳定,确保量产打靶中心以及良率的一致性,本实施例采用SPC的方式对每次量产结果的量产落BIN率、量产打靶中心的x以及量产打靶中心的y进行监控。
SPC监控的核心是:通过对连续采集的工艺参数数据进行定量的数理统计分析,分析工艺中是否存在“异常起伏”,从而判断生产过程是否处于统计受控状态;所采集的数据必须满足同一正态分布,这是分析的前提。分析中利用累积(一般为25批)数据的均值(μ)、标准偏差(σ)来计算SPC监控的上控制线UCL和下控制线LCL。UCL和LCL的计算公式如式(6)所示:
UCL=μ+3σ;LCL=μ-3σ (6)
然后再根据上控制线UCL和下控制线LCL,依据小概率事件在一般情况下不应出现的原理确定的八条判异准则判断数据是否异常,从而对生产过程是否受控进行判断。
具体地,八条判异准则包括:准则1:有一个点位于3倍标准偏差(σ)外;准则2:连续9点落在中心线的同一侧;准则3:连续6点递增或者递减;准则4:连续14点中相邻点交替上下;准则5:连续3点中有两点落在中心线同一侧的2倍标准偏差外;准则6:连续5点中有4点落在中心线同一侧的1倍标准偏差外;准则7:连续15点落在中心线两侧的一倍标准偏差内;准则8:连续8点落在中心线两侧且无一点在1倍标准偏差内。
进一步地,在累积25批的过程分析称为分析用分析,25批连续受控后的分析称为控制用分析。
请参见图9,图9为本发明实施例提供的一种量产过程监控的流程示意图,进行量产过程监控的步骤具体包括:
S51、获取量产数据,并根据量产数据获取若干量产打靶图数据。
具体地,量产数据主要是指分光文件,根据分光文件可以获得量产打靶图数据。
S52、根据量产数据判断量产过程是否满足目标条件。
具体地,目标条件包括连续25批量产数据处于受控状态,其中,受控状态是指连续25批量产数据无异常起伏。也就是说,判断连续25批量产数据有无异常起伏,若有,则不满足目标条件,若无,则满足目标条件。
S53、当判断量产过程不满足目标条件时,则根据若干量产打靶图数据和椭圆方程计算若干量产落BIN率和若干量产打靶中心,并对若干量产落BIN率和若干量产打靶中心分别进行分析用分析。具体包括步骤:
S531、根据若干量产打靶图数据计算若干量产打靶中心,并根据若干量产打靶中心和椭圆方程计算若干量产落BIN率。
具体地,根据每次量产获得的量产打靶图数据计算得到该次量产打靶中心,然后根据该次量产打靶中心和步骤S3得到的椭圆方程计算该次量产落BIN率,从而,多次量产可以获得多个量产打靶中心和多个量产落BIN率。
S532、计算若干所述量产落BIN率的第一控制线,然后结合所述第一控制线,依据目标准则对若干所述量产落BIN率进行受控判断。
本实施例中,目标准则包括八条判异准则。具体地,在计算得到多个量产落BIN率后,利用公式(6)计算多个量产落BIN率的均值μ1和标准偏差σ1,从而得到量产落BIN率的第一控制线,该第一控制线包括第一上控制线UCL1和第一下控制线LCL1,然后结合UCL1和LCL1,依据八条判异准则对多个量产落BIN率进行受控判断。
进一步地,当判断多个量产落BIN率出现失控或者具备失控倾向,对于失控数据查找原因、解决问题,然后清除积累数据,重新进入分析用阶段,重新建立控制线。
S533、计算若干量产打靶中心的第二上控制线和第二下控制线,然后结合第二上控制线和第二下控制线,依据目标准则对若干量产打靶中心进行受控判断。
具体地,在计算得到多个量产打靶中心(x,y)后,利用公式(6)计算多个量产打靶中心x的均值μ2和标准偏差σ2,从而得到多个量产打靶中心x的第二控制线,该第二控制线包括第二上控制线UCL2和第二下控制线LCL2,然后结合UCL2和LCL2,依据八条判异准则对多个量产打靶中心x进行受控判断。同时,利用公式(6)计算多个量产打靶中心y的均值μ2和标准偏差σ2,从而得到多个量产打靶中心y的第三控制线,该第三控制线包括第三上控制线UCL3和第三下控制线LCL3,然后结合UCL3和LCL3,依据八条判异准则对多个量产打靶中心y进行受控判断。
进一步地,当判断多个量产打靶中心x或者y出现失控或者具备失控倾向,对于失控数据查找原因、解决问题,然后清除积累数据,重新进入分析用阶段,重新建立控制线。
S54、当判断量产过程满足目标条件时,则根据若干量产打靶图数据中的目标打靶图数据和椭圆方程计算待分析落BIN率和待分析打靶中心,并根据若干量产落BIN率和若干量产打靶中心对待分析落BIN率和待分析打靶中心分别进行控制用分析。具体包括步骤:
S541、根据目标打靶图数据计算待分析打靶中心,并根据待分析打靶中心和椭圆方程计算待分析落BIN率。
具体地,在量产过程中会获取得到多组量产打靶图数据,而目标打靶图数据是指该多组量产打靶图数据中的待分析的一组数据,例如多组量产打靶图数据中的最后一组。进一步地,得到目标打靶图数据后,根据目标打靶图数据计算待分析打靶中心(x,y),然后结合待分析打靶中心(x,y)和椭圆方程计算待分析落BIN率,其中,待分析打靶中心(x,y)和待分析落BIN率均为量产过程中单次生产的数据。
S542、结合第一控制线,依据目标准则对待分析落BIN率进行受控判断。
具体地,利用分析用分析阶段计算得到的第一控制线(UCL1和LCL1),依据八条判异准则对待分析落BIN率进行受控判断。
进一步地,当判断待分析落BIN率出现失控或者具备失控倾向,对于失控数据查找原因、解决问题,然后清除积累数据,重新进入分析用阶段,重新建立控制线。
S543、结合第二控制线和第三控制线,依据目标准则对待分析打靶中心进行受控判断。
具体地,利用分析用分析阶段计算得到的第二控制线(UCL2和LCL2),依据八条判异准则对待分析打靶中心中的x进行受控判断。同时,利用分析用分析阶段计算得到的第三控制线(UCL3和LCL3),依据八条判异准则对待分析打靶中心中的y进行受控判断。
进一步地,当判断待分析打靶中心x或者y出现失控或者具备失控倾向,对于失控数据查找原因、解决问题,然后清除积累数据,重新进入分析用阶段,重新建立控制线。
本实施例在得到椭圆方程的基础上,在量产环节利用计算落BIN率的方法,对量产落BIN率以及量产打靶中心进行SPC监控,确保了产品的一致性,进而保证了产品品质的稳定性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种LED产线品质管控方法,其特征在于,包括步骤:
S1、结合历史生产数据,判断历史分光打靶图中的打靶点是否满足高斯二维正态分布;
S2、当判断所述历史分光打靶图中的所述打靶点满足所述高斯二维正态分布时,根据所述历史生产数据,利用所述高斯二维正态分布的概率密度函数计算实际打靶中心的落BIN率;
S3、根据所述实际打靶中心的落BIN率,对目标打靶图的目标中心点进行平移,得到所述实际打靶中心在不同目标落BIN率下的椭圆方程;
S4、根据所述椭圆方程和试样数据进行试样转量产判断。
2.如权利要求1所述的LED产线品质管控方法,其特征在于,步骤S1包括:
S11、将所述打靶点分解成第一二维主成分和第二二维主成分;
S12、判断所述第一二维主成分和所述第二二维主成分是否分别满足一维正态分布,并且判断所述第一二维主成分和所述第二二维主成分之间是否具有相互独立性;
S13、当判断所述第一二维主成分和所述第二二维主成分分别满足一维正态分布,且所述第一二维主成分和所述第二二维主成分之间具有相互独立性时,所述历史分光打靶图中的所述打靶点满足所述高斯二维正态分布。
3.如权利要求1所述的LED产线品质管控方法,其特征在于,所述实际打靶中心的落BIN率为:
Figure FDA0002490041350000011
其中,S表示落BIN率,a表示目标打靶图的椭圆长轴的长度,b表示目标打靶图的椭圆短轴的长度,f(x,y)表示概率密度函数:
Figure FDA0002490041350000021
Figure FDA0002490041350000022
μ1、μ2表示实际打靶中心的坐标,σ1表示x方向离散度,σ2表示y方向离散度,ρ表示x和y的相关系数。
4.如权利要求1所述的LED产线品质管控方法,其特征在于,步骤S3包括:
S31、设定所述目标落BIN率;
S32、将所述目标中心点沿第一方向平移至所述目标落BIN率处,然后将所述第一方向旋转目标角度,将所述目标中心点沿旋转后的所述第一方向平移至所述目标落BIN率处,重复上述步骤,直至所述第一方向旋转360o,得到所述实际打靶中心在目标落BIN率下的椭圆方程;
S33、设定不同的所述目标落BIN率,重复步骤S32,得到所述实际打靶中心在不同所述目标落BIN率下的椭圆方程。
5.如权利要求1所述的LED产线品质管控方法,其特征在于,步骤S4包括:
S41、设定试样转量产的落BIN率标准,并根据所述落BIN率标准选择一所述椭圆方程作为标准目标;
S42、根据所述试样数据计算试样打靶中心;
S43、判断所述试样打靶中心是否位于所述标准目标内,并根据判断结果进行试样转量产判断。
6.如权利要求1所述的LED产线品质管控方法,其特征在于,步骤S3之后还包括:
S5、根据所述椭圆方程和若干组量产数据进行量产过程监控。
7.如权利要求6所述的LED产线品质管控方法,其特征在于,步骤S5包括:
S51、获取所述量产数据,并根据所述量产数据获取若干量产打靶图数据;
S52、根据所述量产数据判断量产过程是否满足目标条件;
S53、当判断所述量产过程不满足所述目标条件时,则根据若干所述量产打靶图数据和所述椭圆方程计算若干量产落BIN率和若干量产打靶中心,并对若干所述量产落BIN率和若干所述量产打靶中心分别进行分析用分析;
S54、当判断所述量产过程满足所述目标条件时,则根据若干所述量产打靶图数据中的目标打靶图数据和所述椭圆方程计算待分析落BIN率和待分析打靶中心,并根据若干所述量产落BIN率和若干所述量产打靶中心对所述待分析落BIN率和所述待分析打靶中心分别进行控制用分析。
8.如权利要求7所述的LED产线品质管控方法,其特征在于,所述目标条件包括连续25批量产数据处于受控状态。
9.如权利要求7所述的LED产线品质管控方法,其特征在于,步骤S53包括:
S531、根据若干所述量产打靶图数据计算若干所述量产打靶中心,并根据若干所述量产打靶中心和所述椭圆方程计算若干所述量产落BIN率;
S532、计算若干所述量产落BIN率的第一控制线,然后结合所述第一控制线,依据目标准则对若干所述量产落BIN率进行受控判断;
S533、计算若干所述量产打靶中心的第二控制线和第三控制线,然后结合所述第二控制线和所述第三控制线,依据所述目标准则对若干所述量产打靶中心进行受控判断。
10.如权利要求9所述的LED产线品质管控方法,其特征在于,步骤S54包括:
S541、根据所述目标打靶图数据计算所述待分析打靶中心,并根据所述待分析打靶中心和所述椭圆方程计算所述待分析落BIN率;
S542、结合所述第一控制线,依据所述目标准则对所述待分析落BIN率进行受控判断;
S543、结合所述第二控制线和所述第三控制线,依据所述目标准则对所述待分析打靶中心进行受控判断。
CN202010402519.8A 2020-05-13 2020-05-13 一种led产线品质管控方法 Pending CN111667148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010402519.8A CN111667148A (zh) 2020-05-13 2020-05-13 一种led产线品质管控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010402519.8A CN111667148A (zh) 2020-05-13 2020-05-13 一种led产线品质管控方法

Publications (1)

Publication Number Publication Date
CN111667148A true CN111667148A (zh) 2020-09-15

Family

ID=72383599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010402519.8A Pending CN111667148A (zh) 2020-05-13 2020-05-13 一种led产线品质管控方法

Country Status (1)

Country Link
CN (1) CN111667148A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116993233A (zh) * 2023-09-28 2023-11-03 南通华隆微电子股份有限公司 一种提高二极管封装质量的方法与系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164517A (ja) * 2005-12-14 2007-06-28 Denso Corp 図形中心検出方法、楕円検出方法、画像認識装置、制御装置
KR20090091449A (ko) * 2008-02-25 2009-08-28 삼성중공업 주식회사 선박 레이더 추적 시스템의 추적 표적 판정 방법 및 이를이용한 기록매체, 아파보드 및 레이더
CN103091076A (zh) * 2013-01-15 2013-05-08 厦门多彩光电子科技有限公司 Led色容差测试方法
CN104061552A (zh) * 2014-07-21 2014-09-24 中山市泓昌光电科技有限公司 一种降低led色温差的方案
CN104061532A (zh) * 2014-07-21 2014-09-24 中山市泓昌光电科技有限公司 一种降低led色容差的方案
CN104636832A (zh) * 2015-02-27 2015-05-20 上海联影医疗科技有限公司 剂量分布变化估算方法及装置、直接子野优化方法及系统
WO2015085050A1 (en) * 2013-12-06 2015-06-11 Cree, Inc. Leds configured for targeted spectral power disbution
CN106684215A (zh) * 2015-11-10 2017-05-17 如皋市富钢机械配件有限公司 一种高亮度落bin率集中的LED灯的生产工艺
CN108010908A (zh) * 2017-11-10 2018-05-08 江苏稳润光电科技有限公司 一种让人感官舒适的白光led封装方法
CN108733620A (zh) * 2018-05-02 2018-11-02 江苏稳润光电有限公司 一种led颜色BIN划分方法
CN108765489A (zh) * 2018-05-29 2018-11-06 中国人民解放军63920部队 一种基于组合靶标的位姿计算方法、系统、介质及设备
CN110807807A (zh) * 2018-08-01 2020-02-18 深圳市优必选科技有限公司 一种单目视觉的目标定位的图案、方法、装置及设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164517A (ja) * 2005-12-14 2007-06-28 Denso Corp 図形中心検出方法、楕円検出方法、画像認識装置、制御装置
KR20090091449A (ko) * 2008-02-25 2009-08-28 삼성중공업 주식회사 선박 레이더 추적 시스템의 추적 표적 판정 방법 및 이를이용한 기록매체, 아파보드 및 레이더
CN103091076A (zh) * 2013-01-15 2013-05-08 厦门多彩光电子科技有限公司 Led色容差测试方法
WO2015085050A1 (en) * 2013-12-06 2015-06-11 Cree, Inc. Leds configured for targeted spectral power disbution
CN104061552A (zh) * 2014-07-21 2014-09-24 中山市泓昌光电科技有限公司 一种降低led色温差的方案
CN104061532A (zh) * 2014-07-21 2014-09-24 中山市泓昌光电科技有限公司 一种降低led色容差的方案
CN104636832A (zh) * 2015-02-27 2015-05-20 上海联影医疗科技有限公司 剂量分布变化估算方法及装置、直接子野优化方法及系统
CN106684215A (zh) * 2015-11-10 2017-05-17 如皋市富钢机械配件有限公司 一种高亮度落bin率集中的LED灯的生产工艺
CN108010908A (zh) * 2017-11-10 2018-05-08 江苏稳润光电科技有限公司 一种让人感官舒适的白光led封装方法
CN108733620A (zh) * 2018-05-02 2018-11-02 江苏稳润光电有限公司 一种led颜色BIN划分方法
CN108765489A (zh) * 2018-05-29 2018-11-06 中国人民解放军63920部队 一种基于组合靶标的位姿计算方法、系统、介质及设备
CN110807807A (zh) * 2018-08-01 2020-02-18 深圳市优必选科技有限公司 一种单目视觉的目标定位的图案、方法、装置及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
康玉柱: "色容差标准比较及应用", no. 10, pages 18 - 28 *
张鹏飞;聂丛伟;: "LED光源采用色容差椭圆分BIN制程的实现", 科技风, no. 15 *
王宇阳: "LED模块荧光粉胶在线修补方案", vol. 38, no. 1, pages 8 - 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116993233A (zh) * 2023-09-28 2023-11-03 南通华隆微电子股份有限公司 一种提高二极管封装质量的方法与系统
CN116993233B (zh) * 2023-09-28 2023-12-12 南通华隆微电子股份有限公司 一种提高二极管封装质量的方法与系统

Similar Documents

Publication Publication Date Title
US7660440B2 (en) Method for on-line machine vision measurement, monitoring and control of organoleptic properties of products for on-line manufacturing processes
US7068817B2 (en) Method for on-line machine vision measurement, monitoring and control of product features during on-line manufacturing processes
JP5625935B2 (ja) 判定基準値の適否判定方法およびその適正値の特定方法ならびに適正値への変更方法、部品実装基板の検査システム、生産現場におけるシミュレーション方法およびシミュレーションシステム
US8224605B2 (en) Inspection standard setting device, inspection standard setting method and process inspection device
CN107063099B (zh) 一种基于视觉系统的机械制造业在线质量监测方法
CN100432622C (zh) 印刷焊锡检查装置
CN1885014B (zh) 基板检查装置及其参数设定方法和参数设定装置
CN114799849B (zh) 一种基于机器视觉的螺丝机作业操作参数采集分析系统
CN111667148A (zh) 一种led产线品质管控方法
CN113160143A (zh) 物料搅拌槽内物料液面高度测量方法及系统
McPherron et al. Stone tool analysis using digitized images: examples from the Lower and Middle Paleolithic
CN110928265B (zh) 数据处理方法、装置与系统、以及计算器可读取记录介质
JPH08254501A (ja) 外観検査方法及び装置
CN110363374B (zh) 一种不合格产品影响因素的定量分析方法
CN107917914B (zh) 一种评价卷烟加工行业中配方烟丝中各配方组分混合均匀性的方法
CN114384872A (zh) 产品研制过程质量综合管控系统
CN109948205B (zh) 一种基于三维形态描述的节理面粗糙度计算方法
CN112598233A (zh) 粉末冶金生产用质量安全监控管理系统
CN111551552B (zh) 一种圆孔冲孔网的外观质量检测方法
CN111862245B (zh) 一种食品咀嚼效率的评估方法
CN112800929B (zh) 一种基于深度学习的竹笋数量与高生长率在线监测方法
CN117314262B (zh) 一种木门多工序自动化集成加工生产线检测方法及系统
CN112684512B (zh) 一种河道识别方法
CN117078681B (zh) 一种点胶轨迹的三维仿真模拟方法及系统
TWI801921B (zh) 良率導向之線上機台匹配管理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20240510