CN111654201B - 一种低调制度下降低开关频率的改进虚拟空间矢量法 - Google Patents

一种低调制度下降低开关频率的改进虚拟空间矢量法 Download PDF

Info

Publication number
CN111654201B
CN111654201B CN202010513369.8A CN202010513369A CN111654201B CN 111654201 B CN111654201 B CN 111654201B CN 202010513369 A CN202010513369 A CN 202010513369A CN 111654201 B CN111654201 B CN 111654201B
Authority
CN
China
Prior art keywords
vector
small
sector
small vector
midpoint potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010513369.8A
Other languages
English (en)
Other versions
CN111654201A (zh
Inventor
牛小兵
王超
周鑫
苏大勇
刘钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202010513369.8A priority Critical patent/CN111654201B/zh
Publication of CN111654201A publication Critical patent/CN111654201A/zh
Application granted granted Critical
Publication of CN111654201B publication Critical patent/CN111654201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种低调制度下降低开关频率的改进虚拟空间矢量法,属于电力电子变换器控制领域,适用于NPC三电平逆变器的控制,该方法将空间矢量区域分为六个扇区,每个扇区包括一个零矢量;两个小矢量、一个虚拟中矢量和两个大矢量;每个小矢量均包括正小矢量和负小矢量;零矢量和当前扇区的两个小矢量构成第一小区;当参考电压矢量位于第一小区时,通过一个小矢量只使用正小矢量而另外一个小矢量只使用负小矢量的方式得到两种对中点电位总作用量幅值相等、符号相反的小矢量组合,当中点电位偏移量大于零时可以选取对中点电位作用量小于零的小矢量组合,相反同理。该方法既能够保证中点电位平衡,也能快速控制中点电位偏移,同时降低了开关频率。

Description

一种低调制度下降低开关频率的改进虚拟空间矢量法
技术领域
本发明涉及电力电子变换器控制领域,尤其涉及一种低调制度下降低开关频率的改进虚拟空间矢量法。
背景技术
中性点箝位型(Neutral Point Clamped—NPC)三电平逆变器是由Nabae等人于1981年提出,相较于传统两电平逆变器,NPC三电平逆变器具有非常多的优势,在中高压交流传动、柔性输配电、光伏发电并网等领域具有非常好的应用前景。但NPC三电平逆变器中分压电容的中点电位不平衡是NPC一直以来研究的热点问题;中点电位的不平衡会造成输出电压畸变、开关管上的电压过高等诸多问题,因此必须采取措施保证NPC三电平逆变器的中点电位平衡。中点电位不平衡根本原因为有电流流进或流出分压电容中点引起NPC三电平逆变器对两个电容C1和C2的充放电不均,从而导致中点电位不平衡。
采用空间矢量法时共有19种矢量,其中有1个零矢量、6个小矢量、6个中矢量和6个大矢量,其中每个小矢量分别对应两个不同的开关状态组合,定义为正小矢量和负小矢量,它们对应流出中点电流幅值相同,符号相反,引起中点电位不平衡但是可控;而中矢量无冗余开关状态,引起中点电位不平衡而且不可控;零矢量和大矢量不引起中点电位不平衡。中点电位不平衡量ΔU公式如下:
ΔU=∫inpdt (1)
其中,inp为流出中点电流。
虚拟空间矢量法(VSVPWM)根据虚拟矢量合成的原理,利用不产生中点电位偏移的虚拟中矢量代替中矢量,在一个采样周期内使流入流出中点电流之和为零,从而从根本上消除了中矢量引起的中点电位低频波动,但传统VSVPWM的缺点是不能主动控制已经存在的中点电位偏移,并且开关频率较高。
针对传统VSVPWM不能主动控制中点电位偏移的问题,可以通过引入正负小矢量的占空比系数的方式,重新构建虚拟小矢量,利用正负小矢量对中点电位作用效果相反的原理,对中点电位进行主动控制,并针对矢量对应中点电流进行检测,判断当前采样周期内对中点电位作用能力强的小矢量,进行最优控制。这种方法能够在全电压范围内以及任意的功率因数下实现中点电位平衡,并且当存在中点电位偏移时能够进行快速、主动控制,消除中点电位偏移。但仍然没有解决开关频率高的问题。
发明内容
根据现有技术存在的问题,本发明公开了一种低调制度下降低开关频率的改进虚拟空间矢量法,包括:将空间矢量区域逆时针均分为六个扇区,包括第一扇区、第二扇区、第三扇区、第四扇区、第五扇区和第六扇区;
每个扇区分为五个小区,每个扇区包括一个零矢量;两个小矢量、一个虚拟合成中矢量和两个大矢量;
每个小矢量均包括一个正小矢量和一个负小矢量;
以第一扇区为例,所述第一扇区包括小矢量VS1和小矢量VS2;分别定义开关状态ONN、POO为小矢量VS1的正小矢量VS1P和负小矢量VS1N,分别定义开关状态PPO和OON为小矢量VS2的正小矢量VS2P和负小矢量VS2N
所述第一扇区零矢量VZ和两个小矢量VS1、VS2,构成的区域为第一扇区的第一小区;
定义yS1、yS2分别为一个采样周期内小矢量VS1、VS2对中点电位的作用量的大小;
定义KSi(i=1~6)为6个小矢量中的正小矢量的占空比系数,KS1为小矢量VS1的正小矢量VS1P的占空比系数;KS2为小矢量VS2的正小矢量VS2P的占空比系数;
定义ySi(i=1,2,…,6)表示6个小矢量对中点电位的作用量大小;
定义ySiP(i=1,2,3,4,5,6)为当KSi=1即该小矢量中只使用正小矢量时对中点电位的作用量;
ySiN(i=1,2,3,4,5,6)为当KSi=0即该小矢量中只使用负小矢量时对中点电位的作用量;
根据中点电位的作用量的计算公式得到第一扇区的第一小区中小矢量的中点电位作用量,yS1P、yS1N、yS2P、yS2N
两个分压电容从上到下分别为C1、和C2,电容电压分别为UC1和UC2,定义中点电位偏移量为ΔU,ΔU=UC1-UC2
当传感器检测到三电平逆变器当前周期中点电位偏移量ΔU大于零时,设定KS1=0,KS2=1,可得一个采样周期内小矢量对中点电位总作用量如公式(3)所示,yS1N+yS2P≤0,可以通过采用VZ、VS1N、VS2P的矢量组合进行输出来控制中点电位达到平衡,输出的序列为OOO-POO-PPO-POO-OOO;
当传感器检测到三电平逆变器当前周期中点电位偏移量ΔU小于零时,设定KS1=1,KS2=0,可得一个采样周期内小矢量对中点电位作用量如公式(4)所示,yS1P+yS2N≥0,可以通过采用VZ、VS1P、VS2N的矢量组合进行输出来控制中点电位达到平衡,输出的开关状态序列为OOO-OON-ONN-OON-OOO;
进一步地,所述采用中点电位的作用量的计算公式得到第一扇区第一小区的中点电位作用量yS1P、yS1N、yS2P、yS2N公式如下:
其中,表示功率因数角,Um表示相电压幅值,θ表示参考电压旋转矢量旋转角度,z表示负载阻抗幅值,Ts表示采样周期,C表示电容容值,n表示调制度。
进一步地,所述调制度n采用以下公式进行计算:
其中,Um为相电压幅值,Udc为直流母线电压。
进一步地,该方法适用于各个扇区的第一小区,即调制度n≤0.5的低调制度下;
进一步地,该方法适用于NPC三电平逆变器控制。
由于采用了上述技术方案,本发明提供的一种低调制度下降低开关频率的改进虚拟空间矢量法,该方法既能够保证中点电位平衡,也能快速控制中点电位偏移,从该方法输出的开关序列可知,在每个采样周期内三相总开关次数为4次,相对于传统VSVPWM方法,在采样频率相同的条件下,开关次数降低了一半,从而大大降低了开关频率,同时具有主动的中点电位控制能力,中点电位稳态波动也较小。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为第一扇区的空间矢量分布图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
该方法适用于各个扇区的第一小区,即调制度n≤0.5的低调制度下,该方法适用于NPC三电平逆变器控制;
将空间矢量区域逆时针均分为六个扇区,包括第一扇区、第二扇区、第三扇区、第四扇区、第五扇区和第六扇区;
每个扇区分为五个三角形区域,每个扇区包括一个零矢量;两个小矢量、一个虚拟合成中矢量和两个大矢量;
每个小矢量均包括一个正小矢量和一个负小矢量;
在第一扇区第二小区内VSVPWM的开关序列为(PPO)-(POO)-(PON)-(OON)-(ONN)-(OON)-(PON)-(POO)-(PPO),每个采样周期内三相开关总次数为8次,开关频率较高。
图1为第一扇区的矢量分布图,以第一扇区第1小区为例,yS1、yS2分别表示一个采样周期内VS1、VS2中点电位的作用量的大小,将其扩展到六个扇区中,则用ySi(i=1,2,…,6)表示6个小矢量对中点电位的作用量大小,每个小矢量对应两个开关状态,定义KSi(i=1~6)为正小矢量的占空比系数,例如KS1为小矢量VS1的正小矢量VS1P(ONN)的占空比系数。定义ySiP(i=1,2,3,4,5,6)为当KSi=1即该小矢量中只使用正小矢量时对中点电位的作用量,而ySiN(i=1,2,3,4,5,6)为当KSi=0即该小矢量中只使用负小矢量时对中点电位的作用量。第一扇区第1小区中yS1P、yS1N、yS2P、yS2N的计算公式如下所示:
设在一个采样周期之内设定KS1=1,KS2=0,则VS1、VS2对中点电位的总作用量为y=yS1+yS2=yS1P+yS2N,计算y得:
对于功率因数角yS1P+yS2N≥0,功率因数角/>时,yS1P+yS2N最大值为/>功率因数角/>为-90°/90°时,yS1P+yS2N值最小为0。
设在一个采样周期之内设定KS1=0,KS2=1,则VS1、VS2对中点电位的总作用量y为y=yS1+yS2=yS1N+yS2P,计算y得:
对于功率因数角yS1N+yS2P≤0,功率因数角为/>时yS1N+yS2P最小为/>功率因数角/>为-90°/90°时,yS1N+yS2P值最大为0。
第一大区第1小区内yS1P+yS2N与yS1N+yS2P幅值相等,符号相反,并且和旋转角度θ无关,yS1P+yS2N与yS1N+yS2P幅值随功率因数角的增加而减小。
若检测到当前周期中点电位偏移量ΔU=UC1-UC2>0,若要控制中点电位平衡,则只需使KS1=0,KS2=1,由于yS1N+yS2P≤0,则中点电位向平衡方向变化,输出矢量分别为VZ、VS1N、VS2P,输出状态开关序列为OOO-POO-PPO-POO-OOO。若检测当前周期中点电位偏移量ΔU=UC1-UC2<0,若要控制中点电位平衡,则只需使KS1=1,KS2=0,由于yS1P+yS2N≥0,则中点电位向平衡方向变化。输出矢量分别为VZ、VS1P、VS2N,输出状态开关序列为OOO-OON-ONN-OON-OOO。
其他大区的判断以及控制过程和第一大区类似,这里不再赘述。由于此方法只适用于各个扇区的第一小区,因此只适用于低调制度下(n≤0.5),调制度n的定义为:
其中,Um为相电压幅值,Udc为直流母线电压。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种低调制度下降低开关频率的改进虚拟空间矢量方法,其特征在于:包括:
将空间矢量区域逆时针均分为六个扇区,包括第一扇区、第二扇区、第三扇区、第四扇区、第五扇区和第六扇区;
每个扇区分为五个小区,每个扇区包括一个零矢量、两个小矢量、一个虚拟中矢量和两个大矢量;
每个小矢量均包括一个正小矢量和一个负小矢量;
以第一扇区为例,所述第一扇区包括小矢量VS1和小矢量VS2;分别定义开关状态ONN、POO为小矢量VS1的正小矢量VS1P和负小矢量VS1N,分别定义开关状态PPO和OON为小矢量VS2的正小矢量VS2P和负小矢量VS2N
所述第一扇区零矢量VZ和两个小矢量VS1、VS2,构成的区域为第一扇区的第一小区;
定义yS1、yS2分别为一个采样周期内小矢量VS1、VS2对中点电位的作用量的大小;
定义KSi,为6个小矢量中的正小矢量的占空比系数,KS1为小矢量VS1的正小矢量VS1P的占空比系数;KS2为小矢量VS2的正小矢量VS2P的占空比系数,i=1~6;
定义ySi,表示6个小矢量对中点电位的作用量大小,i=1,2...6;
定义ySiP,为当KSi=1即该小矢量中只使用正小矢量时对中点电位的作用量,i=1,2,3,4,5,6;
ySiN,为当KSi=0即该小矢量中只使用负小矢量时对中点电位的作用量,i=1,2,3,4,5,6;
根据中点电位的作用量的计算公式得到第一扇区的第一小区中小矢量的中点电位作用量,yS1P、yS1N、yS2P、yS2N
两个分压电容从上到下分别为C1和C2,电容电压分别为UC1和UC2,定义中点电位偏移量为ΔU,ΔU=UC1-UC2
当传感器检测到三电平逆变器当前周期中点电位偏移量ΔU大于零时,设定KS1=0,KS2=1,得到一个采样周期内小矢量对中点电位总作用量如下所示公式,yS1N+yS2P≤0,通过采用VZ、VS1N、VS2P的矢量组合进行输出来控制中点电位达到平衡,输出的序列为OOO-POO-PPO-POO-OOO;
当传感器检测到三电平逆变器当前周期中点电位偏移量ΔU小于零时,设定KS1=1,KS2=0,得到一个采样周期内小矢量对中点电位作用量如下公式所示,yS1P+yS2N≥0,通过采用VZ、VS1P、VS2N的矢量组合进行输出来控制中点电位达到平衡,输出的开关状态序列为OOO-OON-ONN-OON-OOO;
其中,表示功率因数角,Um表示相电压幅值,θ表示参考电压旋转矢量旋转角度,z表示负载阻抗幅值,Ts表示采样周期,C表示电容容值,n表示调制度,该方法适用于各个扇区的第一小区,即调制度n≤0.5的低调制度下。
2.根据权利要求1所述的一种低调制度下降低开关频率的改进虚拟空间矢量方法,其特征在于:所述根据中点电位的作用量的计算公式得到第一扇区的第一小区中小矢量的中点电位作用量yS1P、yS1N、yS2P、yS2N公式如下:
其中,表示功率因数角,Um表示相电压幅值,θ表示参考电压旋转矢量旋转角度,z表示负载阻抗幅值,Ts表示采样周期,C表示电容容值,n表示调制度。
3.根据权利要求2所述的一种低调制度下降低开关频率的改进虚拟空间矢量方法,其特征在于:所述调制度n采用以下公式进行计算:
其中,Um为相电压幅值,Udc为直流母线电压。
4.根据权利要求1所述的一种低调制度下降低开关频率的改进虚拟空间矢量方法,其特征在于:该方法适用于NPC三电平逆变器控制。
CN202010513369.8A 2020-06-08 2020-06-08 一种低调制度下降低开关频率的改进虚拟空间矢量法 Active CN111654201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010513369.8A CN111654201B (zh) 2020-06-08 2020-06-08 一种低调制度下降低开关频率的改进虚拟空间矢量法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010513369.8A CN111654201B (zh) 2020-06-08 2020-06-08 一种低调制度下降低开关频率的改进虚拟空间矢量法

Publications (2)

Publication Number Publication Date
CN111654201A CN111654201A (zh) 2020-09-11
CN111654201B true CN111654201B (zh) 2023-09-26

Family

ID=72347073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010513369.8A Active CN111654201B (zh) 2020-06-08 2020-06-08 一种低调制度下降低开关频率的改进虚拟空间矢量法

Country Status (1)

Country Link
CN (1) CN111654201B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240060B (zh) * 2023-11-15 2024-03-12 特变电工西安电气科技有限公司 一种低调制度中点偏压的应对方法、装置、变流器及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647101A (zh) * 2011-12-26 2012-08-22 东方日立(成都)电控设备有限公司 一种多坐标系下的三电平空间矢量调制方法
CN109347358A (zh) * 2018-10-29 2019-02-15 中国科学院电工研究所 一种三电平npc变流器中点电位平衡控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022142A1 (ja) * 2004-08-27 2006-03-02 Mitsubishi Denki Kabushiki Kaisha 3相pwm信号発生装置
US9520800B2 (en) * 2014-01-09 2016-12-13 Rockwell Automation Technologies, Inc. Multilevel converter systems and methods with reduced common mode voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647101A (zh) * 2011-12-26 2012-08-22 东方日立(成都)电控设备有限公司 一种多坐标系下的三电平空间矢量调制方法
CN109347358A (zh) * 2018-10-29 2019-02-15 中国科学院电工研究所 一种三电平npc变流器中点电位平衡控制方法

Also Published As

Publication number Publication date
CN111654201A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6609685B2 (ja) 3レベル回路中性点電圧のバランス制御方法および3レベル回路中性点電圧のバランス制御方法を用いる3レベル回路
Samizadeh et al. A new topology of switched-capacitor multilevel inverter with eliminating leakage current
CN110112945B (zh) 三电平逆变器中点电压控制和共模电压抑制的方法及系统
CN111293915B (zh) 中点电位不平衡下的npc逆变器改进虚拟矢量调制方法
CN109217701A (zh) 三电平整流器共模电压抑制pwm方法、调制器及系统
CN109713724B (zh) 适用于光伏并网应用中并联三电平变换器的零共模电压空间矢量调制方法
CN104779827A (zh) 一种增强型虚拟矢量pwm调制方法
CN207638580U (zh) 四电平三相并网逆变器和发电系统
CN111654201B (zh) 一种低调制度下降低开关频率的改进虚拟空间矢量法
Chen et al. Topology and voltage-balance control of a single-phase active neutral point clamped seven-level inverter
CN109687748B (zh) 中点箝位五电平变换器的调制与电容电压平衡控制方法
Baksi et al. Performance Analysis of A Switched-Capacitor Based 13-Level Boost Cascaded Multilevel Inverter With Reduced Device Count
Li et al. Improved SVPWM strategy based on neutral-point charge balance for three-level neutral-point-clamped converter
Chen et al. A single-phase double T-type seven-level inverter
CN115940601A (zh) 一种混合整流器及控制方法
Panda et al. Design and control of an asymmetrical cascaded compact module multilevel inverter for PV system
CN113162450B (zh) 一种基于共模电压注入的五电平逆变器调制方法
Kou et al. Modulation method for single-phase six-switch five-level ANPC inverter
CN114640265A (zh) 一种多电平单相相间混合拓扑变换器及控制方法
Mishra et al. Novel voltage balancing techniques for modular multilevel PV inverters
TW202121821A (zh) 應用於三階層逆變器之環流抑制方法
Li et al. A new hybrid SVPWM strategy to minimize the neutral point voltage ripple of a three-level T-type converter
Mathew et al. Modified reduced switch symmetrical multilevel inverter
Fallah Ardashir et al. A New 13-Level Flying Capacitor-based 1-φ Inverter with Full Reactive Power Support
Attique et al. A simplified virtual vector PWM for four-level diode-clamped converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant