CN111655448A - 用于制造转子叶片的外蒙皮的方法 - Google Patents

用于制造转子叶片的外蒙皮的方法 Download PDF

Info

Publication number
CN111655448A
CN111655448A CN201880087217.7A CN201880087217A CN111655448A CN 111655448 A CN111655448 A CN 111655448A CN 201880087217 A CN201880087217 A CN 201880087217A CN 111655448 A CN111655448 A CN 111655448A
Authority
CN
China
Prior art keywords
skin layer
outer skin
rotor blade
combination
inner skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880087217.7A
Other languages
English (en)
Inventor
J.R.托宾
T.默茨霍伊泽
P.L.贝曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111655448A publication Critical patent/CN111655448A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/302Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C2027/4733Rotor blades substantially made from particular materials
    • B64C2027/4736Rotor blades substantially made from particular materials from composite materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2001Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4002Cellulosic materials, e.g. wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6012Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6013Fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Wind Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一种用于制造转子叶片的外蒙皮的方法包括由一种或多种树脂或纤维材料中的至少一种的第一组合来形成外蒙皮的外蒙皮层。方法还包括由一种或多种树脂或纤维材料中的至少一种的第二组合来形成外蒙皮的内蒙皮层。更特别地,第一组合和第二组合是不同的。此外,方法包括将外蒙皮层和内蒙皮层以堆叠构造布置在一起。另外,方法包括将外蒙皮层和内蒙皮层连结在一起以形成外蒙皮。

