CN111650693A - A 3×3 single-mode micro-nano fiber coupler with controllable and continuously adjustable beam splitting ratio - Google Patents
A 3×3 single-mode micro-nano fiber coupler with controllable and continuously adjustable beam splitting ratio Download PDFInfo
- Publication number
- CN111650693A CN111650693A CN202010643712.0A CN202010643712A CN111650693A CN 111650693 A CN111650693 A CN 111650693A CN 202010643712 A CN202010643712 A CN 202010643712A CN 111650693 A CN111650693 A CN 111650693A
- Authority
- CN
- China
- Prior art keywords
- rotatable
- micro
- fixing member
- nano
- central axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002121 nanofiber Substances 0.000 title claims abstract description 78
- 239000013307 optical fiber Substances 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000835 fiber Substances 0.000 claims description 23
- 210000001624 hip Anatomy 0.000 claims description 18
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 239000003292 glue Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B2006/2865—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers couplers of the 3x3 type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明公开了一种分束比可控且连续可调的3×3单模微纳光纤耦合器,三根微纳光纤一端的未拉伸部分由第一固定件固定,另一端未拉伸部分穿过三个可旋转固定件且各由其中一个可旋转固定件固定,三个可旋转固定件的中心轴线相互重合;当三根微纳光纤处于相互平行状态时,三个可旋转固定件的中心轴线与微纳光纤平行且三根微纳光纤的纤芯到可旋转固定件中心轴线的距离互不相同,使得当任一个可旋转固定件被旋转时,能够仅带动被该可旋转固定件固定的微纳光纤扭转;当三根微纳光纤处于相互平行状态以及本发明耦合器处于工作状态时,三个可旋转固定件中心轴线的延长线与第一固定件的交点始终不变。本发明控制分束比的方法多样且连续可调,应用灵活多样。
The invention discloses a 3×3 single-mode micro-nano optical fiber coupler with controllable and continuously adjustable beam splitting ratio. The unstretched part of one end of three micro-nano optical fibers is fixed by a first fixing member, and the unstretched part of the other end is fixed by a first fixing member. Passing through three rotatable fixed parts and each is fixed by one of the rotatable fixed parts, the central axes of the three rotatable fixed parts coincide with each other; when the three micro-nano optical fibers are in a state of being parallel to each other, the center of the three rotatable The axis is parallel to the micro-nano fiber and the distances from the cores of the three micro-nano fibers to the central axis of the rotatable fixing piece are different from each other, so that when any rotatable fixing piece is rotated, only the rotatable fixing piece can be driven. The micro-nano optical fibers are twisted; when the three micro-nano optical fibers are in the state of being parallel to each other and the coupler of the present invention is in the working state, the intersection point of the extension line of the central axis of the three rotatable fixed parts and the first fixed part is always unchanged. The method for controlling the beam splitting ratio of the present invention is various and continuously adjustable, and the application is flexible and diverse.
Description
技术领域technical field
本发明涉及一种单模光纤耦合器,特别涉及一种3×3单模光纤耦合器,可应用在光通信、光信号处理、传感系统等领域。The invention relates to a single-mode optical fiber coupler, in particular to a 3×3 single-mode optical fiber coupler, which can be applied in the fields of optical communication, optical signal processing, sensing systems and the like.
背景技术Background technique
作为光网络系统中的关键元件,单模光纤耦合器可以将光信号从一根光纤分路到二根(或多跟)光纤上或者能将二根(或多跟)光纤上的光信号汇合到一根光纤上的无源传输光学元件。其中,3×3单模光纤耦合器是单模光纤耦合器中最基本的一种,由于3×3单模光纤耦合器比2×2耦合器多了一个耦合臂,因此,在使用功能和信号处理上更为优越,可应用于分光比可调的耦合器、光开关、光缓存器、光谐振腔等。3×3单模光纤耦合器的性能直接影响着光纤传输系统的性能及应用范围,尤其分束比连续可调的3×3单模光纤耦合器在传感检测、光通信控制系统中又有其特殊用途。As a key element in an optical network system, a single-mode fiber coupler can split optical signals from one fiber to two (or more) fibers or combine the optical signals on two (or more) fibers Passive transmission optics onto an optical fiber. Among them, the 3×3 single-mode fiber coupler is the most basic one of the single-mode fiber couplers. Since the 3×3 single-mode fiber coupler has one more coupling arm than the 2×2 coupler, the use of functional and It is more superior in signal processing and can be applied to couplers, optical switches, optical buffers, optical resonators, etc. with adjustable optical splitting ratio. The performance of the 3×3 single-mode fiber coupler directly affects the performance and application range of the optical fiber transmission system. In particular, the 3×3 single-mode fiber coupler with continuously adjustable beam splitting ratio is used in sensing detection and optical communication control systems. its special purpose.
现有技术中,3×3单模光纤耦合器的常规工艺是将多根光纤叠放在一起后,经高温熔融拉锥来实现光耦合,但是其分束比是固定不变的,存在分束比不可调节的问题,也无法在一个耦合器上提供多种可以控制的分束比,不能满足需要改变分束比的应用场合,功能非常单一。为了制备得到分束比连续可调的3×3单模光纤耦合器,目前,在光纤干涉仪的应用领域中,研究者采用的方案是通过结合其他光学元件,如2×2单模光纤耦合器、光纤布拉格光栅、光纤环形器等,通过调节反馈光纤长度、改变布拉格光栅反射率等多种间接的方法来实现。但是以上方案适用的应用领域非常有限,且制备方法成本高、步骤繁琐。此外,同样以上方案也无法在一个耦合器中实现分束比的多种控制方式,制约了基于3×3单模光纤耦合器的光学器件领域的发展。In the prior art, the conventional process of a 3×3 single-mode fiber coupler is to stack multiple fibers together, and then melt and taper at high temperature to realize optical coupling, but the splitting ratio is fixed, and there are differences. The problem that the beam ratio is not adjustable, and it is impossible to provide a variety of controllable beam splitting ratios on one coupler, which cannot meet the application occasions where the beam splitting ratio needs to be changed, and the function is very single. In order to prepare a 3×3 single-mode fiber coupler with continuously adjustable beam splitting ratio, at present, in the application field of fiber interferometer, the solution adopted by researchers is to combine other optical components, such as 2×2 single-mode fiber coupling It can be realized by various indirect methods such as adjusting the length of the feedback fiber and changing the reflectivity of the Bragg grating. However, the applicable application fields of the above scheme are very limited, and the preparation method has high cost and complicated steps. In addition, the above solutions also cannot implement multiple control methods of the splitting ratio in one coupler, which restricts the development of the field of optical devices based on 3×3 single-mode fiber couplers.
因此,研究一种分束比可控且连续可调的3×3单模微纳光纤耦合器,对于增强3×3单模光纤耦合器的性能以及扩宽其应用领域有着重要意义。Therefore, it is of great significance to study a 3×3 single-mode micro-nano fiber coupler with a controllable and continuously adjustable beam splitting ratio for enhancing the performance of the 3×3 single-mode fiber coupler and broadening its application fields.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是:针对现有技术的不足,提供一种分束比可控且连续可调的3×3单模微纳光纤耦合器,以克服现有技术不能在同一个耦合器中实现多个分束比可控且连续可调的缺陷。The technical problem to be solved by the present invention is to provide a 3×3 single-mode micro-nano fiber coupler with a controllable and continuously adjustable beam splitting ratio in view of the deficiencies of the prior art, so as to overcome the inability of the prior art to couple at the same The defects of multiple controllable and continuously adjustable beam splitting ratios are realized in the device.
本发明解决上述技术问题采用的技术方案为:本发明分束比可控且连续可调的3×3单模微纳光纤耦合器包括三根微纳光纤,三根微纳光纤的一端的未拉伸部分由第一固定件固定,三根微纳光纤的另一端的未拉伸部分穿过三个可旋转固定件且各由其中的一个可旋转固定件固定,各可旋转固定件能够绕着自身的中心轴线旋转,三个可旋转固定件的中心轴线相互重合;当三根微纳光纤处于相互平行的状态时,三个可旋转固定件的中心轴线与微纳光纤平行且三根微纳光纤的纤芯到可旋转固定件的中心轴线的距离互不相同,使得当任一个可旋转固定件被旋转时,能够仅带动被该可旋转固定件固定的微纳光纤扭转;当三根微纳光纤处于相互平行状态以及所述耦合器处于工作状态时,三个可旋转固定件的中心轴线与第一固定件的交点始终不变。The technical solution adopted by the present invention to solve the above technical problems is as follows: the 3×3 single-mode micro-nano fiber coupler with a controllable and continuously adjustable beam splitting ratio of the present invention comprises three micro-nano fibers, and one end of the three micro-nano fibers is unstretched. Part of it is fixed by the first fixing piece, and the unstretched part of the other end of the three micro-nano optical fibers passes through the three rotatable fixing pieces and is fixed by one of the rotatable fixing pieces. When the central axis rotates, the central axes of the three rotatable fixed parts coincide with each other; when the three micro-nano optical fibers are in a state of being parallel to each other, the central axes of the three rotatable fixed parts are parallel to the micro-nano optical fibers and the cores of the three micro-nano optical fibers are parallel to each other. The distances to the central axis of the rotatable fixing member are different from each other, so that when any rotatable fixing member is rotated, it can only drive the micro-nano optical fiber fixed by the rotatable fixing member to twist; when the three micro-nano optical fibers are parallel to each other. In the state and when the coupler is in the working state, the intersection of the central axes of the three rotatable fixed parts and the first fixed part is always unchanged.
进一步地,本发明还包括支撑座,支撑座上设有弧形槽,三个可旋转固定件分别置于相应的弧形槽上,弧形槽的中心轴线与可旋转固定件的中心轴线重合,使得当可旋转固定件在弧形槽内绕着自身的中心轴线旋转时,三个可旋转固定件的中心轴线始终相互重合,且三个可旋转固定件的中心轴线与第一固定件的交点始终不变;按照可旋转固定件与第一固定件的距离由近到远的顺序,三个可旋转固定件上固定的微纳光纤的纤芯到可旋转固定件的中心轴线的距离依次由大到小。Further, the present invention also includes a support seat, the support seat is provided with an arc-shaped groove, the three rotatable fixing parts are respectively placed on the corresponding arc-shaped grooves, and the central axis of the arc-shaped groove coincides with the central axis of the rotatable fixing member. , so that when the rotatable fixed piece rotates around its own central axis in the arc-shaped groove, the central axes of the three rotatable fixed pieces always coincide with each other, and the central axes of the three rotatable fixed pieces and the first fixed piece The intersection point is always unchanged; in order of the distance from the rotatable fixing member to the first fixing member from near to far, the distances from the cores of the micro-nano optical fibers fixed on the three rotatable fixing members to the central axis of the rotatable fixing member are in sequence. From big to small.
进一步地,本发明所述第一固定件呈圆环状,其内壁沿圆周方向设有第一环形凹槽;三个可旋转固定件均呈圆环状,其中,第一可旋转固定件的一端的外壁沿圆周方向设有与第一环形凹槽相匹配的第一环形凸起、另一端的内壁沿圆周方向设有第二环形凹槽,第二可旋转固定件的一端的外壁沿圆周方向设有与第二环形凹槽相匹配的第二环形凸起、另一端的内壁沿圆周方向设有第三环形凹槽,第三可旋转固定件的一端的外壁沿圆周方向设有与第三环形凹槽相匹配的第三环形凸起;第一环形凸起与第一环形凹槽卡合且能够使第一可旋转固定件沿着第一环形凹槽转动,第二环形凸起与第二环形凹槽卡合且能够使第二可旋转固定件沿着第二环形凹槽转动,第三环形凸起与第三环形凹槽卡合且能够使第三可旋转固定件沿着第三环形凹槽转动,第一可旋转固定件、第二可旋转固定件、第三可旋转固定件上各自固定的微纳光纤的纤芯到三个可旋转固定件的中心轴线的距离依次由大到小。Further, the first fixing member of the present invention is in the shape of an annular shape, and its inner wall is provided with a first annular groove along the circumferential direction; the three rotatable fixing members are all annular, wherein the first rotatable fixing member is The outer wall of one end is provided with a first annular protrusion matching the first annular groove along the circumferential direction, the inner wall of the other end is provided with a second annular groove along the circumferential direction, and the outer wall of one end of the second rotatable fixing member is circumferentially provided with There is a second annular protrusion matching the second annular groove in the direction, the inner wall of the other end is provided with a third annular groove along the circumferential direction, and the outer wall of one end of the third rotatable fixing member is provided with the first annular groove along the circumferential direction. The third annular protrusion is matched with the three annular grooves; the first annular protrusion is engaged with the first annular groove and can make the first rotatable fixing member rotate along the first annular groove, and the second annular protrusion is connected to the first annular groove. The second annular groove engages and enables the second rotatable fixing member to rotate along the second annular groove, and the third annular protrusion engages with the third annular groove and enables the third rotatable fixing member to rotate along the first annular groove. The three annular grooves rotate, and the distances from the cores of the micro-nano optical fibers fixed on the first rotatable fixing member, the second rotatable fixing member, and the third rotatable fixing member to the central axes of the three rotatable fixing members are sequentially given by big to small.
进一步地,本发明所述第一固定件能够绕着自身的中心轴线旋转,且第一固定件的中心轴线与三个可旋转固定件的中心轴线重合。Further, the first fixing member of the present invention can rotate around its own central axis, and the central axis of the first fixing member coincides with the central axes of the three rotatable fixing members.
使用本发明耦合器调节微纳光纤分束比的第一种方法为:在三根微纳光纤处于相互平行的状态下,先将三个可旋转固定件同时绕着自身的中心轴线同方向旋转至三根微纳光纤的中间腰段缠绕在一起,然后继续按原方向旋转任一个或任两个可旋转固定件直至得到目标微纳光纤的所需分束比。The first method for adjusting the splitting ratio of micro-nano fibers by using the coupler of the present invention is as follows: when the three micro-nano fibers are parallel to each other, firstly rotate the three rotatable fixed parts in the same direction around their central axis to the same direction. The middle waists of the three micro-nano fibers are wound together, and then any one or any two rotatable fixed parts are rotated in the original direction until the desired splitting ratio of the target micro-nano fibers is obtained.
进一步地,本发明当三个可旋转固定件同时绕着自身的中心轴线同方向旋转时,第一固定件绕着自身的中心轴线朝与可旋转固定件相反的方向旋转,第一固定件的中心轴线与三个可旋转固定件的中心轴线重合。Further, in the present invention, when the three rotatable fixing members rotate in the same direction around their central axis at the same time, the first fixing member rotates around its central axis in the opposite direction to the rotatable fixing member, and the first fixing member rotates in the opposite direction to the rotatable fixing member. The central axis coincides with the central axes of the three rotatable fixing members.
使用本发明耦合器调节微纳光纤分束比的第二种方法为:在三根微纳光纤处于相互平行的状态下,先将三个可旋转固定件同时绕着自身的中心轴线同方向旋转至三根微纳光纤的中间腰段缠绕在一起,接着将三个可旋转固定件继续按原方向旋转至少半圈,然后按原方向或反方向旋转任一个或任两个可旋转固定件直至得到目标微纳光纤的所需分束比。The second method for adjusting the splitting ratio of micro-nano fibers by using the coupler of the present invention is as follows: when the three micro-nano fibers are parallel to each other, firstly rotate the three rotatable fixed parts in the same direction around their central axis to the same direction. The middle waists of the three micro-nano optical fibers are wound together, and then the three rotatable fixing members continue to rotate at least half a turn in the original direction, and then either or any two rotatable fixing members are rotated in the original or reverse direction until the target is obtained. The desired splitting ratio of micro-nano fibers.
进一步地,本发明当三个可旋转固定件同时绕着自身的中心轴线同方向旋转时,第一固定件绕着自身的中心轴线朝与可旋转固定件相反的方向旋转,第一固定件的中心轴线与三个可旋转固定件的中心轴线重合。Further, in the present invention, when the three rotatable fixing members rotate in the same direction around their central axis at the same time, the first fixing member rotates around its central axis in the opposite direction to the rotatable fixing member, and the first fixing member rotates in the opposite direction to the rotatable fixing member. The central axis coincides with the central axes of the three rotatable fixing members.
使用本发明耦合器调节微纳光纤分束比的第三种方法为:在三根微纳光纤处于相互平行的状态下,先将任两个可旋转固定件同时绕着自身的中心轴线同方向旋转至由其固定的两根微纳光纤的中间腰段缠绕在一起,然后继续按原方向将三个可旋转固定件中的任一个或任两个绕着自身的中心轴线旋转直至得到目标微纳光纤的所需分束比。The third method for adjusting the splitting ratio of micro-nano fibers by using the coupler of the present invention is as follows: when the three micro-nano fibers are in parallel with each other, first rotate any two rotatable fixed parts in the same direction around their central axis at the same time. The middle waist sections of the two micro-nano optical fibers fixed by it are wound together, and then continue to rotate any one or any two of the three rotatable fixed parts around its central axis according to the original direction until the target micro-nano optical fiber is obtained. The desired splitting ratio of the fiber.
进一步地,本发明当三个可旋转固定件同时绕着自身的中心轴线同方向旋转时,第一固定件绕着自身的中心轴线朝与可旋转固定件相反的方向旋转,第一固定件的中心轴线与三个可旋转固定件的中心轴线重合。Further, in the present invention, when the three rotatable fixing members rotate in the same direction around their central axis at the same time, the first fixing member rotates around its central axis in the opposite direction to the rotatable fixing member, and the first fixing member rotates in the opposite direction to the rotatable fixing member. The central axis coincides with the central axes of the three rotatable fixing members.
本发明与现有技术相比,优势在于:Compared with the prior art, the present invention has the advantages of:
(1)耦合器制备工艺简单,制备材料精简,制备成本低廉;(1) The preparation process of the coupler is simple, the preparation materials are simplified, and the preparation cost is low;
(2)耦合器的分束比可以采取多种控制、调节方式;(2) The splitting ratio of the coupler can be controlled and adjusted in a variety of ways;
(3)耦合器的分束比具有连续可调的特点;(3) The splitting ratio of the coupler is continuously adjustable;
(4)耦合器的制备方法使得可以在同一个耦合器上同时实现多个分束比的控制,在应用中更具灵活性和多样性;(4) The preparation method of the coupler makes it possible to realize the control of multiple beam splitting ratios at the same time on the same coupler, which is more flexible and diverse in application;
(5)耦合器中使用的微纳光纤的数目可以扩展成N根,使得耦合器成为N个输入端、N个输出端的N*N器件,具备较强的可扩展性。(5) The number of micro-nano fibers used in the coupler can be expanded to N, so that the coupler becomes an N*N device with N input ends and N output ends, which has strong scalability.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明。The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
图1为本发明耦合器的第一种实施方式处于初始状态时的结构示意图;FIG. 1 is a schematic structural diagram of the first embodiment of the coupler of the present invention when it is in an initial state;
图2为本发明耦合器的第一种实施方式中,三个可旋转固定件及其固定的微纳光纤的相互位置关系图;2 is a diagram showing the mutual positional relationship between three rotatable fixing members and the micro-nano optical fibers fixed thereon in the first embodiment of the coupler of the present invention;
图3为图2中的三个可旋转固定件的结构示意图;3 is a schematic structural diagram of three rotatable fixing members in FIG. 2;
图4为本发明耦合器的第二种实施方式处于初始状态时的结构示意图;FIG. 4 is a schematic structural diagram of the second embodiment of the coupler of the present invention when it is in an initial state;
图5为图4中的第一固定件的内部结构示意图;5 is a schematic diagram of the internal structure of the first fixing member in FIG. 4;
图6为图4中的三个可旋转固定件的结构示意图;6 is a schematic structural diagram of three rotatable fixing members in FIG. 4;
图7为图4中的第一固定件以及三个可旋转固定件之间的安装关系示意图;7 is a schematic diagram of the installation relationship between the first fixing member and the three rotatable fixing members in FIG. 4;
图8为本发明耦合器的第二种实施方式中,三个可旋转固定件所固定的微纳光纤的位置示意图;8 is a schematic diagram of the positions of the micro-nano optical fibers fixed by the three rotatable fixing members in the second embodiment of the coupler of the present invention;
图9为使用本发明耦合器的第二种实施方式同时同方向旋转三个可旋转固定件后,三根微纳光纤的中间腰段刚缠绕在一起时的状态示意图;9 is a schematic diagram of the state when the middle waist sections of the three micro-nano optical fibers are just wound together after using the second embodiment of the coupler of the present invention to simultaneously rotate the three rotatable fixing members in the same direction;
图10为继续按原方向同时旋转图9中的三个可旋转固定件后,三根微纳光纤的中间腰段缠绕在一起的状态示意图;Figure 10 is a schematic diagram of the state in which the middle waists of the three micro-nano optical fibers are wound together after the three rotatable fixing members in Figure 9 are rotated simultaneously in the original direction;
图中:1-第一微纳光纤,2-第二微纳光纤,3-第三微纳光纤,A-第一微纳光纤的纤芯,B-第二微纳光纤的纤芯,C-第三微纳光纤的纤芯,Q-中心轴线,1M-第一微纳光纤的中间腰段,2M-第二微纳光纤的中间腰段,3M-第三微纳光纤的中间腰段,4-第一固定件,41-环形凹槽31-第一可旋转固定件,32-第二可旋转固定件,33-第三可旋转固定件,71-环形凸起,72-环形凹槽,5-支撑座,6-弧形槽,311-第一可旋转固定件的内壁,321-第二可旋转固定件的内壁,331-第三可旋转固定件的内壁。In the figure: 1- the first micro-nano fiber, 2- the second micro-nano fiber, 3- the third micro-nano fiber, A- the core of the first micro-nano fiber, B- the second micro-nano fiber core, C - Core of the third micro-nano fiber, Q-central axis, 1M- the middle waist of the first micro-nano fiber, 2M- the middle waist of the second micro-nano fiber, 3M- the middle waist of the third micro-nano fiber , 4-the first fixing piece, 41-annular groove 31-the first rotatable fixing piece, 32-the second rotatable fixing piece, 33-the third rotatable fixing piece, 71-annular protrusion, 72-annular concave Slot, 5-support base, 6-arc-shaped slot, 311-inner wall of the first rotatable fixing piece, 321-inner wall of the second rotatable fixing piece, 331-inner wall of the third rotatable fixing piece.
具体实施方式Detailed ways
下面结合附图以及具体实施方式进一步说明本发明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
如图1、图4、图9和图10所示,本发明分束比可控且连续可调的3×3单模微纳光纤耦合器包括三根微纳光纤1、2、3,三根微纳光纤的一端的未拉伸部分由第一固定件4固定,三根微纳光纤的另一端的未拉伸部分穿过三个可旋转固定件31、32、33且各由其中的一个可旋转固定件固定,各可旋转固定件能够绕着自身的中心轴线旋转,三个可旋转固定件31、32、33的中心轴线相互重合;当三根微纳光纤1、2、3处于相互平行的状态时,三个可旋转固定件31、32、33的中心轴线与微纳光纤平行且三根微纳光纤的纤芯到可旋转固定件的中心轴线的距离互不相同,使得当任一个可旋转固定件被旋转时,能够仅带动被该可旋转固定件固定的微纳光纤扭转;当三根微纳光纤1、2、3处于相互平行状态时以及当本发明耦合器处于工作状态时,三个可旋转固定件31、32、33的中心轴线与第一固定件的交点始终不变。As shown in FIG. 1, FIG. 4, FIG. 9 and FIG. 10, the 3×3 single-mode micro-nano fiber coupler with controllable and continuously adjustable beam splitting ratio of the present invention includes three
在本发明中,三根微纳光纤1、2、3可采用普通商用1550nm单模光纤在相同制备参数设置下同时融熔拉锥制备得到。可使用载玻片作为第一固定件4,利用泡沫固定胶将三根微纳光纤1、2、3的一端未拉伸部分固定在第一固定件4上,另可使用3个商用的高精度光纤旋转器作为三个可旋转固定件31、32、33,使用固定胶可将三根微纳光纤1、2、3的另一端未拉伸部分分别固定在可旋转固定件31、32、33上。In the present invention, the three micro-nano
图1至图3示出了本发明的第一种实施方式。在该实施方式中,本发明还包括支撑座5,支撑座5上设有弧形槽6,三个可旋转固定件31、32、33分别置于相应的弧形槽6上,弧形槽6的中心轴线与可旋转固定件的中心轴线重合,使得当可旋转固定件在弧形槽6内绕着自身的中心轴线旋转时,三个可旋转固定件31、32、33的中心轴线始终相互重合,且三个可旋转固定件31、32、33的中心轴线的延长线与第一固定件4的交点始终不变。如图1所示,可旋转固定件31、32、33与第一固定件4的距离依次由近到远,三根微纳光纤1、2、3的一端未拉伸部分固定在第一固定件4上。如图2和图3所示,可旋转固定件31、32、33优选呈圆环状,微纳光纤1的另一端未拉伸部分通过固定胶固定在可旋转固定件31的内壁311的A处,微纳光纤2的另一端未拉伸部分通过固定胶固定在可旋转固定件32的内壁321的B处,微纳光纤3的另一端未拉伸部分通过固定胶固定在可旋转固定件33的内壁331的C处,微纳光纤1、2、3的纤芯到可旋转固定件的中心轴线的距离AQ、BQ、CQ依次由大到小,使得当任一个可旋转固定件被旋转时,能够仅带动被该可旋转固定件固定的微纳光纤扭转。1 to 3 show a first embodiment of the present invention. In this embodiment, the present invention also includes a
此外,第一固定件4可以是固定不动的,也可以绕着自身的中心轴线旋转。如图1所示,第一固定件4的外轮廓呈圆形,在其下方设置一个开有弧形槽6的支撑座5,弧形槽6的中心轴线与可旋转固定件31、32、33的中心轴线重合,第一固定件4置于弧形槽6内,则第一固定件4可绕着自身的中心轴线旋转,且其中心轴线与三个可旋转固定件31、32、33的中心轴线始终相互重合。无论是在三根微纳光纤1、2、3处于相互平行状态时,还是在耦合器处于工作状态中,转动三个可旋转固定件31、32、33以及第一固定件4绕着自身的中心轴线旋转时,三个可旋转固定件31、32、33的中心轴线与第一固定件4的交点始终不变。In addition, the first fixing
图4至图10示出了本发明的第二种实施方式,其中,第一固定件4呈圆环状,其内壁沿圆周方向设有第一环形凹槽41;三个可旋转固定件31、32、33均呈圆环状,其中,第一可旋转固定件31的一端的外壁沿圆周方向设有与第一环形凹槽41相匹配的第一环形凸起71、另一端的内壁沿圆周方向设有第二环形凹槽72,第二可旋转固定件32的一端的外壁沿圆周方向设有与第二环形凹槽72相匹配的第二环形凸起71、另一端的内壁沿圆周方向设有第三环形凹槽72,第三可旋转固定件33的一端的外壁沿圆周方向设有与第三环形凹槽72相匹配的第三环形凸起71。如图4、图7、图9和图10所示,第一可旋转固定件31、第二可旋转固定件32、第三可旋转固定件33与第一固定件4的距离依次由近到远。其中,第一环形凸起71与第一环形凹槽41卡合且能够使第一可旋转固定件31沿着该第一环形凹槽41转动。第二环形凸起71与第二环形凹槽72卡合且能够使第二可旋转固定件32沿着该第二环形凹槽72转动。第三环形凸起71与第三环形凹槽72卡合且能够使第三可旋转固定件33沿着该第三环形凹槽72转动。三根微纳光纤1、2、3的一端未拉伸部分固定在第一固定件4上。如图8所示,三个可旋转固定件31、32、33优选呈圆环状,微纳光纤1的另一端未拉伸部分通过固定胶固定在第一可旋转固定件31的内壁311的A处,微纳光纤2的另一端未拉伸部分通过固定胶固定在第二可旋转固定件32的内壁321的B处,微纳光纤3的另一端未拉伸部分通过固定胶固定在第三可旋转固定件33的内壁331的C处,微纳光纤1、2、3的纤芯到可旋转固定件的中心轴线的距离AQ、BQ、CQ依次由大到小,使得当任一个可旋转固定件被旋转时,能够仅带动被该可旋转固定件固定的微纳光纤扭转。4 to 10 show the second embodiment of the present invention, wherein the first fixing
同样的,在本发明的第二种实施方式中,第一固定件4可以是固定不动的,也可以绕着自身的中心轴线旋转。当第一固定件4绕着自身的中心轴线旋转时,其中心轴线与三个可旋转固定件31、32、33的中心轴线始终相互重合。无论是在三根微纳光纤1、2、3处于相互平行状态时,还是在耦合器处于工作状态中,转动三个可旋转固定件31、32、33以及第一固定件4绕着自身的中心轴线旋转时,三个可旋转固定件31、32、33的中心轴线与第一固定件4的交点始终不变。Similarly, in the second embodiment of the present invention, the first fixing
本发明的三根微纳光纤可采用普通商用1550nm单模光纤以相同的制备参数同时融熔拉锥制备得到。The three micro-nano optical fibers of the present invention can be prepared by using common commercial 1550 nm single-mode optical fibers to simultaneously melt and taper with the same preparation parameters.
使用本发明耦合器时,可选择微纳光纤1作为直通微纳光纤,微纳光纤2和微纳光纤3作为耦合光纤。如图1、图4、图9和图10所示,在微纳光纤1的左边端口输入一定功率Pin的光源,通过功率探测器D1、D2、D3可分别监测得到微纳光纤1的右边端口的输出功率Pout1、微纳光纤2的右边端口的输出功率Pout2和微纳光纤3的右边端口的输出功率Pout3。如图1和图4所示,当本发明耦合器在初始状态时,三根微纳光纤1、2、3相互平行,其中间腰段1M、2M、3M亦处于相互平行的状态。由于三根微纳光纤的中间腰段1M、2M、3M彼此在空间上相互平行且不接触,没有缠绕关系,此时微纳光纤2的右边端口和微纳光纤3的右边端口均没有输出功率值。继而通过旋转相应的可旋转固定件来调节相应微纳光纤的中间腰段的缠绕长度来,由此改变微纳光纤的分束比。在旋转可旋转固定件的同时,可分别通过功率探测器D1、D2、D3实时观察分束比和连续变化的情况,直至得到目标微纳光纤的所需分束比时停止旋转可旋转固定件。当三个可旋转固定件31、32、33同时绕着自身的中心轴线同方向旋转的同时,第一固定件4亦可绕着自身的中心轴线朝与可旋转固定件相反的方向旋转,此时第一固定件4的中心轴线与三个可旋转固定件31、32、33的中心轴线重合。When using the coupler of the present invention, the
以下进一步说明使用本发明耦合器调节微纳光纤分束比的方法。The method for adjusting the splitting ratio of the micro-nano fiber by using the coupler of the present invention is further described below.
第一种方法为:在三根微纳光纤1、2、3处于相互平行的状态下,先将三个可旋转固定件31、32、33同时绕着自身的中心轴线同方向旋转至三根微纳光纤的中间腰段1M、2M、3M缠绕在一起(参见图9),然后继续按原方向旋转任一个或任两个可旋转固定件,由此通过调节三根微纳光纤的中间腰段的缠绕长度来改变微纳光纤的分束比。通过功率探测器D1、D2、D3实时观察分束比和连续变化的情况,直至得到目标微纳光纤的所需分束比时停止旋转可旋转固定件。The first method is: when the three
第二种方法为:在三根微纳光纤1、2、3处于相互平行的状态下,先将三个可旋转固定件31、32、33同时绕着自身的中心轴线同方向旋转至三根微纳光纤的中间腰段1M、2M、3M缠绕在一起(参见图9),接着将三个可旋转固定件31、32、33继续按原方向旋转至少半圈(参见图10),然后按原方向或反方向旋转任一个或任两个可旋转固定件。通过功率探测器D1、D2、D3实时观察分束比和连续变化的情况,直至得到目标微纳光纤的所需分束比时停止旋转可旋转固定件。The second method is: when the three
第三种方法为:在三根微纳光纤1、2、3处于相互平行的状态下,先将任两个可旋转固定件同时绕着自身的中心轴线同方向旋转至由其固定的两根微纳光纤的中间腰段缠绕在一起(图中未示出),然后继续按原方向将三个可旋转固定件中的任一个或任两个绕着自身的中心轴线旋转。通过功率探测器D1、D2、D3实时观察分束比和连续变化的情况,直至得到目标微纳光纤的所需分束比时停止旋转可旋转固定件。The third method is: when the three
按实际工作需要,按以上三种方法使用本发明耦合器均可将分束比调节得到以下三种结果:三个微纳光纤的分束比互不相同;其中两个微纳光纤的分束比相同,另一个微纳光纤的分束比则不相同;三个微纳光纤的分束比均相同。According to actual work requirements, the splitting ratio of the present invention can be adjusted according to the above three methods to obtain the following three results: the splitting ratios of the three micro-nano fibers are different from each other; If the ratio is the same, the splitting ratio of the other micro-nano fiber is different; the splitting ratio of the three micro-nano fibers is the same.
综上,本发明耦合器实现了在同一个耦合器中多个分束比可控且连续可调。本发明对分束比的控制精度由可旋转固定件的旋转精度决定,三个分束比之间的比例由旋转圈数决定。In conclusion, the coupler of the present invention realizes controllable and continuously adjustable multiple beam splitting ratios in the same coupler. The control precision of the beam splitting ratio of the present invention is determined by the rotation precision of the rotatable fixing member, and the ratio between the three beam splitting ratios is determined by the number of rotations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010643712.0A CN111650693B (en) | 2020-07-06 | 2020-07-06 | A 3×3 single-mode micro-nano optical fiber coupler with controllable and continuously adjustable beam splitting ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010643712.0A CN111650693B (en) | 2020-07-06 | 2020-07-06 | A 3×3 single-mode micro-nano optical fiber coupler with controllable and continuously adjustable beam splitting ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111650693A true CN111650693A (en) | 2020-09-11 |
CN111650693B CN111650693B (en) | 2024-02-06 |
Family
ID=72347743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010643712.0A Active CN111650693B (en) | 2020-07-06 | 2020-07-06 | A 3×3 single-mode micro-nano optical fiber coupler with controllable and continuously adjustable beam splitting ratio |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111650693B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070237453A1 (en) * | 2004-03-19 | 2007-10-11 | Crystal Fibre A/S | Optical Coupler Devices, Methods of Their Production and Use |
CN109655973A (en) * | 2019-01-07 | 2019-04-19 | 浙江大学 | A kind of 2 × 2 single mode optical fiber directional couplers that splitting ratio is continuously adjustable |
CN212321899U (en) * | 2020-07-06 | 2021-01-08 | 浙江大学 | 3X 3 single-mode micro-nano optical fiber coupler with controllable splitting ratio and continuously adjustable |
-
2020
- 2020-07-06 CN CN202010643712.0A patent/CN111650693B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070237453A1 (en) * | 2004-03-19 | 2007-10-11 | Crystal Fibre A/S | Optical Coupler Devices, Methods of Their Production and Use |
CN109655973A (en) * | 2019-01-07 | 2019-04-19 | 浙江大学 | A kind of 2 × 2 single mode optical fiber directional couplers that splitting ratio is continuously adjustable |
CN212321899U (en) * | 2020-07-06 | 2021-01-08 | 浙江大学 | 3X 3 single-mode micro-nano optical fiber coupler with controllable splitting ratio and continuously adjustable |
Non-Patent Citations (1)
Title |
---|
张庭 等: "微纳光纤的制备及其光学特性研究", 压电与声光, vol. 40, no. 5 * |
Also Published As
Publication number | Publication date |
---|---|
CN111650693B (en) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4239330A (en) | Multiple optical switch | |
JPH07287178A (en) | Optical changeover device | |
JPS61228408A (en) | Optical fiber connector | |
CN111650693A (en) | A 3×3 single-mode micro-nano fiber coupler with controllable and continuously adjustable beam splitting ratio | |
CN212321899U (en) | 3X 3 single-mode micro-nano optical fiber coupler with controllable splitting ratio and continuously adjustable | |
CN209265001U (en) | A parallel fiber grating with low polarization-dependent loss and its preparation device | |
CN109655973B (en) | 2 x 2 single-mode fiber directional coupler with continuously adjustable light splitting ratio | |
CN214621028U (en) | Envelope-adjustable second-order Sagnac fiber optic interferometer | |
CN112162364B (en) | A wavelength-switchable phase-shift fiber Bragg grating and wavelength switching method | |
WO2022162858A1 (en) | Optical cross-connect device | |
JP7524952B2 (en) | Optical Switch | |
CN208488568U (en) | A kind of multichannel optical switch | |
Hu et al. | Analysis of the coupling efficiency of a tapered space receiver with a calculus mathematical model | |
WO2020140253A1 (en) | Parallel fiber bragg grating having low polarization-dependent loss, and preparation method and apparatus thereof | |
CN113589438B (en) | A linearly polarized Sagnac total mirror, method and optical system based on twin-core optical fiber | |
CN115113339A (en) | Polarization-independent low-loss optical switch | |
GB2172412A (en) | A three-way star splitter for optical wave guides | |
CN113671632A (en) | Arc-shaped cone fiber end full reflector based on multi-core optical fiber and preparation method thereof | |
JPH02281224A (en) | Optical variable attenuator | |
JPS62141509A (en) | Optical fiber connector | |
CN112965173B (en) | A spectroscopic splitter with adjustable splitting ratio | |
CN102162878A (en) | Double optical fiber ring cascading depolarization device irrelevant to input polarization state | |
CN103412371A (en) | Faraday rotary mirror capable of simultaneously carrying out polarization state conversion on multiple paths of optical signals | |
CN111610652A (en) | A new design method of fiber optic isolator | |
WO2025040844A1 (en) | Improved waveguide for an optical polarization rotator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |