CN111645320A - 一种三维生物支架的双光子聚合激光直写成形方法 - Google Patents
一种三维生物支架的双光子聚合激光直写成形方法 Download PDFInfo
- Publication number
- CN111645320A CN111645320A CN202010519591.9A CN202010519591A CN111645320A CN 111645320 A CN111645320 A CN 111645320A CN 202010519591 A CN202010519591 A CN 202010519591A CN 111645320 A CN111645320 A CN 111645320A
- Authority
- CN
- China
- Prior art keywords
- printing
- dimensional
- biological scaffold
- direct writing
- laser direct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明提供了一种三维生物支架的双光子聚合激光直写成形方法,过程为:预制模型、准备打印受体、浸入式打印和后处理。该方法有效解决了双光子直写技术采用高聚焦透镜带来的打印尺寸的影响,使激光打印技术的优势充分展现,实现了激光打印技术在三维生物支架打印方面的顺利应用,实现了打印速度高达800毫米/秒、打印精度达10μm级的生物支架打印的效果,具有打印过程可控的优点;通过该方法获得的生物支架具有孔隙精度高、孔之间的间距可控的优点,可为细胞生长提供微环境。
Description
技术领域
本发明涉及生物支架制备技术领域,具体涉及一种三维生物支架的双光子聚合激光直写成形方法。
背景技术
自科学家提出“组织工程学”概念以来,组织工程技术已经为众多的组织缺损、器官功能衰竭等病人的治疗带来了曙光,采用生物材料制备适用于人体组织再生的组织工程支架已经成为人们研究的热点;这类支架不仅能够避免传统器官移植术的器官来源局限,而且能够有效避免机体的免疫排斥作用。
传统的支架成型方法有粒子致孔法、静电纺丝法、冻干法等,这些支架的成型方法在支架制备过程中对孔隙结构、空隙之间的完全贯通和现孔隙之间的梯度难以控制,且存在制备时间长、有机溶剂残留以及力学性能差等问题,使的制备的生物支架在应用上受到较大限制。
3D打印技术的出现实现了支架外形的可控制造,在工艺原理上满足制备梯度支架的要求,但是该技术构建的孔隙尺寸较大,打印成形100μm以下的孔隙时,空隙的精度低、空隙间距大且空隙率低,不能提供细胞生长的微环境。
为进一步适应市场需求,一种更为先进的双光子聚合激光直写技术出现,这种技术作为先进的3D打印技术,理论上能够加工出更精细、更复杂的水凝胶微结构,然而,在实际的将激光直写技术应用于生物打印时,由于使用高聚焦透镜,导致打印尺寸受到限制,不能最大化的发挥激光直写技术在生物打印方面的优势。
发明内容
针对现有技术的上述不足,本发明提供了一种三维生物支架的双光子聚合激光直写成形方法,具体为一种浸入式的打印方法,该方法有效解决了双光子直写技术采用高聚焦透镜带来的打印尺寸的影响,使激光打印技术的优势充分展现,实现了激光打印技术在三维生物支架打印方面的顺利应用,实现了打印速度高达800毫米/秒、打印精度达10μm级的生物支架打印的效果,具有打印过程可控的优点;通过该方法获得的生物支架具有孔隙精度高、孔之间的间距可控的优点,可为细胞生长提供微环境。
本发明的技术方案如下:
一种三维生物支架的双光子聚合激光直写成形方法,过程为:预制模型、准备打印受体、浸入式打印和后处理。
进一步的,上述三维生物支架的双光子聚合激光直写成形方法,具体步骤为:
(1)预制模型:设计三维生物支架模型,并将其导入三维光刻机中进行分层切片,获得多层切片的数据模型;
(2)打印受体:将光刻胶放在载体中,作为打印受体,将打印受体固定在三维运动平台上,待用;
(3)浸入式打印:采用激光直写技术,把高聚焦物镜浸入到预打印的光刻胶中,使激光聚焦于打印受体上,通过驱动三维运动平台,对打印受体进行三维打印,获得成型样品;
(4)后处理:将成型样品进行显影、干燥,得到三维生物支架;其中,显影过程为去除多余的未固化成型的液体部分。
优选的,所述光刻胶由以下质量百分比的原料组成:甲基丙烯酸酐化明胶5%-15%、引发剂LAP0.1%-0.5%,其余为去离子水。
优选的,所述载体,准备过程为:取洁净玻璃培养皿,使用压缩氮气吹净;将吹净后的玻璃培养皿浸没到丙酮溶液中超声,然后转移到异丙醇溶液中浸没、漂洗;然后再将其迅速转移到纯水中浸没、漂洗,然后取出,用压缩氮气吹干表面液滴放入真空等离子清洁机中,内表面进行等离子清洁处理,以备使用。
优选的,步骤(3)的具体过程为:a、采用激光直写技术,使激光聚焦于放置光刻胶载体的底部,通过驱动三维运动平台将光刻胶以三维生物支架模型的第一层的形状固化到载体底部;b、三维运动平台沿聚焦激光的反方向移动,然后再驱动三维运动平台将光刻胶以三维生物支架模型的第二层的形状固化到第一层上;c、重复步骤b,直到固化完所有层面的数据模型,加工完成所设计的三维生物支架的三维模型。
优选的,在步骤(4)中,所述三维生物支架的三维模型的孔径为10~100μm,孔隙间距5~100μm。
相对于现有技术,本发明的有益效果在于:
1、本申请首次将双光子激光直写技术应用于三维生物支架打印中,首次采用浸入式打印法克服了激光直写技术采用高聚焦透镜对打印尺寸产生影响的缺陷,使激光直写技术在厘米级尺度的生物支架打印方面得到顺利应用。
2、通过本申请提供的激光直写成形方法获得的三维生物支架,具有孔径和孔距尺寸小、精度高的优点,制备的生物支架可达到10cm;精度高体现在支架的单孔直径在10~100μm之间可控,且可根据需求控制孔之间连通顺畅;孔之间的间距达5-100μm;孔径的设置可作为原生代种子细胞的附着点,孔之间的连通,使支架内部有营养存储空间和流动通道。
3、本发明提供的方法,在顺利的对双光子激光直写技术应用的同时,还实现了对该技术的无障碍应用,即通过对打印过程的控制,进而实现对不同需求的微孔数量、大小、分布及形状的不同打印。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为三维生物支架的双光子聚合激光直写成形方法流程。
图中,1-玻璃皿,2-光刻胶,3-生物支架,4-聚焦激光,5-聚焦透镜,6-振镜,7-打印平台。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
本实施例结合图1,对本发明提供的方法进行描述:
1.生物支架三维模型构建
根据CT的医学影像数据进行三维重建,获得组织缺损的三维模型;
将该三维模型导出成三维光刻机控制软件识别的格式导入到光刻机中;对三维模型进行分层切片,获得多层切片的数据模型。
2.光刻胶的制备
(1)取2g明胶溶于预热60℃的20ml混合缓冲液中;
(2)500μl甲基丙烯酸酐分5次加入至上述溶液(每30min加入100μl,并调节pH至8.0)
(3)再搅拌2h,沉淀在150ml乙醇中;
(4)搅拌10min,离心弃上清;
(5)加单蒸水至30ml震荡溶解(室温);
(6)转移GelMA至透析袋(蒸馏水预处理),置于5L量筒中,加5L去离子水,每12h换液一次;
(7)换液10次后,0.45μm滤器过滤;
(8)转移上述液体至皿中;
(9)于冷冻干燥机中干燥48h,收集到50ml离心管中备用;
(10)配制10%的GelMA溶液,80℃溶解,然后与0.5%引发剂LAP混合搅拌4h,制得光刻胶备用。
3.载体处理
取洁净玻璃培养皿1,使用压缩氮气吹净。将玻璃培养皿1浸没到丙酮溶液中超声10分钟后,转移到异丙醇溶液中浸没、漂洗1分钟;然后再将其迅速转移到纯水中浸没、漂洗1分钟后取出,用压缩氮气吹干表面液滴放入真空等离子清洁机中,内表面进行5分钟等离子清洁处理,以备使用。
4.打印
取适量光刻胶2加入到经真空等离子清洁的玻璃培养皿1内,然后将装有光刻胶2的培养皿1放入光刻机中,进行纳米微针阵列打印,将高聚焦物镜浸入到预打印的光刻胶中,使激光聚焦在玻璃皿1底部,通过多相扫描振镜6调整聚焦激光4的位置,使数据模型的第一层固化成型,然后通过打印平台7抬升0.1μm打印第二层;反复执行如上操作,直到生物支架打印完成,获得的生物支架孔径为30μm,孔间距为10μm。
5.纳米微针阵列显影
打印完成后,将附着打印完成的生物支架的玻璃皿1浸没到去60℃离子水中15分钟后取出,然后反复用去离子水冲洗三遍,除去多余的没有固化的材料,密封保存。
打印的生物支架尺寸为20mm*10mm*5mm,孔径为0.02mm,孔间距0.01mm。
对比例
本对比例与实施例1的区别在于,步骤4的过程为:将光刻胶涂覆在玻璃培养皿上,保证光刻胶的平整性,然后将装有光刻胶的培养皿放入光刻机中,进行纳米微针阵列打印,通过多相扫描振镜调整聚焦激光的位置,使数据模型的第一层固化成型,然后通过打印平台抬升0.1μm打印第二层;当打印成型的生物支架的高度达到预涂光刻胶的高度时,移开高聚焦镜头,向培养皿内添加光刻胶,并涂覆平整,然后继续执行如上的打印操作过程,直到生物支架打印完成,获得的生物支架孔径为30μm,孔间距为10μm。
可以看出,对比例的打印方法相对于本申请的打印方法明显的存在打印过程不易控制的缺点,如要保证光刻胶的平整性及在打印过程中增添光刻胶等,这些操作在激光打印过程中,均会对激光折射产生影响,进而影响打印精度,由此可以看出,本申请提供的方法具有可控性高、易于操作的优点,适于广泛推广应用。
尽管通过参考优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
Claims (6)
1.一种三维生物支架的双光子聚合激光直写成形方法,其特征在于,过程为:预制模型、准备打印受体、浸入式打印和后处理。
2.如权利要求1所述的三维生物支架的双光子聚合激光直写成形方法,其特征在于,具体步骤为:
(1)预制模型:设计三维生物支架模型,并将其导入三维光刻机中进行分层切片,获得多层切片的数据模型;
(2)打印受体:将光刻胶放在载体中,作为打印受体,将打印受体固定在三维运动平台上,待用;
(3)浸入式打印:采用激光直写技术,把高聚焦物镜浸入到预打印的光刻胶中,使激光聚焦于打印受体上,通过驱动三维运动平台,对打印受体进行三维打印,获得成型样品;
(4)后处理:将成型样品进行显影、干燥,得到三维生物支架;其中,显影过程为去除多余的未固化成型的液体部分。
3.如权利要求2所述的三维生物支架的双光子聚合激光直写成形方法,其特征在于,所述光刻胶由以下质量百分比的原料组成:甲基丙烯酸酐化明胶5%-15%、引发剂LAP0.1%-0.5%,其余为去离子水。
4.如权利要求1-3任一项所述的三维生物支架的双光子聚合激光直写成形方法,其特征在于,所述载体,准备过程为:取洁净玻璃培养皿,使用压缩氮气吹净;将吹净后的玻璃培养皿浸没到丙酮溶液中超声,然后转移到异丙醇溶液中浸没、漂洗;然后再将其迅速转移到纯水中浸没、漂洗,然后取出,用压缩氮气吹干表面液滴放入真空等离子清洁机中,内表面进行等离子清洁处理,以备使用。
5.如权利要求4所述的三维生物支架的双光子聚合激光直写成形方法,其特征在于,步骤(3)的具体过程为:a、采用激光直写技术,使激光聚焦于放置光刻胶载体的底部,通过驱动三维运动平台将光刻胶以三维生物支架模型的第一层的形状固化到载体底部;b、三维运动平台沿聚焦激光的反方向移动,然后再驱动三维运动平台将光刻胶以三维生物支架模型的第二层的形状固化到第一层上;c、重复步骤b,直到固化完所有层面的数据模型,加工完成所设计的三维生物支架的三维模型。
6.如权利要求5所述的三维生物支架的双光子聚合激光直写成形方法,其特征在于,在步骤(4)中,所述三维生物支架的三维模型的孔径为10~100μm,孔隙间距5~100μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010519591.9A CN111645320A (zh) | 2020-06-09 | 2020-06-09 | 一种三维生物支架的双光子聚合激光直写成形方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010519591.9A CN111645320A (zh) | 2020-06-09 | 2020-06-09 | 一种三维生物支架的双光子聚合激光直写成形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111645320A true CN111645320A (zh) | 2020-09-11 |
Family
ID=72351343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010519591.9A Withdrawn CN111645320A (zh) | 2020-06-09 | 2020-06-09 | 一种三维生物支架的双光子聚合激光直写成形方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111645320A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112835268A (zh) * | 2020-12-30 | 2021-05-25 | 烟台魔技纳米科技有限公司 | 一种生物基水溶性负性光刻胶及其在飞秒激光直写加工方法中的应用 |
CN113409980A (zh) * | 2021-07-07 | 2021-09-17 | 鲁东大学 | 一种动态多焦点光镊的产生装置及使用方法 |
CN114807004A (zh) * | 2021-01-21 | 2022-07-29 | 中国科学院理化技术研究所 | 一种三维细胞生长支架及其制备方法 |
CN118036550A (zh) * | 2024-01-30 | 2024-05-14 | 深圳华盛光刻系统有限公司 | 一种基于双光子聚合技术制备三维电极的方法及三维电极 |
-
2020
- 2020-06-09 CN CN202010519591.9A patent/CN111645320A/zh not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112835268A (zh) * | 2020-12-30 | 2021-05-25 | 烟台魔技纳米科技有限公司 | 一种生物基水溶性负性光刻胶及其在飞秒激光直写加工方法中的应用 |
CN112835268B (zh) * | 2020-12-30 | 2022-12-30 | 烟台魔技纳米科技有限公司 | 一种生物基水溶性负性光刻胶及其在飞秒激光直写加工方法中的应用 |
CN114807004A (zh) * | 2021-01-21 | 2022-07-29 | 中国科学院理化技术研究所 | 一种三维细胞生长支架及其制备方法 |
CN114807004B (zh) * | 2021-01-21 | 2024-02-06 | 中国科学院理化技术研究所 | 一种三维细胞生长支架及其制备方法 |
CN113409980A (zh) * | 2021-07-07 | 2021-09-17 | 鲁东大学 | 一种动态多焦点光镊的产生装置及使用方法 |
CN113409980B (zh) * | 2021-07-07 | 2022-11-22 | 鲁东大学 | 一种动态多焦点光镊的产生装置及使用方法 |
CN118036550A (zh) * | 2024-01-30 | 2024-05-14 | 深圳华盛光刻系统有限公司 | 一种基于双光子聚合技术制备三维电极的方法及三维电极 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111645320A (zh) | 一种三维生物支架的双光子聚合激光直写成形方法 | |
EP2361402B1 (en) | Method of fabricating a multi-layer sub-micron 3d structure using 2-photon lithography and nanoimprinting | |
Liu et al. | Synthetic polymers for organ 3D printing | |
Tsang et al. | Fabrication of three-dimensional tissues | |
WO2018026172A1 (ko) | 통합형 3차원 세포 프린팅 기술을 이용한 세포 배양체 및 이의 제조방법 | |
Bartolo et al. | 3D bioprinting: Materials, processes, and applications | |
Malinauskas et al. | 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser | |
CN109483868B (zh) | 一种基于三维喷墨打印技术的多孔支架及其制备方法 | |
CN106039417A (zh) | 一种多尺度三维生物组织工程支架的制备方法 | |
Stichel et al. | Two-photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications. | |
CN103143062A (zh) | 活性骨软骨一体化梯度支架三维可控的增量成形方法与成形系统 | |
CN111660558A (zh) | 一种激光直写制备纳米微针模板的方法 | |
CN115317669A (zh) | 一种具有微结构仿生人工皮肤及其制备方法与应用 | |
KR101132747B1 (ko) | 3차원 세라믹 다공성 인공지지체 및 그 제조방법 | |
He et al. | Cell assembly with 3D bioprinting | |
Malinauskas et al. | Laser two-photon polymerization micro-and nanostructuring over a large area on various substrates | |
Wang et al. | Two-photon polymerization-based 3D micro-scaffolds toward biomedical devices | |
Tian et al. | Biodegradable mesostructured polymer membranes | |
Yang et al. | Recent progress of lithographic microfabrication by the TPA-induced photopolymerization | |
CN110722796A (zh) | 一种基于3d打印光敏树脂的生物芯片的制备方法及应用 | |
KR20230012545A (ko) | 레이저-소결 탄수화물 재료 및 조성물의 제조 방법 및 이의 용도 | |
CN107584111B (zh) | 液态金属复合柔性纳米管的制备及其做为纳米马达的应用 | |
CN204072388U (zh) | 一种利用旋转堆积法制备组织器官的专用设备 | |
Lee et al. | Development of three-dimensional hybrid scaffold using chondrocyte-encapsulated alginate hydrogel | |
Ambhorkar | Development of an electrospinning system integrated with stereolithographic 3D bioprinting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200911 |
|
WW01 | Invention patent application withdrawn after publication |