Description

用于制造转子叶片的外蒙皮的方法
技术领域
本公开内容大体上涉及风力涡轮转子叶片,且更特别地涉及一种用于制造风力涡轮转子叶片的外蒙皮的方法。
背景技术
风力被认为是目前可获得的最清洁、最环境友好的能源中的一种,且风力涡轮在该方面获得了增加的关注。现代的风力涡轮典型地包括塔架、发电机、齿轮箱、机舱,以及一个或多个转子叶片。转子叶片使用已知的翼型(foil)原理来获取风的动能。转子叶片传送呈旋转能形式的动能,以便转动轴,该轴将转子叶片联接到齿轮箱(或如果不使用齿轮箱,直接联接到发电机)。发电机然后将机械能转换成电能,该电能可部署至公用网。
转子叶片大体上包括吸力侧壳和压力侧壳,该壳典型地使用模制过程来形成,该壳沿叶片前缘和后缘在结合线处结合在一起。此外,压力壳和吸力壳相对轻量,且具有不构造成承受在操作期间施加在转子叶片上的弯矩和其它负载的结构性质(例如,刚度、抗屈曲性和强度)。因此,为增加转子叶片的刚度、抗屈曲性和强度,主体壳典型地使用一个或多个结构构件(例如,在它们之间构造有抗剪腹板的相反翼梁帽)来增强,该结构构件接合壳半部的内部压力侧表面和吸力侧表面。
翼梁帽典型地由各种材料(包括但不限于玻璃纤维层压复合物和/或碳纤维层压复合物)构成。转子叶片的壳大体上通过在壳模具中堆叠纤维织物的外层和内层来围绕叶片的翼梁帽构建。层然后典型地灌注(infuse)在一起,例如用热固性树脂。
用于制造转子叶片的方法还可包括分段地形成转子叶片。然后可组装叶片节段来形成转子叶片。例如,一些现代的转子叶片,诸如在2015年6月29日提交的且题为“ModularWind Turbine Rotor Blades and Methods of Assembling Same(模块化风力涡轮转子叶片和组装其的方法)”的编号为14/753,137的美国专利申请中描述的那些叶片,具有模块化板构造,该申请通过引用以其整体结合于本文中。因此,模块化叶片的各个叶片构件可基于叶片构件的作用和/或位置由不同的材料构成。
对于常规的转子叶片,形成叶片壳的外蒙皮典型地由经由单种树脂材料连结在一起的纤维织物构成。然而,在某些情况下,为各种应用定制用来形成外蒙皮的材料可为有益的。
如此,本公开内容涉及用于制造带有不同基质树脂和/或聚合物添加层的风力涡轮转子叶片的外蒙皮的方法。
发明内容
本发明的方面和优点将在以下描述中部分地阐述,或可从描述中清楚,或可通过实施本发明来获悉。
在一方面,本公开内容涉及一种用于制造转子叶片的外蒙皮的方法。方法包括由一种或多种树脂和/或纤维材料的第一组合来形成外蒙皮的外蒙皮层。外蒙皮层对应于转子叶片的外表面。方法还包括由一种或多种树脂和/或纤维材料的第二组合来形成外蒙皮的内蒙皮层。内蒙皮层对应于转子叶片的内表面。更特别地,材料的第一组合和第二组合是不同的。此外,方法包括将外蒙皮层和内蒙皮层以堆叠构造布置在一起。另外,方法包括将外蒙皮层和内蒙皮层连结在一起以形成转子叶片的外蒙皮。
在一个实施例中,方法还可包括基于涂料(pigment)增加、紫外线(UV)防护、热防护、腐蚀防护和/或防止结冰来定制第一组合。如此,第一组合和/或第二组合的树脂可包括热塑性材料(诸如非晶态热塑性材料)和/或可选的纤维材料(诸如玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维或金属纤维)。
在另一实施例中,方法可包括基于兼容性、结合效率、焊接效率和/或结构性能(例如刚度)来定制第二组合。因此,第二组合的树脂可包括热塑性材料或热固性材料。此外,第二组合的纤维材料可包括玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维或金属纤维。
在特定的实施例中,方法可包括由热塑性材料形成外蒙皮层或内蒙皮层中的一个,以及由热固性材料形成外蒙皮层或内蒙皮层中的另一个。在此类实施例中,由热塑性材料形成的蒙皮层可具有能够挠曲以允许蒙皮层在连结期间真空顺应于模具的厚度。
在另外的实施例中,方法可包括在外蒙皮层和内蒙皮层中的一者或两者中使一定量的热塑性材料偏置,以便产生树脂富集区域和树脂缺乏区域。
在额外的实施例中,方法可包括在外蒙皮层与内蒙皮层之间放置至少一个结构层。例如,在此类实施例中,结构层可包括拉挤物、一个或多个金属层、一个或多个玻璃层、木、泡沫、结构泡沫和/或纤维材料。
在若干实施例中,方法还可包括经由带压制、灌注、真空成型或热成型中的至少一种来将第一外蒙皮层和第二外蒙皮层连结在一起。
在另一实施例中,方法可包括在将外蒙皮层和内蒙皮层连结在一起之前,使一个或多个次级构件结合到外蒙皮层和/或内蒙皮层中。在此类实施例中,次级构件可包括一个或多个传感器、传感器线、传导元件或材料、自修复元件、加热元件、电磁屏蔽件、一个或多个通道、焊接条和/或焊接网。
在还另外的实施例中,使一个或多个次级构件结合到外蒙皮层、内蒙皮层或至少一个结构层中的至少一个中的步骤可包括3D打印一个或多个次级构件,手动放置一个或多个次级构件,经由机器人系统自动放置一个或多个次级构件,或灌注一个或多个次级构件。在另外的实施例中,方法可包括经由光投影系统(例如,诸如激光系统)来对准次级构件。在又一实施例中,方法可包括将至少一个结构构件打印和/或沉积到连结的外蒙皮层和/或内蒙皮层上。
在另一方面,本公开内容涉及一种用于风力涡轮的转子叶片的转子叶片板。转子叶片板包括由一种或多种树脂和/或纤维材料的第一组合所形成的外蒙皮层,该外蒙皮层形成转子叶片板的外表面。转子叶片板还包括与外蒙皮层相邻布置的内蒙皮层。内蒙皮层由一种或多种树脂和/或纤维材料的第二组合来形成。此外,材料的第一组合和第二组合是不同的,以便实现板的内表面和外表面的期望特性。而且,外蒙皮层和内蒙皮层形成转子叶片板的翼型件形状的至少一部分。转子叶片板还可包括如本文中描述的额外特征中的任一个。
参照以下描述和所附权利要求书,本发明的这些和其它特征、方面和优点将变得更好理解。结合于该说明书中且构成该说明书的一部分的附图示出本发明的实施例,且连同描述一起用来解释本发明的原理。
附图说明
针对本领域普通技术人员的本发明的完整且开放(enabling)的公开内容(包括其最佳模式)在参照附图的说明书中阐述,在附图中:
图1示出根据本公开内容的风力涡轮的一个实施例的透视图;
图2示出根据本公开内容的风力涡轮的转子叶片的一个实施例的透视图;
图3示出图2的模块化转子叶片的分解视图;
图4示出根据本公开内容的模块化转子叶片的前缘节段的一个实施例的截面视图;
图5示出根据本公开内容的模块化转子叶片的后缘节段的一个实施例的截面视图;
图6示出根据本公开内容的图2的模块化转子叶片沿线6-6的截面视图;
图7示出根据本公开内容的图2的模块化转子叶片沿线7-7的截面视图;
图8示出根据本公开内容的用于制造转子叶片的外蒙皮的方法的一个实施例的流程图;
图9示出经由根据本公开内容的制造方法所形成的外蒙皮的一个实施例的侧视图;
图10示出根据本公开内容的放置在模具中的外蒙皮层和内蒙皮层的一个实施例的侧视图;
图11示出根据本公开内容的内蒙皮层的一个实施例的顶视图;
图12示出根据本公开内容的外蒙皮层的一个实施例的顶视图;以及
图13示出根据本公开内容的转子叶片板模具的一个实施例的侧视图;
图14示出根据本公开内容的用于形成外蒙皮层和内蒙皮层的双带压制处理的一个实施例的示意图。
具体实施方式
现在将详细地参照本发明的实施例,其一个或多个示例在图中示出。每个示例提供作为本发明的解释,不是本发明的限制。实际上,对本领域技术人员将显而易见的是,在不脱离本发明的范围或精神的情况下,可在本发明中作出各种修改和变型。例如,示出或描述为一个实施例的部分的特征可与另一实施例使用,以产生还另外的实施例。因此,意图的是,本发明覆盖如落入所附权利要求书和其等同物的范围内的此类修改和变型。
大体上,本公开内容涉及用于使用多种材料组合来制造用于风力涡轮转子叶片的外蒙皮的方法。在层压件内使用不同的基质和/或不同的织物可用来优化打印结构的结合,同时在外侧表面上提供其它期望的特征。例如,外蒙皮层可包括提供UV防护、去冰(iceophobic)防护和/或腐蚀防护的材料。此外,拉挤物和/或重玻璃可添加于蒙皮层中间以用于改进强度,但其也可在预期的过程中成功地真空成型(即使板较厚且较硬)。在此类构造中,外蒙皮最大限度地减少所需要的打印结构的量。传感器(诸如光纤)和传导元件或材料也可结合到层压件中。因此,本文中描述的方法提供现有技术中不存在的许多优点。例如,本公开内容的方法提供容易定制叶片外蒙皮以具有各种曲率、空气动力学特性、强度、刚度等的能力。
现在参照图,图1示出根据本公开内容的风力涡轮10的一个实施例。如示出的,风力涡轮10包括塔架12,其上安装有机舱14。多个转子叶片16安装到转子毂18,转子毂18继而连接到主凸缘,该主凸缘转动主转子轴。风力涡轮功率生成和控制构件容纳在机舱14内。图1的视图仅提供用于说明性目的来使本发明置于示例性的使用领域中。应了解的是,本发明不限于任何特定类型的风力涡轮构造。另外,本发明不限于供风力涡轮使用,而是可用于具有转子叶片的任何应用中。
现在参照图2和图3,示出根据本公开内容的转子叶片16的各种视图。如示出的,所示出的转子叶片16具有分段或模块化构造。还应理解的是,转子叶片16可包括本领域中现在已知或以后开发的任何其它合适的构造。如示出的,模块化转子叶片16包括至少部分地由热固性和/或热塑性材料构成的主叶片结构15以及与主叶片结构15构造的至少一个叶片节段21。更特别地,如示出的,转子叶片16包括多个叶片节段21。叶片节段21也可至少部分地由热固性和/或热塑性材料构成。
如本文中描述的热塑性转子叶片构件和/或材料大体上包含性质上可逆的塑料材料或聚合物。例如,热塑性材料典型地在加热到某个温度时变得易曲折或可模制且在冷却时回复到较刚性的状态。此外,热塑性材料可包括非晶态热塑性材料和/或半晶态热塑性材料。例如,一些非晶态热塑性材料大体上可包括但不限于苯乙烯、乙烯基、纤维素、聚酯、丙烯酸、聚砜和/或酰亚胺。更特别地,示例性非晶态热塑性材料可包括聚苯乙烯、丙烯腈-丁二烯-苯乙烯(ABS)、聚甲基丙烯酸甲酯(PMMA)、糖化(glycolised)聚对苯二甲酸乙二醇酯(PET-G)、聚碳酸酯、聚醋酸乙烯酯、非晶态聚酰胺、聚氯乙烯(PVC)、聚偏二氯乙烯、聚氨酯,或任何其它合适的非晶态热塑性材料。另外,示例性半晶态热塑性材料大体上可包括但不限于聚烯烃、聚酰胺、含氟聚合物、丙烯酸乙酯、聚酯、聚碳酸酯和/或缩醛。更特别地,示例性半晶态热塑性材料可包括聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚丙烯、聚苯硫醚、聚乙烯、聚酰胺(尼龙)、聚醚酮,或任何其它合适的半晶态热塑性材料。例如,在一个实施例中,可使用被改性以具有慢结晶速率的半晶态热塑性树脂。另外,也可使用非晶态和半晶态聚合物的共混物。
此外,如本文中描述的热固性构件和/或材料大体上包含性质上不可逆的塑料材料或聚合物。例如,热固性材料一旦固化,不能容易地改造或回复到液态。如此,在初始形成之后,热固性材料大体上耐热、腐蚀和/或蠕变。示例热固性材料大体上可包括但不限于一些聚酯、一些聚氨酯、酯类、环氧树脂,或任何其它合适的热固性材料。
另外,如提到的,如本文中描述的热塑性和/或热固性材料可选地可用纤维材料来增强,该纤维材料包括但不限于玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维、金属纤维或类似物或其组合。另外,纤维的方向可包括多轴、单向、双轴、三轴或任何其它另一合适的方向和/或其组合。此外,取决于对应叶片构件中所需要的刚度、叶片构件在转子叶片16中的区域或位置和/或构件的期望可焊接性,纤维含量可不同。
更特别地,如示出的,主叶片结构15可包括以下的任何一个或其组合:预成型的叶片根部区段20,预成型的叶片末端区段22,一个或多个连续翼梁帽48、50、51、53,一个或多个抗剪腹板35(图6-7),固定到叶片根部区段20的额外结构构件52,和/或转子叶片16的任何其它合适的结构构件。此外,叶片根部区段20构造成安装或以其它方式固定到转子18(图1)。另外,如图2中示出的,转子叶片16限定翼展23,翼展23等于叶片根部区段20与叶片末端区段22之间的总长度。如图2和图6中示出的,转子叶片16还限定翼弦25,翼弦25等于转子叶片16的前缘24与转子叶片16的后缘26之间的总长度。如大体上理解的,随着转子叶片16从叶片根部区段20延伸到叶片末端区段22,翼弦25相对于翼展23大体上可在长度上不同。
特别地参照图2-4,具有任何合适大小和/或形状的任何数量的叶片节段21或板大体上可沿纵向轴线27在大体上沿翼展的方向上布置在叶片根部区段20与叶片末端区段22之间。因此,叶片节段21大体上用作转子叶片16的外壳/覆盖物,且可限定大致空气动力学的轮廓,诸如通过限定对称的或弧形的翼型件形截面。在额外的实施例中,应理解的是,叶片16的叶片节段部分可包括本文中描述的节段的任何组合,且不限于如所描绘的实施例。另外,叶片板21可包括以下的任何一个或其组合:压力侧节段44和/或吸力侧节段46(图2和图3)、前缘节段40和/或后缘节段42(图2-6)、无接头节段、单接头节段、多接头叶片节段、J形叶片节段或类似物。
更特别地,如图4中示出的,前缘节段40可具有前压力侧表面28和前吸力侧表面30。类似地,如图5中示出的,后缘节段42中的每个可具有后压力侧表面32和后吸力侧表面34。因此,前缘节段40的前压力侧表面28和后缘节段42的后压力侧表面32大体上限定转子叶片16的压力侧表面。类似地,前缘节段40的前吸力侧表面30和后缘节段42的后吸力侧表面34大体上限定转子叶片16的吸力侧表面。另外,如图6中特别示出的,前缘节段40和后缘节段42可在压力侧接缝36和吸力侧接缝38处连结。例如,叶片节段40、42可构造成在压力侧接缝36和/或吸力侧接缝38处重叠。此外,如图2中示出的,相邻叶片节段21可构造成在接缝54处重叠。因此,在叶片节段21至少部分地由热塑性材料构成的情况下,相邻叶片节段21可沿接缝36、38、54焊接在一起,这将在本文中更详细地论述。备选地,在某些实施例中,转子叶片16的各个节段可经由构造在重叠的前缘节段40和后缘节段42和/或重叠的相邻前缘节段40或后缘节段42之间的粘合剂(或机械紧固件)来固定在一起。
在特定的实施例中,如图2-3和图6-7中示出的,叶片根部区段20可包括与其一起灌注的一个或多个纵向延伸的翼梁帽48、50。例如,叶片根部区段20可根据2015年6月29日提交的题为“Blade Root Section for a Modular Rotor Blade and Method ofManufacturing Same(用于模块化转子叶片的叶片根部区段和制造其的方法)”的编号为14/753,155的美国申请来构造,该申请通过引用以其整体结合于本文中。
类似地,叶片末端区段22可包括与其一起灌注的一个或多个纵向延伸的翼梁帽51、53。更特别地,如示出的,翼梁帽48、50、51、53可构造成抵靠转子叶片16的叶片节段21的相反内表面来接合。此外,叶片根部翼梁帽48、50可构造成与叶片末端翼梁帽51、53对准。因此,翼梁帽48、50、51、53大体上可设计成在风力涡轮10的操作期间控制在大体上沿翼展的方向(平行于转子叶片16的翼展23的方向)上作用在转子叶片16上的弯曲应力和/或其它负载。另外,翼梁帽48、50、51、53可设计成承受在风力涡轮10的操作期间出现的沿翼展的压缩。此外,翼梁帽48、50、51、53可构造成从叶片根部区段20延伸到叶片末端区段22或其一部分。因此,在某些实施例中,叶片根部区段20和叶片末端区段22可经由它们相应的翼梁帽48、50、51、53来连结在一起。
另外,翼梁帽48、50、51、53可由任何合适的材料(例如热塑性或热固性材料或其组合)构成。此外,翼梁帽48、50、51、53可由热塑性或热固性树脂拉挤成。如本文中使用的,用语“拉挤”、“拉挤物”或类似物大体上包含增强材料(例如纤维或者织造或编织股线),其用树脂浸渍且被拉动穿过固定模,使得树脂固化或经历聚合。如此,制造拉挤部件的过程典型地以产生具有恒定截面的复合零件的复合材料的连续过程为特征。因此,预固化复合材料可包括由增强热固性或热塑性材料构成的拉挤物。此外,翼梁帽48、50、51、53可由相同的预固化复合物或不同的预固化复合物来形成。另外,拉挤构件可由粗纱产生,该粗纱大体上包含长且窄束的纤维,该纤维不组合,直到由固化树脂所连结。
参照图6-7,一个或多个抗剪腹板35可构造在一个或多个翼梁帽48、50、51、53之间。更特别地,抗剪腹板35可构造成增加叶片根部区段20和/或叶片末端区段22中的刚性。此外,抗剪腹板35可构造成封闭(close out)叶片根部区段20。
另外,如图2和图3中示出的,额外的结构构件52可固定到叶片根部区段20,且在大体上沿翼展的方向上延伸,以便向转子叶片16提供另外的支承。例如,结构构件52可根据2015年6月29日提交的题为“Structural Component for a Modular Rotor Blade(用于模块化转子叶片的结构构件)”的编号为14/753,150的美国申请来构造,该申请通过引用以其整体结合于本文中。更特别地,结构构件52可在叶片根部区段20与叶片末端区段22之间延伸任何合适的距离。因此,结构构件52构造成为转子叶片16提供额外的结构支承以及为如本文中描述的各个叶片节段21提供可选的安装结构。例如,在某些实施例中,结构构件52可固定到叶片根部区段20,且可延伸预定的沿翼展的距离,使得前缘节段40和/或后缘节段42可安装到其。
现在参照图8,本公开内容涉及用于制造转子叶片16的外蒙皮56和/或转子叶片板21的方法以及经由此类方法制造的转子叶片板21。更特别地,本文中描述的方法包含在转子叶片板21的外蒙皮56的内蒙皮层60和外蒙皮层58内的多种材料组合。在层压件内使用不同的基质和/或不同的织物可用来优化打印结构与其的结合,同时在板21的外侧表面上提供其它期望的特征。
例如,如102处示出的,方法100包括由一种或多种树脂和/或纤维材料的第一组合来形成外蒙皮56的外蒙皮层58。更特别地,在一个实施例中,方法100可包括基于外蒙皮56的外表面的某些期望特性(诸如涂料增加(即,减少和/或消除对涂抹的需要)、紫外线(UV)防护、热防护、腐蚀防护或抗腐蚀性、防止结冰和/或其它期望的性质)来定制树脂和/或纤维材料的第一组合。如此,树脂和/或纤维材料的第一组合可包括热塑性材料,诸如,可选地用玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维和/或金属纤维来增强的非晶态热塑性材料。
类似地,如104处示出的,方法100还包括由一种或多种树脂和/或纤维材料的第二组合来形成外蒙皮的内蒙皮层60。更特别地,材料的第一组合和第二组合可不同,以便适应每个表面62、64的某些期望特性。因此,在一个实施例中,热塑性玻璃纤维板可在外侧上由一种基质制成且在内部上由另一基质制成。如此,在另一实施例中,方法100可包括基于兼容性、与打印特征的结合效率、焊接效率(例如将多个板21焊接在一起和/或将构件/特征焊接到板21)和/或结构性能(例如刚度)来定制树脂和/或纤维材料的第二组合。如本文中使用的,“兼容性”大体上是指对应蒙皮层之间的兼容性以及与打印网结构的兼容性。在使用热塑性塑料时,相同的热塑性可用于每层,然而,也存在一些不同的热塑性塑料可热焊接在一起。
第二组合的树脂可包括热塑性材料或热固性材料。此外,此类树脂可选地可用第二组合的纤维材料来增强。包括但不限于玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维或金属纤维。热塑性材料对于热塑性焊接是特别有用的,而热固性材料允许更多的与其它热固性构件结合的选择。
另外,如图9和图10中示出的,转子叶片板21的外蒙皮层58和内蒙皮层60可为弯曲的。在此类实施例中,方法100可包括形成外蒙皮层58和内蒙皮层60的曲率。此类形成可包括提供一个或多个大体上平的纤维增强蒙皮层,迫使外蒙皮层58和内蒙皮层60为对应于期望轮廓的期望形状,以及在(例如网结构68的)打印期间将外蒙皮层58和内蒙皮层60保持在期望的形状。如此,当蒙皮层58、60在打印后释放时,外蒙皮层58和内蒙皮层60大体上保持它们期望的形状。
例如,在一个实施例中,方法100可包括在外蒙皮层58和内蒙皮层60中的一者或两者中使一定量的热塑性材料偏置,以便产生树脂富集区域和树脂缺乏区域。在此类实施例中,内蒙皮层60可在内侧表面64上用更多(或甚至更少)的基质树脂材料来形成,以促进与打印结构构件(例如,诸如图10中示出的网结构68)的结合。如此,本文中描述的方法100可包括将至少一个结构构件打印和/或沉积到所连结的外蒙皮层和/或内蒙皮层上。本文中描述的网结构68以及各个其它转子叶片构件可使用三维(3D)打印或任何合适形式的增材制造来形成。如此,内蒙皮层60和外蒙皮层58可制造成优化此类结构直接与其的结合。因此,树脂富集表面可促进期望接口处的热焊接(例如,3D打印结构和/或板对板的接头)。相反,树脂缺乏区域促进3D打印结构与层压件纤维材料的改进的集成。更特别地,图11示出内蒙皮层60的一个实施例的顶视图,特别地示出具有树脂富集区域74的内表面64,该区域74特意放置在网结构68所期望打印处的位置中。
如本文中使用的,3D打印大体上理解成包含用来合成三维物体的过程,其中连续的材料层在计算机控制下(例如使用具有一个或多个挤出器的计算机数字控制(CNC)装置或3D打印机)形成以产生物体。如此,几乎任何大小和/或形状的物体可由数字模型数据产生。还应理解的是,本公开内容的方法不限于3D打印,而是还可包含多于三个自由度,使得打印技术不限于打印堆叠的二维层,而是还能够打印弯曲的形状。
在特定的实施例中,方法100可包括由热塑性材料形成外蒙皮层58或内蒙皮层60中的一个,以及由热固性材料形成外蒙皮层58或内蒙皮层60中的另一个。在额外的实施例中,方法100可包括使蒙皮层厚度和/或纤维含量以及纤维定向不同。如此,在一个实施例中,由热塑性材料形成的蒙皮层可具有能够挠曲以允许蒙皮层在连结期间真空顺应于模具的厚度。
往回参照图8,如106处示出的,方法100包括将外蒙皮层58和内蒙皮层60以堆叠构造布置在一起。例如,如图9和图10中示出的,蒙皮层58、60一旦形成,方法100可包括将蒙皮层58、60放置到转子叶片板21的模具70中彼此顶上。
在额外的实施例中,如示出的,方法100还可包括在外蒙皮层58与内蒙皮层60之间放置至少一个结构层66。如此,因为可形成更厚的蒙皮层,加强转子叶片16和/或各个板21所需要的3D打印结构的量可减少。例如,在此类实施例中,结构层66可包括拉挤物、一个或多个金属层、一个或多个玻璃层和/或纤维材料。更特别地,在特定的实施例中,拉挤物和/或重玻璃可添加于外蒙皮层58与内蒙皮层60中间,以形成改进的结构,即使板较厚且较硬,该结构仍可在预期的过程中成功地真空成型。在此类实施例中,结构层66构造成最大限度地减少所需要的打印结构(例如网结构68)的量。在额外的实施例中,也可仅通过添加更多的织物层来形成更厚的蒙皮层。
在另一实施例中,方法100可包括在将外蒙皮层58和内蒙皮层60连结在一起之前,使一个或多个次级构件72结合到外蒙皮层58和/或内蒙皮层60中。例如,如图12中示出的,示出外蒙皮层60的外表面62的一个实施例的顶视图,特别地示出形成引导到外蒙皮56中的各个次级构件72。可使用任何合适的方法(诸如3D打印、手动放置、与外蒙皮56灌注等)来使此类构件72结合到外蒙皮层58或内蒙皮层60中。
在此类实施例中,如图12中示出的,次级构件72可包括传感器系统,该传感器系统具有一个或多个传感器76(例如,诸如光纤传感器、探头、声学传感器等)、传感器线78、电传导材料75或元件(例如,诸如碳、碳纤维填充物和/或任何合适的雷电接收器)、辐射吸收性材料、自修复元件77(例如磁或电吸引的树脂袋)、加热元件80、电磁屏蔽件82、一个或多个通道、支承件或管道和/或一个或多个焊接特征84(例如用于供热塑性焊接、电阻/感应焊接、化学焊接和/或激光/红外类型焊接所使用的焊接条或网)。
在额外的实施例中,可在打印过程期间使传感器系统的一个或多个构件结合到网结构68和/或外蒙皮56中。在此类实施例中,传感器系统可为与网结构68布置和/或直接结合到外蒙皮层58或内蒙皮层60中的表面压力测量系统。如此,打印结构68和/或外蒙皮层58或内蒙皮层60可制造成包括容易安装传感器系统所需要的一系列的管道/通道。此外,打印结构68和/或外蒙皮层58或内蒙皮层60也可在其中提供一系列的孔来用于接收系统的连接部。因此,通过将各个结构打印到网结构68和/或蒙皮56中以容纳传感器76、用作静压端口和/或用作直接延伸到外叶片蒙皮层的管道来简化制造过程。此类系统还可允许使用测压孔(pressure tap)来用于风力涡轮10的闭环控制。
在还另外的实施例中,如图13中示出的,模具70可包括某些标记79(诸如凸(positive)标记),该标记构造成在制造期间在蒙皮中产生小的凹坑。此类标记79允许容易地在相关联的传感器所需要的精确位置中机加工孔。另外,额外的传感器系统可结合到网结构68和/或外蒙皮层58或内蒙皮层60中,以提供空气动力学或声学测量,以便允许闭环控制或原型测量。
另外,本文中描述的加热元件80可为围绕叶片前缘分布的齐平表面安装的加热元件。此类加热元件80允许通过将温度/对流热传递与流速和驻点相关来确定叶片上的攻角。此类信息对于涡轮控制是有用的,且可简化测量过程。应理解的是,此类加热元件80也可以以额外的方式结合到外蒙皮层58或内蒙皮层60中,且不需要齐平地安装在其中。
仍参照次级材料,本文中描述的传导材料可结合或以其它方式沉积到外蒙皮层58或内蒙皮层60中或其上,以向其提供以下益处中的一个或多个:除冰、雷电(lighting)防护、自修复、为传感器76供应功率,或用作传感器本身。大体上,风力涡轮转子叶片中的传导材料应连接到其雷电防护系统,因为不这样做引起雷电损坏(由于冲击在没有地方来放出能量的情况下附加到传导材料)。如此,本文中描述的传导材料可以选择性地沉积到外蒙皮56上且用于电阻热塑性焊接,以便形成到雷电防护系统的连接。
在此类实施例中,CNC装置可以选择性地使用传导树脂以从焊接条或从焊接接头处打印的传导区域的它本身的区域沿外蒙皮56到用于连接到雷电防护系统的连接点来打印大量的传导迹线。打印的迹线也可过渡到打印的连接部,以允许使用传导杆来组装到打印的容座中。相同的打印传导材料可用来连续地打印焊接条、迹线、用于金属线缆的容座、金属条等。金属装置也可通过在该部分的顶部上套印来封装到容座中。另外,在外蒙皮58真空成型之前,可首先将传导迹线网直接打印到模具。在此类实施例中,传导迹线将保留在外蒙皮层58的外表面上。铺带头也可用来将基于线的热塑性带首先直接放置到模具,或放置到内蒙皮层58的内侧表面,以还用作到雷电防护系统的迹线。
如提到的,对于除了热塑性焊接之外的焊接过程,诸如激光/红外焊接,可向蒙皮层58、60添加涂料(诸如白色Ti02)来吸收辐射能。而且,非传导但吸收性的材料可允许热塑性焊接到外蒙皮56,而不必将传导材料放在未连接到雷电防护系统的转子叶片16中和招致雷电损坏风险。
对于感应焊接,3D打印机可描画传导材料的互连网。在不互连的情况下,对交变磁场的响应将不生成热量。相反,电阻焊接可不需要互连网图案。此外,在感应焊接中,玻璃纤维典型地不从感应源生成加热响应;因此,最大限度地减少大部分基质或树脂的热降解。而且,玻璃纤维将热量集中在所需要处的焊接接头处。
为结合本文中描述的焊接网84,可在模具表面中形成一个或多个凹部,且可在形成蒙皮层58、60之前将焊接网直接施加到模具。另外,可在形成之前将焊接网84施加到平的玻璃纤维板。此外,任何合适的材料可用来形成焊接网84。例如,对于感应焊接,焊接网84可包括用于加热的碳纤维热塑性条和/或交叉层纤维。对于在焊接接头的接缝处的非空气动力学表面,真空成型可用来施加凹入的区域和/或证示线以准确地定位焊接网84。
传导元件(其可包括传导条)可为有意多孔的线,以防止在形成蒙皮层58、60时堵塞模具中的真空孔,从而允许暂时保持条,同时还允许将初级热塑性玻璃纤维层压件向下真空拉动于条的顶部上。在此类实施例中,CNC装置的挤出器可配备有金属线或窄线网的转轴。如此,金属线可在挤出器中馈送通过熔体且结合到打印的路中。备选地,线或网可由单独的头来施加且由打印的路所覆盖。
另外,如提到的,次级材料或构件可包括一个或多个限定的通道,该通道构造成接收与外蒙皮56保持紧密接触来使转子叶片16接地的导体。在此类实施例中,带有沿转子叶片16的长度周期性放置的引线(lead)的中心导体可用来连接到雷电防护系统的传导元件中的任一个。
对于转子叶片的修理,某些次级材料可包括中心传导层(也可包括于蒙皮层58、60之间),且/或可在树脂内包括一定量的炭黑涂料,以允许操作者根据需要施加局部热量的能力。
在某些情况下,次级材料或构件中的一些可需要位置准确度,使得构件放置在最终叶片组件中的正确位置中。因此,如图10中示出的,方法100可包括经由对准系统86来对准次级构件72。例如,如示出的,对准系统86可构造在模具70的上方,以便向操作者提供关于在哪里定位本文中描述的次级构件72的细节。更特别地,在某些实施例中,对准系统86可为自动的机器人系统或光投影系统(例如,带有上方激光照明以向操作者示出在哪里放置次级构件72的激光系统)。另外,方法100包括确保嵌入的次级构件72将在连结过程期间耐受变形和/或加热。
往回参照图8,如108处示出的,方法100包括将外蒙皮层58和内蒙皮层60连结在一起以形成外蒙皮56。例如,在某些实施例中,方法100可包括经由带压制、灌注、真空成型、压力成型、热成型或任何其它合适的连结过程来将第一外蒙皮层58和第二外蒙皮层60连结在一起。更特别地,如图10中示出的,外蒙皮层58和内蒙皮层60可放置到模具70中且经由真空灌注来连结在一起。备选地,如图14中示出的,外蒙皮层58和内蒙皮层60可通过双带压制过程来连结在一起以形成外蒙皮56。
该书面描述使用示例来公开本发明(包括最佳模式),且还使本领域的任何技术人员能够实施本发明,包括制作和使用任何装置或系统以及执行任何结合的方法。本发明的可申请专利的范围由权利要求书限定,且可包括本领域技术人员想到的其它示例。如果此类其它示例包括不异于权利要求书的字面语言的结构元件,或如果它们包括带有与权利要求书的字面语言非实质性差异的等同结构元件,此类其它示例意在处于权利要求书的范围内。

Claims (20)

1.一种用于制造转子叶片的外蒙皮的方法,所述方法包括:
由一种或多种树脂或纤维材料中的至少一种的第一组合来形成所述外蒙皮的外蒙皮层,所述外蒙皮层对应于所述转子叶片的外表面;
由一种或多种树脂或纤维材料中的至少一种的第二组合来形成所述外蒙皮的内蒙皮层,所述第一组合和所述第二组合是不同的,所述内蒙皮层对应于所述转子叶片的内表面;
将所述外蒙皮层和所述内蒙皮层以堆叠构造布置在一起;以及
将所述外蒙皮层和所述内蒙皮层连结在一起以形成所述转子叶片的外蒙皮。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括基于涂料增加、紫外线(UV)防护、热防护、腐蚀防护或防止结冰中的至少一个来定制所述第一组合,所述第一组合包括热塑性材料。
3.根据权利要求1所述的方法,其特征在于,所述第一组合和所述第二组合的一种或多种树脂中的至少一种包括非晶态热塑性材料。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括基于兼容性、结合效率、焊接效率或结构性能中的至少一个来定制所述第二组合。
5.根据权利要求4所述的方法,其特征在于,所述第二组合的一种或多种树脂包括热塑性材料或热固性材料中的至少一种,且所述第二组合的纤维材料包括玻璃纤维、碳纤维、聚合物纤维、木纤维、竹纤维、陶瓷纤维、纳米纤维或金属纤维中的至少一种。
6.根据权利要求1所述的方法,其特征在于,所述方法还包括由热塑性材料形成所述外蒙皮层或所述内蒙皮层中的一个,以及由热固性材料形成所述外蒙皮层或所述内蒙皮层中的另一个,其中由所述热固性材料形成的所述蒙皮层包括能够挠曲以允许所述蒙皮层在连结期间真空顺应于模具的厚度。
7.根据权利要求1所述的方法,其特征在于,所述方法还包括在所述外蒙皮层或所述内蒙皮层中的至少一个中使一定量的热塑性材料偏置,以产生树脂富集区域和/或树脂缺乏区域。
8.根据权利要求1所述的方法,其特征在于,所述方法还包括在所述外蒙皮层与所述内蒙皮层之间放置至少一个结构层,其中所述至少一个结构层包括拉挤物、一个或多个金属层、一个或多个玻璃层、木、泡沫、结构泡沫或纤维材料中的至少一种。
9.根据权利要求1所述的方法,其特征在于,所述方法还包括经由带压制、一种或多种粘合剂、灌注、真空成型或热成型中的至少一种来将第一外蒙皮层和第二外蒙皮层连结在一起。
10.根据权利要求1所述的方法,其特征在于,所述方法还包括使一个或多个次级构件结合到所述外蒙皮层、所述内蒙皮层或布置在它们之间的至少一个结构层中,所述一个或多个次级构件包括一个或多个传感器、传感器线、传导元件或材料、自修复元件、加热元件、电磁屏蔽件、管道、一个或多个通道、焊接条或焊接网中的至少一种。
11.根据权利要求10所述的方法,其特征在于,使所述一个或多个次级构件结合到所述外蒙皮层、所述内蒙皮层或所述至少一个结构层中的至少一个中还包括3D打印所述一个或多个次级构件、手动放置所述一个或多个次级构件、经由机器人系统自动放置所述一个或多个次级构件,或灌注所述一个或多个次级构件中的至少一种。
12.根据权利要求11所述的方法,其特征在于,所述方法还包括经由光投影系统来对准所述一个或多个次级构件。
13.根据权利要求1所述的方法,其特征在于,所述方法还包括将至少一个结构构件打印和沉积到连结的外蒙皮层和/或内蒙皮层上。
14. 一种用于风力涡轮的转子叶片的转子叶片板,所述转子叶片板包括:
外蒙皮层,所述外蒙皮层由一种或多种树脂或纤维材料中的至少一种的第一组合来形成,所述外蒙皮层形成所述转子叶片板的外表面;以及
内蒙皮层,所述内蒙皮层与所述外蒙皮层相邻布置,所述内蒙皮层由一种或多种树脂或纤维材料中的至少一种的第二组合来形成,所述第一组合和所述第二组合是不同的,
所述外蒙皮层和所述内蒙皮层形成所述转子叶片板的翼型件形状的至少一部分。
15.根据权利要求14所述的转子叶片板,其特征在于,所述转子叶片板包括压力侧表面、吸力侧表面、后缘、前缘或其组合中的至少一个。
16.根据权利要求14所述的转子叶片板,其特征在于,一个的所述第一组合基于涂料增加、紫外线(UV)防护、热防护、腐蚀防护或防止结冰中的至少一个来定制,其中所述第一组合和所述第二组合的一种或多种树脂中的至少一种包括热塑性材料。
17.根据权利要求14所述的转子叶片板,其特征在于,所述第二组合基于兼容性、结合效率、焊接效率或结构性能中的至少一个来定制。
18.根据权利要求14所述的转子叶片板,其特征在于,所述转子叶片板还包括在所述外蒙皮层或所述内蒙皮层中的至少一个中的热塑性材料的树脂富集区域和/或树脂缺乏区域中的至少一个。
19.根据权利要求14所述的转子叶片板,其特征在于,所述转子叶片板还包括布置在所述外蒙皮层与所述内蒙皮层之间的至少一个结构层,所述至少一个结构层包括拉挤物、一个或多个金属层、一个或多个玻璃层或纤维材料中的至少一种。
20.根据权利要求19所述的转子叶片板,其特征在于,所述转子叶片板还包括结合到所述外蒙皮层、所述内蒙皮层或所述至少一个结构层中的一个或多个次级构件,所述一个或多个次级构件包括一个或多个传感器、传感器线、传导元件或材料、自修复元件、加热元件、电磁屏蔽件、管道、一个或多个通道、焊接条或焊接网中的至少一种。
CN201880087217.7A 2017-11-21 2018-11-05 用于制造转子叶片的外蒙皮的方法 Pending CN111655448A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/818980 2017-11-21
US15/818,980 US11668275B2 (en) 2017-11-21 2017-11-21 Methods for manufacturing an outer skin of a rotor blade
PCT/US2018/059189 WO2019103831A2 (en) 2017-11-21 2018-11-05 Methods for manufacturing an outer skin of a rotor blade

Publications (1)

Publication Number Publication Date
CN111655448A true CN111655448A (zh) 2020-09-11

Family

ID=66532844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880087217.7A Pending CN111655448A (zh) 2017-11-21 2018-11-05 用于制造转子叶片的外蒙皮的方法

Country Status (7)

Country Link
US (1) US11668275B2 (zh)
EP (1) EP3713737A4 (zh)
CN (1) CN111655448A (zh)
BR (1) BR112020009504A2 (zh)
CA (1) CA3082599A1 (zh)
MX (1) MX2020007190A (zh)
WO (1) WO2019103831A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3384152T3 (da) 2015-11-30 2021-03-22 Vestas Wind Sys As Vindmøllevinge og fremgangsmåde til fremstilling af en vindmøllevinge
EP3513947B1 (en) * 2018-01-17 2022-11-02 Airbus Operations S.L.U. Method for manufacturing an aeronautical structure
EP3848574A1 (de) 2020-01-09 2021-07-14 Wobben Properties GmbH Verfahren zum herstellen eines windenergieanlagen-rotorblattes
EP4137696A1 (en) * 2021-08-16 2023-02-22 General Electric Renovables España S.L. A system comprising a structure being prone to lightning strikes and icing, a method for operating the system and a wind turbine comprising the system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869814A (en) * 1996-07-29 1999-02-09 The Boeing Company Post-weld annealing of thermoplastic welds
US20040041304A1 (en) * 2002-08-30 2004-03-04 Willden Kurtis S. Composite spar drape forming machine
EP2927482A1 (en) * 2014-04-01 2015-10-07 LM WP Patent Holding A/S A wind turbine blade provided with an erosion shield
US20170204833A1 (en) * 2016-01-15 2017-07-20 General Electric Company Rotor Blades Having Structural Skin Insert and Methods of Making Same

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE19412E (en) 1935-01-01 Aircraft and control thereof
US2451131A (en) 1940-09-06 1948-10-12 Vidal Corp Method of making reinforced structures
US2450440A (en) 1944-12-19 1948-10-05 Roscoe H Mills Propeller blade construction
US2503450A (en) 1945-03-05 1950-04-11 Universal Moulded Products Cor Airfoil
US3000446A (en) 1958-08-25 1961-09-19 Studebaker Packard Corp Helicopter rotor blades
US3093219A (en) 1961-04-06 1963-06-11 Monte Copter Inc Plural-section airfoils
US3137887A (en) 1962-06-15 1964-06-23 Republic Aviat Corp Bushing
US3321019A (en) 1965-10-22 1967-05-23 United Aircraft Corp Fiberglass blade
US3528753A (en) 1968-06-14 1970-09-15 United Aircraft Corp Helicopter blade with non-homogeneous structural spar
US3586460A (en) 1969-05-14 1971-06-22 Us Air Force Rotor blade variable modulus trailing edge
US3956564A (en) 1973-07-25 1976-05-11 General Electric Company Graded filamentary composite article and method of making
US4319872A (en) 1976-12-01 1982-03-16 Lupke Gerd Paul Heinrich Apparatus for producing thermoplastic tubing
US4329119A (en) 1977-08-02 1982-05-11 The Boeing Company Rotor blade internal damper
US4474536A (en) 1980-04-09 1984-10-02 Gougeon Brothers, Inc. Wind turbine blade joint assembly and method of making wind turbine blades
FR2542695B1 (fr) 1983-03-18 1985-07-26 Aerospatiale Helice multipale a pas variable a pale s en materiaux composites demontables individuellement, procede de fabrication de telles pales et pales ainsi realisees
US5346367A (en) 1984-12-21 1994-09-13 United Technologies Corporation Advanced composite rotor blade
US4718844A (en) 1987-02-27 1988-01-12 Cullim Machine Tool & Die, Inc. Corrugated mold block
US5088665A (en) 1989-10-31 1992-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Serrated trailing edges for improving lift and drag characteristics of lifting surfaces
US5059109A (en) 1989-12-26 1991-10-22 Cullom Machine Tool & Die, Inc. Corrugated mold block
US5026666A (en) 1989-12-28 1991-06-25 At&T Bell Laboratories Method of making integrated circuits having a planarized dielectric
JPH07102609B2 (ja) 1991-08-12 1995-11-08 川崎重工業株式会社 繊維強化複合材の成形方法
FR2760681B1 (fr) 1997-03-12 1999-05-14 Alternatives En Procede de fabrication d'une piece de grandes dimensions en materiau composite et pale d'helice, en particulier d'eolienne, fabriquee selon ce procede
US5936861A (en) * 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
JP2000317972A (ja) 1999-05-07 2000-11-21 Dainippon Printing Co Ltd 射出成形同時加飾方法
DK176335B1 (da) * 2001-11-13 2007-08-20 Siemens Wind Power As Fremgangsmåde til fremstilling af vindmöllevinger
US7059833B2 (en) 2001-11-26 2006-06-13 Bonus Energy A/S Method for improvement of the efficiency of a wind turbine rotor
DK175275B1 (da) * 2002-03-19 2004-08-02 Lm Glasfiber As Overgangsområde i vindmöllevinge
US6890152B1 (en) 2003-10-03 2005-05-10 General Electric Company Deicing device for wind turbine blades
DE102004049098A1 (de) 2004-10-08 2006-04-13 Eew Maschinenbau Gmbh Rotorblatt für eine Windenergieanlage
US7637721B2 (en) 2005-07-29 2009-12-29 General Electric Company Methods and apparatus for producing wind energy with reduced wind turbine noise
US7458777B2 (en) 2005-09-22 2008-12-02 General Electric Company Wind turbine rotor assembly and blade having acoustic flap
ES2318925B1 (es) 2005-09-22 2010-02-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Aerogenerador con un rotor de palas que reduce el ruido.
JP2007092716A (ja) 2005-09-30 2007-04-12 Toray Ind Inc 翼構造体およびその製造方法
US7398586B2 (en) 2005-11-01 2008-07-15 The Boeing Company Methods and systems for manufacturing a family of aircraft wings and other composite structures
WO2007140771A1 (en) 2006-06-09 2007-12-13 Vestas Wind Systems A/S A wind turbine blade and a pitch controlled wind turbine
ES2310958B1 (es) 2006-09-15 2009-11-10 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala de aerogenerador optimizada.
US8865798B2 (en) 2006-10-17 2014-10-21 Valorbec Societe En Commandite Self healing composite material and method of manufacturing same
JP2007009926A (ja) 2006-10-18 2007-01-18 Tenryu Ind Co Ltd 風力発電機用のプロペラブレード用の主桁とその製造方法
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
US8372327B2 (en) 2007-09-13 2013-02-12 The Boeing Company Method for resin transfer molding composite parts
US20090074585A1 (en) 2007-09-19 2009-03-19 General Electric Company Wind turbine blades with trailing edge serrations
US20090140527A1 (en) 2007-11-30 2009-06-04 General Electric Company Wind turbine blade stiffeners
US20090148300A1 (en) 2007-12-10 2009-06-11 General Electric Company Modular wind turbine blades with resistance heated bonds
US8221085B2 (en) 2007-12-13 2012-07-17 General Electric Company Wind blade joint bonding grid
CL2009000090A1 (es) 2008-01-17 2009-07-24 Irm Llc Anticuerpo que se une al receptor de tirosina quinasa b (trkb); composicion que comprende el anticuerpo; metodo para reducir los niveles de glucosa en la sangre y/o el peso corporal en un individuo.
WO2009111468A1 (en) 2008-03-03 2009-09-11 Abe Karem Wing and blade structure using pultruded composites
US8747098B1 (en) 2008-03-24 2014-06-10 Ebert Composites Corporation Thermoplastic pultrusion die system and method
GB0805713D0 (en) 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
ATE516947T1 (de) 2008-05-05 2011-08-15 Siemens Ag Verfahren zur herstellung von windturbinenschaufeln mit verbundwerkstoffen
CA2639673C (en) 2008-05-14 2013-04-16 Alan Daniel De Baets Composite material formed from foam filled honeycomb panel with top and bottom resin filled sheets
US20090301648A1 (en) 2008-06-05 2009-12-10 Merrill Wilson Hogg Tight constellation composite tape-laying machine
CN102066747A (zh) 2008-06-23 2011-05-18 丹麦技术大学 具有成角度的梁的风力涡轮机叶片
GB2462308A (en) 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
WO2010016125A1 (ja) 2008-08-06 2010-02-11 三菱重工業株式会社 風車翼およびこれを用いる風力発電装置
EP2159039A1 (en) 2008-08-14 2010-03-03 Lm Glasfiber A/S A method of manufacturing a composite structure comprising a magnetisable material
GB2463250A (en) 2008-09-04 2010-03-10 Vestas Wind Sys As A wind turbine blade formed from welded thermoplastic sections
IT1391483B1 (it) 2008-10-02 2011-12-23 Alenia Aeronautica Spa Procedimento per la preparazione di un materiale composito autoriparantesi
ES2341073B1 (es) 2008-10-28 2011-05-20 GAMESA INNOVATION & TECHNOLOGY, S.L. Una pala de aerogenerador multi-panel con uniones mejoradas en el borde de salida.
US8383028B2 (en) 2008-11-13 2013-02-26 The Boeing Company Method of manufacturing co-molded inserts
US8092187B2 (en) 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
ES2371893B2 (es) 2009-02-02 2012-05-16 Gamesa Innovation & Technology, S.L. Método y dispositivo de manipulación o transporte de palas de aerogeneradores.
US7841835B2 (en) 2009-02-20 2010-11-30 General Electric Company Spar cap for wind turbine blades
US7988421B2 (en) 2009-03-31 2011-08-02 General Electric Company Retrofit sleeve for wind turbine blade
CN102448711B (zh) 2009-04-10 2015-05-13 湘电达尔文有限责任公司 受防护的风力涡轮叶片、制造其的方法及风力涡轮
EP2427311A2 (en) 2009-05-04 2012-03-14 Mag Ias Llc. Rapid material placement application for wind turbine blade manufacture
ES2365571B1 (es) 2009-05-21 2012-09-17 Danobat S.Coop Sistema para la fabricacion automatica de palas de aerogenerador
US8079819B2 (en) 2009-05-21 2011-12-20 Zuteck Michael D Optimization of premium fiber material usage in wind turbine spars
US8075278B2 (en) 2009-05-21 2011-12-13 Zuteck Michael D Shell structure of wind turbine blade having regions of low shear modulus
DK2255957T3 (da) * 2009-05-25 2013-10-21 Lm Wp Patent Holding As En fremgangsmåde til fremstilling af et kompositlegeme med et præfremstillet forstærkningslegeme
CN101906251B (zh) 2009-06-04 2013-06-12 上海杰事杰新材料(集团)股份有限公司 一种风力发电机叶片用复合材料及其制备方法
EP2443196A4 (en) 2009-06-19 2015-09-30 Commw Scient Ind Res Org POLYMERIC SELF-REPARING MATERIALS
US20100135806A1 (en) 2009-06-22 2010-06-03 General Electric Company Hinged wind turbine blade tips
US8657581B2 (en) 2009-08-28 2014-02-25 Gordon Holdings, Inc. Thermoplastic rotor blade
US8328516B2 (en) 2009-09-29 2012-12-11 General Electric Company Systems and methods of assembling a rotor blade extension for use in a wind turbine
US20110103965A1 (en) * 2009-10-30 2011-05-05 General Electric Company Wind turbine blades
US20110100540A1 (en) 2009-10-30 2011-05-05 General Electric Company Methods of manufacture of wind turbine blades and other structures
US8673106B1 (en) 2009-11-13 2014-03-18 Bounce Composites, LLC Methods and apparatus for forming molded thermal plastic polymer components
EP2512780B1 (en) 2009-12-18 2015-12-16 Magna International Inc. Method of forming a sheet molding compound with cores
JP5751751B2 (ja) 2009-12-25 2015-07-22 三菱重工業株式会社 強化繊維基材積層装置およびこの積層方法
WO2011088372A1 (en) * 2010-01-14 2011-07-21 Neptco, Inc. Wind turbine rotor blade components and methods of making same
EP2526288B1 (en) 2010-01-21 2017-06-28 Vestas Wind Systems A/S Segmented rotor blade extension portion
GB201002249D0 (en) 2010-02-10 2010-03-31 Walters Albert E D Improvements in or relating to methods of manufacture
US8038397B2 (en) 2010-03-09 2011-10-18 General Electric Company System and method of deicing and prevention or delay of flow separation over wind turbine blades
EP2365212B1 (en) 2010-03-12 2016-05-04 Siemens Aktiengesellschaft Arrangement and method to retrofit a wind turbine
US8192169B2 (en) * 2010-04-09 2012-06-05 Frederick W Piasecki Highly reliable, low cost wind turbine rotor blade
US8568131B2 (en) 2010-04-30 2013-10-29 Han Il E Hwa Co., Ltd. Horizontal molding method and apparatus of interior material of vehicle
EP2388477B1 (en) 2010-05-21 2013-09-18 Siemens Aktiengesellschaft Blade of a wind turbine
EP2402594A1 (en) 2010-07-01 2012-01-04 Lm Glasfiber A/S Wind turbine blade for a rotor of a wind turbine
EP2404742A1 (en) 2010-07-09 2012-01-11 Siemens Aktiengesellschaft Method to manufacture a component of a composite structure
US8376450B1 (en) 2010-08-13 2013-02-19 Kodiak Innovations, LLC Apparatus and method for mounting an aerodynamic add-on device onto a transport vehicle
US8083488B2 (en) 2010-08-23 2011-12-27 General Electric Company Blade extension for rotor blade in wind turbine
US7976275B2 (en) 2010-08-30 2011-07-12 General Electric Company Wind turbine rotor blade assembly having an access window and related methods
US8038407B2 (en) 2010-09-14 2011-10-18 General Electric Company Wind turbine blade with improved trailing edge bond
EP2444657A1 (en) 2010-10-19 2012-04-25 Siemens Aktiengesellschaft Arrangement and method to retrofit a wind turbine
US20120134848A1 (en) 2010-11-30 2012-05-31 Nelson Bryan E Hydraulic fan circuit having energy recovery
US20110243736A1 (en) 2010-12-08 2011-10-06 General Electric Company Joint sleeve for a rotor blade assembly of a wind turbine
DE102010062819A1 (de) 2010-12-10 2012-06-14 Repower Systems Se Durchführung für Blitzschutzkabel
US20110268558A1 (en) 2010-12-20 2011-11-03 General Electric Company Noise reducer for rotor blade in wind turbine
EP2476540A1 (en) 2011-01-18 2012-07-18 Siemens Aktiengesellschaft Stiffening sheet for use in a fibre reinforced laminate, fibre reinforced laminate and wind turbine blade, and a method of manufacturing a fibre reinforced laminate
JP5673159B2 (ja) 2011-02-02 2015-02-18 トヨタ紡織株式会社 成形方法及び成形装置
US8414261B2 (en) 2011-05-31 2013-04-09 General Electric Company Noise reducer for rotor blade in wind turbine
US8262362B2 (en) 2011-06-08 2012-09-11 General Electric Company Wind turbine blade shear web with spring flanges
US8235671B2 (en) 2011-07-19 2012-08-07 General Electric Company Wind turbine blade shear web connection assembly
US8393871B2 (en) 2011-07-19 2013-03-12 General Electric Company Wind turbine blade shear web connection assembly
DE102011080869A1 (de) 2011-08-12 2013-02-14 Repower Systems Se Verfahren zum Herstellen eines Rotorblatts einer Windenergieanlage, Stegpaket, Rotorblatt und Windenergieanlage
US9644611B2 (en) 2011-08-31 2017-05-09 Thomas Jones Vertical axis wind turbines
US20130186558A1 (en) 2011-09-23 2013-07-25 Stratasys, Inc. Layer transfusion with heat capacitor belt for additive manufacturing
WO2013064152A1 (en) 2011-11-02 2013-05-10 Vestas Wind Systems A/S Method and production facility for manufacturing a wind turbine blade
US20160023433A1 (en) 2011-12-21 2016-01-28 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
EP2795105B1 (en) 2011-12-22 2021-02-17 LM WP Patent Holding A/S Wind turbine blade assembled from inboard part and outboard part having different types of load carrying structures
DK2607075T3 (en) * 2011-12-22 2017-08-07 Siemens Ag Sandwich laminate and method of manufacture
US9512818B2 (en) 2012-01-18 2016-12-06 Pika Energy LLC Low-cost molded wind turbine blade
US9434142B2 (en) * 2012-01-26 2016-09-06 E I Du Pont De Nemours And Company Method of making a sandwich panel
EP2639050B1 (en) 2012-03-14 2014-05-14 Siemens Aktiengesellschaft Method of manufacturing an article by molding
EP2653717A1 (en) 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Arrangement to retrofit a wind turbine blade
KR20150018844A (ko) 2012-05-30 2015-02-24 유윈에너지 게엠베하 블레이드부들을 조립하기 위한 장치
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
US9458821B2 (en) 2012-09-11 2016-10-04 General Electric Company Attachment system for a wind turbine rotor blade accessory
WO2014044280A1 (en) 2012-09-18 2014-03-27 Vestas Wind Systems A/S Wind turbine blades
DK2867523T3 (en) 2012-09-24 2016-09-05 Siemens Ag Wind turbine blade with a noise reducing device
US9944024B2 (en) 2012-10-05 2018-04-17 Vestas Wind Systems A/S Improvements relating to the manufacture of wind turbines
US9090027B2 (en) 2012-10-23 2015-07-28 Bell Helicopter Textron Inc. System and method of constructing composite structures
US20140119937A1 (en) * 2012-10-31 2014-05-01 General Electric Company Wind turbine rotor blade with fabric skin and associated method for assembly
ITCO20120061A1 (it) 2012-12-13 2014-06-14 Nuovo Pignone Srl Metodi per produrre pale di turbomacchina con canali sagomati mediante produzione additiva, pale di turbomacchina e turbomacchine
TR201807650T4 (tr) 2012-12-18 2018-06-21 Lm Wind Power Int Tech Ii Aps Bir rüzgar türbini kanadı için bir aerodinamik kabuk parçası üretme usulü.
US20140178204A1 (en) 2012-12-21 2014-06-26 General Electric Company Wind turbine rotor blades with fiber reinforced portions and methods for making the same
US9399919B2 (en) 2012-12-31 2016-07-26 General Electric Company Extension tip sleeve for wind turbine blade
US9377005B2 (en) 2013-03-15 2016-06-28 General Electric Company Airfoil modifiers for wind turbine rotor blades
US9149988B2 (en) * 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
DK2784106T3 (en) * 2013-03-28 2018-12-17 Siemens Ag Composite Structure
US9556849B2 (en) 2013-05-02 2017-01-31 General Electric Company Attachment system and method for wind turbine vortex generators
US9719489B2 (en) 2013-05-22 2017-08-01 General Electric Company Wind turbine rotor blade assembly having reinforcement assembly
EP2808158A1 (en) 2013-05-31 2014-12-03 Siemens Aktiengesellschaft A method and apparatus for laying a fibre material on a mould surface
CN103358564B (zh) 2013-07-05 2015-12-02 西安交通大学 整体式风电叶片紫外光/电子束原位固化纤维铺放成型装置及方法
US20150023799A1 (en) * 2013-07-19 2015-01-22 Kyle K. Wetzel Structural Member with Pultrusions
PL3027893T3 (pl) 2013-07-30 2018-02-28 Lm Wp Patent Holding A/S Łopata turbiny wiatrowej mająca linię łączącą przyległą do panelu przekładkowego łopaty
GB201313779D0 (en) 2013-08-01 2013-09-18 Blade Dynamics Ltd Erosion resistant aerodynamic fairing
GB2519566A (en) * 2013-10-25 2015-04-29 Vestas Wind Sys As Wind turbine blades
EP3080398B1 (en) 2013-11-25 2020-01-01 Ansaldo Energia IP UK Limited Blade assembly for a turbomachine on the basis of a modular structure
KR20160085896A (ko) 2013-11-25 2016-07-18 제네럴 일렉트릭 테크놀러지 게엠베하 터보기계를 위한 모듈러 구조에 근거한 블레이드 조립체
KR101520898B1 (ko) 2013-11-26 2015-05-18 한국에너지기술연구원 평평한 뒷전형상을 갖는 복합재 풍력 블레이드의 제작방법
EP2881237B1 (en) 2013-12-03 2019-06-26 LM WP Patent Holding A/S A method of manufacturing a shear web using a pre-formed web foot flange
EP3086924A1 (en) 2013-12-23 2016-11-02 Vestas Wind Systems A/S Wind turbine blades
CN104955278B (zh) 2014-03-26 2018-04-13 华南理工大学 一种在注塑件表面上制造三维电路的方法
GB201407671D0 (en) 2014-05-01 2014-06-18 Lm Wp Patent Holding As A wind turbine blade and an associated manufacturing method
US10066600B2 (en) 2014-05-01 2018-09-04 Tpi Composites, Inc. Wind turbine rotor blade and method of construction
CN106232329A (zh) 2014-05-01 2016-12-14 Lm Wp 专利控股有限公司 制造风轮机叶片的系统及方法
US20170100902A1 (en) 2014-05-07 2017-04-13 Wichita State University Nanocomposite microcapsules for self-healing of composite articles
GB201410429D0 (en) 2014-06-11 2014-07-23 Lm Wp Patent Holding As A tip system for a wild turbine blade
WO2016030170A1 (en) 2014-08-27 2016-03-03 Basf Se Rotor blade element with anti-icing surface for wind turbine rotor blades
DE102014220787A1 (de) 2014-10-14 2016-04-14 Siemens Aktiengesellschaft Gasturbinenbauteil mit Innenmodul und Verfahren zu seiner Herstellung unter Verwendung von Selektivem Laserschmelzen
MX2017005201A (es) * 2014-10-30 2018-09-18 Lm Wp Patent Holding As Fabricación de banda de cizalla en forma de i.
US10352181B2 (en) 2014-11-26 2019-07-16 Ansaldo Energia Ip Uk Limited Leading edge cooling channel for airfoil
EP3037655A1 (en) 2014-12-22 2016-06-29 Siemens Aktiengesellschaft Rotor blade extension
CN204488065U (zh) 2015-01-30 2015-07-22 迪皮埃风电叶片大丰有限公司 一种组装式风电叶片根部预制件模具
US20160297145A1 (en) 2015-04-07 2016-10-13 Fuji Xerox Co., Ltd. Forming apparatus and forming method of molded article
US9869295B2 (en) 2015-05-07 2018-01-16 General Electric Company Attachment method to install components, such as tip extensions and winglets, to a wind turbine blade, as well as the wind turbine blade and component
US9869296B2 (en) 2015-05-07 2018-01-16 General Electric Company Attachment method and system to install components, such as tip extensions and winglets, to a wind turbine blade
US9869297B2 (en) 2015-05-07 2018-01-16 General Electric Company Attachment method and system to install components, such as vortex generators, to a wind turbine blade
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US20160377052A1 (en) 2015-06-29 2016-12-29 General Electric Company Blade root section for a modular rotor blade and method of manufacturing same
US20160377050A1 (en) 2015-06-29 2016-12-29 General Electric Company Modular wind turbine rotor blades and methods of assembling same
EP3117985A1 (en) 2015-07-13 2017-01-18 Airbus Operations GmbH Additive manufacturing system and method for performing additive manufacturing on thermoplastic sheets
US9951750B2 (en) 2015-07-30 2018-04-24 General Electric Company Rotor blade with interior shelf for a flat plate spar cap
US10071532B2 (en) 2015-08-26 2018-09-11 General Electric Company Rotor blades having thermoplastic components and methods of assembling same
US10533533B2 (en) 2015-08-26 2020-01-14 General Electric Company Modular wind turbine rotor blade constructed of multiple resin systems
US10253752B2 (en) 2015-08-26 2019-04-09 General Electric Company Rotor blade components formed from dissimilar thermoplastics and methods of assembling same
US20170058866A1 (en) 2015-08-27 2017-03-02 General Electric Company Thermoplastic pultruded stiffeners for locally reinforcing a wind turbine rotor blade
EP3138697B1 (en) 2015-09-01 2017-12-27 Alex Global Technology, Inc. Manufacturing method and structure of carbon fiber rims
US10151297B2 (en) 2015-09-14 2018-12-11 General Electric Company Methods for joining shear clips in wind turbine rotor blades
US10197041B2 (en) 2015-09-14 2019-02-05 General Electric Company Methods for joining surface features to wind turbine rotor blades
US11125205B2 (en) 2015-09-14 2021-09-21 General Electric Company Systems and methods for joining blade components of rotor blades
US10161381B2 (en) 2015-09-14 2018-12-25 General Electric Company Rotor blades having thermoplastic components and methods for joining rotor blade components
US10669984B2 (en) 2015-09-22 2020-06-02 General Electric Company Method for manufacturing blade components using pre-cured laminate materials
US10240577B2 (en) 2015-09-22 2019-03-26 General Electric Company Thermoplastic airflow modifying elements for wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10307816B2 (en) 2015-10-26 2019-06-04 United Technologies Corporation Additively manufactured core for use in casting an internal cooling circuit of a gas turbine engine component
EP3371720A1 (en) * 2015-11-06 2018-09-12 SABIC Global Technologies B.V. Systems and methods for optimization of 3-d printed objects
US10240576B2 (en) 2015-11-25 2019-03-26 General Electric Company Wind turbine noise reduction with acoustically absorbent serrations
CN108602343B (zh) 2015-11-30 2020-05-22 维斯塔斯风力系统有限公司 风轮机、风轮机叶片以及用于制造风轮机叶片的方法
WO2017112632A1 (en) * 2015-12-23 2017-06-29 Sabic Global Technologies B.V. Reinforced polymer laminate
BR112018014052B1 (pt) 2016-01-11 2023-03-14 Ascent Aerospace, Llc Molde de contato híbrido, e, método para fabricar um molde de contato híbrido
US10336050B2 (en) 2016-03-07 2019-07-02 Thermwood Corporation Apparatus and methods for fabricating components
EP3645255B1 (en) * 2017-06-30 2023-08-23 TPI Composites, Inc. Optimization of layup process for fabrication of wind turbine blades using model-based optical projection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869814A (en) * 1996-07-29 1999-02-09 The Boeing Company Post-weld annealing of thermoplastic welds
US20040041304A1 (en) * 2002-08-30 2004-03-04 Willden Kurtis S. Composite spar drape forming machine
EP2927482A1 (en) * 2014-04-01 2015-10-07 LM WP Patent Holding A/S A wind turbine blade provided with an erosion shield
US20170204833A1 (en) * 2016-01-15 2017-07-20 General Electric Company Rotor Blades Having Structural Skin Insert and Methods of Making Same

Also Published As

Publication number Publication date
MX2020007190A (es) 2021-01-20
CA3082599A1 (en) 2019-05-31
WO2019103831A3 (en) 2019-08-08
US20190153995A1 (en) 2019-05-23
EP3713737A4 (en) 2021-09-01
BR112020009504A2 (pt) 2020-11-03
EP3713737A2 (en) 2020-09-30
WO2019103831A2 (en) 2019-05-31
US11668275B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
CN111601703B (zh) 用于制造具有打印网结构的风力涡轮转子叶片板的方法
US20220065217A1 (en) Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) Methods for manufacturing wind turbine rotor blades and components thereof
CN112135968A (zh) 用于使用打印网格结构来连结转子叶片的叶片构件的方法
CN111601966B (zh) 用于转子叶片的打印增强结构的多种材料组合
CN111587178B (zh) 制造具有打印的网格结构的风力涡轮转子叶片面板的方法
CN111655448A (zh) 用于制造转子叶片的外蒙皮的方法
CN112292251B (zh) 用于制造风力涡轮转子叶片及其构件的方法
CN111601701B (zh) 风力涡轮转子叶片构件及其制造方法
CN112368134B (zh) 用于制造用于风力涡轮转子叶片的翼梁帽的方法
US10641240B2 (en) Methods of joining rotor blade components using thermoplastic welding
CA3098688A1 (en) Methods for manufacturing wind turbine rotor blades and components thereof
EP3787879B1 (en) Method of joining rotor blade components using thermoplastic welding
CN112313068B (zh) 用于制造用于风力涡轮转子叶片的翼梁帽的方法
CN114786929A (zh) 用于制造具有硬化的网格结构的壳的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination