CN111650177B - 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 - Google Patents

一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 Download PDF

Info

Publication number
CN111650177B
CN111650177B CN202010390423.4A CN202010390423A CN111650177B CN 111650177 B CN111650177 B CN 111650177B CN 202010390423 A CN202010390423 A CN 202010390423A CN 111650177 B CN111650177 B CN 111650177B
Authority
CN
China
Prior art keywords
layer
gate
substrate
dimensional thin
hole array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010390423.4A
Other languages
English (en)
Other versions
CN111650177A (zh
Inventor
吴惠桢
鲁鹏棋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010390423.4A priority Critical patent/CN111650177B/zh
Publication of CN111650177A publication Critical patent/CN111650177A/zh
Application granted granted Critical
Publication of CN111650177B publication Critical patent/CN111650177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法,基底结构从下至上依次为Au孔阵列层,二维薄层GaTe层和Au纳米颗粒层,本发明在SiO2/Si基底层上,通过热蒸发的方法生长Ti层或Cr层,利用光刻和微纳加工方法制备Au孔阵列层,利用机械剥离的方法制备二维薄层GaTe层,并利用转移平台转移到Au孔阵列层上,最后将基底浸没在HAuCl4溶液中制备Au纳米颗粒层。本发明得益于GaTe材料较高的缺陷密度,在二维薄层GaTe层上自组装形成的金纳米颗粒层覆盖率能达到98%,此基底对R6G分子的最低探测浓度达到10‑16M,超过了绝大部分的表面增强拉曼散射基底,具有较好的稳定性和可重复性,具有实用化前景。

Description

一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备 方法
技术领域
本发明专利涉及一种基底以及制备方法,具体地说是一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法。
背景技术
光子与材料相互作用时发生的非弹性散射称为拉曼散射。由于散射前后光子的能量差仅与分子自身能级有关,因此基于拉曼散射的拉曼光谱是一种对分子结构高度敏感的探测手段。分子在一些表面上具有显著拉曼散射增强效应的现象称为表面增强拉曼散射(SERS)。经过数十年的发展,SERS已经取得了非凡的进展,在多种需要痕量分析的领域得到了广泛的应用,包括生物医疗、环境监测、食品安全、安防等。但目前SERS在应用上依然存在一些问题,主要在于SERS基底的诸多性能之间存在一定的矛盾性,往往需要舍此就彼,如无序结构的SERS基底通常在稳定性、均一性和可重复性方面表现比较差,而采用纳米光刻或者纳米打印工艺制备的有序基底受到加工工艺的限制,不易制备间距小于10nm的器件以获得最大化的电磁耦合。
二维层状材料的发现为SERS基底的制备提供了一个新的方向。二维材料SERS基底具有良好的均一性、稳定性和可重复性,对某些分子如非硫醇芳香族分子的探测能力也强于传统基底。作为SERS领域研究最多的二维材料,石墨烯(graphene)基底已经获得比肩传统基底的SERS增强能力,实现对罗丹明6G(rhodamine 6G,R6G)分子的单分子探测。除石墨烯之外,基于其他二维材料的SERS基底也有所报道,如氮化硼、二硫化钼等。目前石墨烯是用作SERS基底最多的二维材料,但据PengqiLu等人的报道,GaTe二维材料拥有比石墨烯材料更好的潜在探测性能:在相似的基底结构下,GaTe基底对R6G分子的极限探测浓度为10- 11M,而石墨烯基底只有8×10-7M。因此研发以GaTe二维材料作为基底的具有单分子探测能力的SERS基底具有实际应用价值。
发明内容
本发明的正是针对现有技术的不足之处所作的改进,提供了一种提高GaTe基SERS基底的探测能力,实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法。
本发明是采用以下技术方案来实现的:
本发明公开了一种新型的碲化镓GaTe基表面增强拉曼基底,所述的基底结构从下至上依次为Au孔阵列层,二维薄层GaTe层和Au纳米颗粒层。
作为进一步地改进,本发明所述的二维薄层GaTe层与Au孔阵列层形成异质结构。
作为进一步地改进,在所述的二维薄层GaTe层(2)上自组装形成的Au纳米颗粒层(3)。
作为进一步地改进,本发明所述的基底结构从下至上依次为SiO2/Si基底层、Ti或Cr层、Au孔阵列层,二维薄层GaTe层和Au纳米颗粒层。
作为进一步地改进,本发明所述的二维薄层GaTe层为3-5nm,较薄的GaTe层有利于提高Au孔阵列层与Au纳米颗粒层之间局域等离激元的耦合,从而提高基底的拉曼散射增强能力。
作为进一步地改进,本发明所述的Au孔阵列层的孔周期为4-20um,孔直径为2-10um,孔深度为80-120nm,孔截面形状为圆形。以上参数有利于降低制备难度,获得较强的表面电场,从而较好地平衡制备难度与探测能力。
本发明还公开了一种新型的碲化镓GaTe基表面增强拉曼基底的制备方法,在SiO2/Si基底层上,通过热蒸发的方法生长Ti层或Cr层,利用光刻和微纳加工方法制备Au孔阵列层,利用机械剥离的方法制备二维薄层GaTe层,并利用转移平台转移到Au孔阵列层上,最后将基底浸没在HAuCl4溶液中制备Au纳米颗粒层。
作为进一步地改进,本发明所述的GaTe单晶需要保存在惰性氛围中,制备和转移过程需要快速完成,以降低GaTe层的氧化,提高基底探测能力,制备Au颗粒时的浸没时间为240-960秒,该参数能有效提高基底探测能力。
本发明的有益效果是:
得益于GaTe材料较高的缺陷密度,在二维薄层GaTe层上自组装形成的金纳米颗粒层覆盖率能达到98%,因此能在金颗粒之间产生极强的局域表面等离激元。二维薄层GaTe层下方的Au孔阵列层经过孔周期、孔直径、孔深度的参数优化后,也能产生极强的局域表面等离激元。由于二维GaTe层非常薄,金纳米颗粒层和Au孔阵列层产生的局域等离激元能高效地耦合在一起,增强了GaTe表面的电场强度,从而大幅提升了拉曼散射增强效果。作为拉曼散射增强效果得到提升的体现,此基底对R6G分子的最低探测浓度达到10-16M,超过了绝大部分的表面增强拉曼散射基底。本基底同时具有较好的稳定性和可重复性,具有实用化前景。
附图说明
图1是SERS基底制备流程示意图;
图2是SERS基底对R6G分子的变浓度探测实验结果图,右侧图像是R6G浓度为10-16M时的拉曼信号图;
图1中1是Au孔阵列层,2是二维薄层GaTe层,3是Au纳米颗粒层。
具体实施方式
本发明公开了一种新型的碲化镓GaTe基表面增强拉曼基底,基底结构从下至上依次为SiO2/Si基底层、Ti或Cr层、Au孔阵列层1,二维薄层GaTe层2和Au纳米颗粒层3,二维薄层GaTe层2与Au孔阵列层1形成的异质结构,制备方法为在SiO2/Si基底层上,通过热蒸发的方法生长Ti层或Cr层,通过光刻和微纳加工制备Au孔阵列层1,利用机械剥离的方法制备二维薄层GaTe层2,并利用转移平台转移到Au孔阵列层1上,最后将基底浸没在HAuCl4溶液中制备Au纳米颗粒层3。
下面结合说明书附图,通过具体实施例对本发明的技术方案作进一步地说明:
本发明公开了一种新型的GaTe基表面增强拉曼基底,器件结构由下至上分别为SiO2/Si基底层、Ti层、Au孔阵列层1、二维薄层GaTe层2和Au纳米颗粒层3。二维薄层GaTe层2为3-5nm,Au孔阵列层1的孔周期为12um,孔直径为6um,孔深度为100nm,孔截面形状为圆形,二维薄层GaTe层2与Au孔阵列层1形成的异质结构,二维薄层GaTe层2上自组装形成的Au纳米颗粒层3。
本发明的简要制备步骤如下:
1)在SiO2/Si基底层上生长Ti或Cr层,再制备Au孔阵列层1;
2)制备薄层的GaTe二维材料;
3)将制备好的二维薄层GaTe层2转移到Au孔阵列层1上;
4)在二维薄层GaTe层2上制备金颗粒,形成Au纳米颗粒层3。
下面结合说明书附图,通过具体实施例对本发明的技术方案作进一步地说明:
制作流程
图1是制备流程示意图。
A.SiO2(300nm)/Si基底层的准备和清洗
将SiO2(300nm)/Si片切成1cm*1cm规格,在乙醇和去离子水中各超声数分钟后吹干即可。SiO2(300nm)/Si片也可替换为其他衬底,如硅片和金属片等。
B.制备Au孔阵列层1
在清洗完毕的SiO2(300nm)/Si片上热蒸发生长15nmTi层。从冰箱中取出AZ5350光刻胶并放入通风柜,在暗室环境下通风10分钟。10分钟后将流片放入匀胶机进行匀胶,在500rpm(round per minute)转速下匀胶10秒,4000rpm转速下匀胶60秒。匀胶完毕后将流片100℃前烘5分钟。使用相应光刻掩膜板进行3.6秒的汞灯曝光,然后显影45秒,显影期间需要不停搅动显影液使得显影均匀。取出流片,用去离子水洗去残留显影液,氮气枪吹干后100℃后烘坚膜5分钟,完成光刻。随后使用电子束蒸发在流片上镀金100nm。蒸镀完成后立即放入丙酮中,使用丙酮去除流片上的光刻胶,完成剥离。为了取得更好的剥离效果,可对丙酮加热或超声,超声时长不宜超过10s。剥离完成后,使用去离子水冲洗去除剩余的丙酮,并将流片放于100℃热板上加热10min,烘干表面水分。
C.GaTe二维材料的制备和转移
GaTe单晶需要保存在惰性气体氛围下。二维GaTe材料通过机械剥离法进行制备:用思高胶带粘住GaTe的两面,然后撕开,使GaTe一分为二。不断重复这个过程直到胶带上的GaTe足够薄。将粘有二维GaTe的胶带粘在PDMS薄膜上后撕去,二维GaTe薄膜即粘留在PDMS薄膜上。最后利用转移平台将PDMS薄膜上的GaTe转移到Au孔阵列层上,二维薄层GaTe层2为3-5nm。二维薄层GaTe层2的制备和转移需要快速完成以降低氧化的影响。
D.GaTe层上Au纳米颗粒层3的制备
将GaTe层/Au孔阵列层1/Ti层/SiO2/Si结构浸没在0.2mg/ml的HAuCl4溶液中,一段时间后取出,用乙醇润洗并吹干。浸没时间一般为960秒,探测极低浓度分子时可以降低至240秒。
至此便完成了SERS基底的整个制作流程。
测试及结果
通过以上工艺过程,获得了完整的SERS基底。
为了测试基底性能,使用R6G分子对SERS基底进行定量表征测试。将不同浓度的溶液滴在SERS基底上,20分钟后用乙醇洗去,氮气吹干。然后用显微共焦拉曼光谱仪进行拉曼测试,激发光波长为532nm。图2是SERS基底对R6G分子的变浓度实验结果,右侧是R6G浓度为10-16M时的拉曼信号图谱,拉曼峰位清晰可见。
以上所述的仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明核心技术特征的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种新型的碲化镓GaTe基表面增强拉曼基底,其特征在于,所述的基底结构从下至上依次为Au孔阵列层(1),二维薄层GaTe层(2)和Au纳米颗粒层(3),所述的二维薄层GaTe层(2)与Au孔阵列层(1)形成异质结构,所述的二维薄层GaTe层(2)上自组装形成的Au纳米颗粒层(3),所述的二维薄层GaTe层(2)为3-5nm,所述的Au孔阵列层(1)的孔周期为4-20um,孔直径为2-10um,孔深度为80-120nm,孔截面形状为圆形,所述的新型的碲化镓GaTe基表面增强拉曼基底的制备方法为:在SiO2/Si基底层上,通过热蒸发的方法生长Ti层或Cr层,利用光刻和微纳加工方法制备Au孔阵列层(1),利用机械剥离的方法制备二维薄层GaTe层(2),并利用转移平台转移到Au孔阵列层(1)上,最后将基底浸没在HAuCl4溶液中制备Au纳米颗粒层(3),所述的GaTe单晶需要保存在惰性氛围中,制备和转移过程需要快速完成,制备Au颗粒时的浸没时间为240-960秒。
CN202010390423.4A 2020-05-09 2020-05-09 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 Active CN111650177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010390423.4A CN111650177B (zh) 2020-05-09 2020-05-09 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010390423.4A CN111650177B (zh) 2020-05-09 2020-05-09 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法

Publications (2)

Publication Number Publication Date
CN111650177A CN111650177A (zh) 2020-09-11
CN111650177B true CN111650177B (zh) 2024-01-09

Family

ID=72342522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010390423.4A Active CN111650177B (zh) 2020-05-09 2020-05-09 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法

Country Status (1)

Country Link
CN (1) CN111650177B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028521A1 (en) * 2006-09-07 2008-03-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. A probe, a raman spectrometer and a method of manufacturing a probe
JP2008168396A (ja) * 2007-01-12 2008-07-24 Fujifilm Corp 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置
CN102565024A (zh) * 2012-01-13 2012-07-11 中国科学技术大学 基于表面等离子体激元局域场耦合效应的表面增强拉曼散射基底及其制备方法
CN103668130A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种金属纳米结构的制备方法
WO2017080088A1 (zh) * 2015-11-11 2017-05-18 北京工业大学 一种高稳定性的非偏振依赖表面增强拉曼散射衬底、制备及应用
CN107121423A (zh) * 2017-05-08 2017-09-01 中国科学院重庆绿色智能技术研究院 一种用于痕量微囊藻毒素检测的多孔阵列电磁场增强sers器件、制备方法及检测方法
CN108226133A (zh) * 2017-12-29 2018-06-29 中国科学院重庆绿色智能技术研究院 一种用于拉曼光谱表征的局域电磁场增强器件及其制备方法、应用和使用方法
CN108300984A (zh) * 2017-09-01 2018-07-20 长春理工大学 快速制备金纳米柱的方法
CN109748238A (zh) * 2017-11-08 2019-05-14 厦门大学 一种大面积、均匀的纳米二聚体阵列的制备方法
CN110441283A (zh) * 2019-07-22 2019-11-12 浙江大学 一种新型的碲化镓基表面增强拉曼基底及其制备方法
CN110873707A (zh) * 2018-08-29 2020-03-10 电子科技大学 3d表面增强型拉曼传感芯片及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223330B2 (en) * 2007-02-13 2012-07-17 William Marsh Rice University Nanostructures and lithographic method for producing highly sensitive substrates for surface-enhanced spectroscopy
US8514398B2 (en) * 2009-11-10 2013-08-20 The Regents Of The University Of California Sensing devices and techniques using 3-D arrays based on surface plasmon excitations
US8836941B2 (en) * 2010-02-10 2014-09-16 Imra America, Inc. Method and apparatus to prepare a substrate for molecular detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028521A1 (en) * 2006-09-07 2008-03-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. A probe, a raman spectrometer and a method of manufacturing a probe
JP2008168396A (ja) * 2007-01-12 2008-07-24 Fujifilm Corp 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置
CN102565024A (zh) * 2012-01-13 2012-07-11 中国科学技术大学 基于表面等离子体激元局域场耦合效应的表面增强拉曼散射基底及其制备方法
CN103668130A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种金属纳米结构的制备方法
WO2017080088A1 (zh) * 2015-11-11 2017-05-18 北京工业大学 一种高稳定性的非偏振依赖表面增强拉曼散射衬底、制备及应用
CN107121423A (zh) * 2017-05-08 2017-09-01 中国科学院重庆绿色智能技术研究院 一种用于痕量微囊藻毒素检测的多孔阵列电磁场增强sers器件、制备方法及检测方法
CN108300984A (zh) * 2017-09-01 2018-07-20 长春理工大学 快速制备金纳米柱的方法
CN109748238A (zh) * 2017-11-08 2019-05-14 厦门大学 一种大面积、均匀的纳米二聚体阵列的制备方法
CN108226133A (zh) * 2017-12-29 2018-06-29 中国科学院重庆绿色智能技术研究院 一种用于拉曼光谱表征的局域电磁场增强器件及其制备方法、应用和使用方法
CN110873707A (zh) * 2018-08-29 2020-03-10 电子科技大学 3d表面增强型拉曼传感芯片及其制备方法
CN110441283A (zh) * 2019-07-22 2019-11-12 浙江大学 一种新型的碲化镓基表面增强拉曼基底及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nanoscale Patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles;I. Park et al;《Advanced materials》;全文 *

Also Published As

Publication number Publication date
CN111650177A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
Pérez-Mayen et al. SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes
Zhang et al. Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays
TWI404930B (zh) Biochemical sensing wafer substrate and its preparation method
Liu et al. Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection
Han et al. Three-dimensional AuAg alloy NPs/graphene/AuAg alloy NP sandwiched hybrid nanostructure for surface enhanced Raman scattering properties
Wang et al. Highly ordered Au-Ag alloy arrays with tunable morphologies for surface enhanced Raman spectroscopy
CN106290296B (zh) 一种基于金属点阵的sers基底及其制备方法和利用该基底进行拉曼检测的方法
JP4739859B2 (ja) 微粒子集合体配列基板およびその製造方法、並びに当該基板を用いた微量物質の分析方法
Zaffino et al. “Dry-state” surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers
Takahashi et al. Optofluidic devices with surface-enhanced Raman scattering active three-dimensional gold nanostructure
Capaccio et al. Coral-like plasmonic probes for tip-enhanced Raman spectroscopy
Park et al. Uniform two-dimensional crystals of polystyrene nanospheres fabricated by a surfactant-assisted spin-coating method with polyoxyethylene tridecyl ether
Zhai et al. Controllable preparation of the Au–MoS 2 nano-array composite: optical properties study and SERS application
Peng et al. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates
CN111650177B (zh) 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法
Osipov et al. Development of controlled nanosphere lithography technology
Xia et al. Photo-induced electrodeposition of metallic nanostructures on graphene
Yang et al. Preparation and characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement
CN105819434B (zh) 一种表面增强拉曼基底材料及其制备方法
Zhang et al. Research on the Raman properties of NiFe/cicada wing composite SERS platform modified by silver nanoparticles
Shen et al. Au nanocluster arrays on self-assembled block copolymer thin films as highly active SERS substrates with excellent reproducibility
Pliatsikas et al. Facile synthesis of tunable nanostructured plasmonic templates by electroless deposition
Kubo et al. Resist pattern inspection using fluorescent dye-doped polystyrene thin films in reactive-monolayer-assisted thermal nanoimprint lithography
Martynova et al. Au-Au composites with inverse opal structure for surface-enhanced Raman spectroscopy
CN213041742U (zh) 正弦光栅-金属纳米颗粒溶胶双增强基底

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant