CN111644123B - Microwave-responsive concrete admixture active-release capsule and preparation method thereof - Google Patents

Microwave-responsive concrete admixture active-release capsule and preparation method thereof Download PDF

Info

Publication number
CN111644123B
CN111644123B CN202010382083.0A CN202010382083A CN111644123B CN 111644123 B CN111644123 B CN 111644123B CN 202010382083 A CN202010382083 A CN 202010382083A CN 111644123 B CN111644123 B CN 111644123B
Authority
CN
China
Prior art keywords
capsule
concrete admixture
active
organic phase
porous ceramsite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010382083.0A
Other languages
Chinese (zh)
Other versions
CN111644123A (en
Inventor
张琪
冯攀
王浩川
叶少雄
刘新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010382083.0A priority Critical patent/CN111644123B/en
Publication of CN111644123A publication Critical patent/CN111644123A/en
Application granted granted Critical
Publication of CN111644123B publication Critical patent/CN111644123B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1022Non-macromolecular compounds
    • C04B20/1025Fats; Fatty oils; Ester type waxes; Higher fatty acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1044Bituminous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

The invention relates to the field of additives for building materials, in particular to a microwave-responsive additive active-release capsule and a preparation method thereof. The active release capsule consists of a capsule wall, a capsule core and an encapsulating material, wherein the capsule wall is porous ceramsite; the capsule core is an additive needing to control active release; the packaging material is doped with Fe3O4The organic phase change material of (1). The method is rapid, simple and convenient, the used materials have wide sources, can stably exist in building materials, and the additive loading capacity is strong, so the method can be widely applied to loading of various additives. In addition, the Fe in the packaging material is utilized3O4The microwave responsiveness and the microwave-absorbing heat-generating function can trigger the capsule to respond by applying an external microwave signal so as to actively release the additive, effectively solve the problems of low utilization efficiency, even possible negative effect and the like when the additive is directly doped into the building material, and further realize the active control of the performance of the building material.

Description

Microwave-responsive concrete admixture active-release capsule and preparation method thereof
Technical Field
The invention relates to the field of concrete admixtures for building materials, in particular to a microwave-responsive concrete admixture active-release capsule and a preparation method thereof.
Background
In the conventional concrete performance improvement method, the use of the concrete admixture is a very efficient, economical and environment-friendly method, and thus is widely used. However, the concrete admixture is usually directly mixed in the concrete casting process to participate in the whole cement hydration reaction process, which has direct influence on the action effect of the concrete admixture: such as rust inhibitor, the effective components of the rust inhibitor are easy to bury by cement hydration products and cannot fully play a role; tackifiers and the like can increase the solution viscosity, reduce the fluidity of free water in the concrete and lose the workability, and delay the hydration of cement; expanding agents, etc. are not expected to act immediately after the cement begins to hydrate and the concrete has not yet shrunk, otherwise the active ingredients are consumed in large amounts at an early stage. This not only increases the construction cost of the concrete structure, but may even have a negative impact on the properties of strength, durability, etc. Therefore, there is a need to research a new mixing method of concrete admixture in concrete, which can ensure that the effect of the concrete admixture is not affected by factors such as cement-forming reaction and the like, and can improve the performance of the new mixed and hardened concrete by using the concrete admixture.
In recent years, microcapsule controlled release technology has been widely studied and applied in the fields of medicine, agriculture, food and the like, and with the inspiration, researchers assume that the microcapsule controlled release technology is applied in the field of concrete, so as to achieve the purpose that the concrete admixture does not lose efficiency prematurely and can improve the performance of newly mixed and hardened concrete. At present, the microcapsule controlled release technology is mainly applied to self-repairing concrete and internal curing concrete in the field of concrete: the patent CN 110510910A introduces a self-repairing material of a concrete micro-crack microcapsule with a capsule wall easy to degrade, wherein the capsule wall is made of a cellulose material easy to oxidize and degrade under the action of illumination, has a light-oxygen degradation effect, and can break at the crack of the concrete to release a self-repairing agent in the microcapsule; the patent CN 108609880A prepares a microcapsule aiming at the corrosion of reinforced concrete, when the reinforced concrete is corroded, the pH value of the concrete is reduced, and the capsule wall is locally damaged under the conditions of alkalescence and neutrality, so that the capsule core rust inhibitor is released, and the corrosion of reinforcing steel bars is inhibited; patent CN 108947341A introduces a microbial microcapsule capable of continuously repairing and solving the water seepage problem of underground engineering, when the water seepage problem occurs to concrete, the capsule wall with water seepage and air permeability enables water and oxygen to permeate into the microbial capsule, and activates strains to metabolize to generate carbon dioxide, and the carbon dioxide can react with calcium ions in the concrete to generate calcium carbonate precipitate to fill concrete cracks. The application is based on a passive control release mechanism, namely, the microcapsule loaded with the concrete admixture is triggered to respond when the environmental condition of the concrete matrix changes, so that the concrete admixture is released, and the release mechanism can well deal with the application conditions similar to repair and the like; however, when the conditions of the concrete matrix are not changed greatly and the concrete admixture is required to be used, the concrete admixture is difficult to be released actively to exert the effect. The microcapsules prepared and applied based on the active control release mechanism can artificially control and apply an external signal to release the concrete admixture at any time, namely no matter the concrete is in a fresh-mixed state or a hardened state, so that the active release of the concrete admixture and the active control of the performance of the concrete are realized.
Disclosure of Invention
Aiming at the problems, the invention provides a microwave-responsive concrete admixture active-release capsule and a preparation method thereof. Adding the capsule into concrete, applying microwave, and Fe3O4Absorbing microwave to generate heat when Fe3O4When the temperature is higher than the phase transition temperature of the organic phase-change material, the organic phase-change material is melted, thereby releasing the concrete admixture.
The first purpose of the invention is to provide a microwave-responsive concrete admixture active-release capsule. The second purpose is to provide a preparation method of the microwave-responsive concrete admixture active-release capsule. The third purpose is to provide the application of the preparation method of the microwave-responsive concrete admixture active-release capsule.
The invention discloses a microwave-responsive concrete admixture active-release capsule, which consists of a capsule wall, a capsule core and a packaging material, wherein the capsule wall is porous ceramsite; the capsule core is a concrete additive needing to be controlled to release; the packaging material is doped with Fe3O4The organic phase change material of (1).
Further, the capsule wall is porous ceramsite, the particle size is 1.0-1.5 cm, the porosity is 30-45%, and the crushing resistance is 450-600N.
Further, the concrete admixture active release capsule is characterized in that the core material is a concrete admixture such as a concrete admixture, a rust inhibitor, a water reducing agent or a tackifier.
Furthermore, the packaging material is doped with Fe3O4In which Fe3O4The grain diameter is 20nm, and the purity is 99.5%; the organic phase-change material is paraffin, stearic acid, hydrogel or polymer gel and the like, and the phase-change temperature is 55-60 ℃.
Further, said Fe3O4The doping amount in the organic phase change material is 10% -30%.
The invention further discloses a preparation method of the microwave-responsive concrete admixture active-release capsule, which comprises the following specific steps:
(1) loading the concrete admixture into the packaging material porous ceramsite:
immersing the porous ceramsite in the concrete admixture, and carrying out vacuum treatment to fully load the concrete admixture on the porous ceramsite; wherein the vacuum pumping condition of the vacuum treatment is less than 20KPa, and the time is 24 h.
(2) By doping with Fe3O4The organic phase-change material encapsulates the porous ceramsite:
heating the organic phase change material to melt it, adding Fe3O4And slowly stirring to make Fe3O4Uniformly distributing the porous ceramsite in the molten organic phase-change material, quickly putting the porous ceramsite loaded with the concrete admixture into the molten organic phase-change material, quickly rolling for a plurality of circles to uniformly coat a layer of packaging material on the surface of the porous ceramsite, taking out the porous ceramsite, and cooling to room temperature to obtain the active release capsule.
The phase-change material is organic phase-change material such as paraffin, stearic acid, hydrogel or polymer gel, and the phase-change temperature is 55-60 ℃;
the temperature for heating the organic phase change material is 70-80 ℃;
said added Fe3O4The mixing amount is 10-30%.
The active release capsule is spherical or ellipsoidal, and the particle size is 1.0-1.7 cm.
The invention principle of the invention is as follows: loading the concrete admixture into the porous ceramsite through vacuum treatment, packaging the porous ceramsite by using an organic phase-change material to prevent the concrete admixture from flowing out, and simultaneously doping a wave-absorbing material Fe into the organic phase-change material3O4Prepared to obtain active releaseA capsule; adding the capsule into concrete, applying microwave, and Fe3O4Absorbing microwave to generate heat when Fe3O4When the temperature is higher than the phase transition temperature of the organic phase-change material, the organic phase-change material is melted, thereby releasing the concrete admixture.
The invention has the beneficial effects that:
compared with the prior art, the invention has the advantages that: (1) the concrete admixture active-release capsule has wide raw material sources, can stably exist in concrete, has strong capability of loading concrete admixtures, and can be widely applied to loading of various concrete admixtures; (2) the concrete admixture active-release capsule prepared by the preparation method can trigger the capsule to respond by applying an external microwave signal so as to actively release the concrete admixture, effectively solve the problem of reduced action effect caused by directly doping the concrete admixture into a building material, and further realize active control on the performance of the building material.
Drawings
FIG. 1 is a schematic view of an active release capsule of a concrete admixture prepared according to the present invention.
FIG. 2 is a graph showing the release of the concrete admixture active release capsule in example 2 by the action of microwaves.
Wherein, 1-concrete admixture, 2-porous ceramsite, 3-paraffin and 4-Fe3O4And (3) powder.
The specific implementation mode is as follows:
the following examples are intended to illustrate the present invention and should not be construed as limiting the scope of the invention. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
Example 1
And (3) immersing the porous ceramsite with the particle size of 1.0cm in the polycarboxylate superplasticizer (the mass fraction is 20%), and carrying out vacuum treatment for 24 hours to ensure that the porous ceramsite is fully loaded with the polycarboxylate superplasticizer. Heating paraffin (phase transition temperature 55-60 deg.C) at 70 deg.C to melt, adding 10% of paraffinFe3O4And slowly stirring to make Fe3O4Uniformly distributed in the molten paraffin, and quickly putting the porous ceramsite loaded with the polycarboxylate superplasticizer into the molten paraffin and doped with Fe3O4The molten paraffin is quickly rolled for a plurality of circles to enable the surface of the porous ceramsite to be uniformly coated with a layer of paraffin, and the porous ceramsite is taken out and cooled to room temperature to obtain the active release capsule.
The loading capacity of an active release capsule is defined as: the mass of the loaded polycarboxylate superplasticizer accounts for the percentage of the total mass of the active release capsule. The loading capacity of the active release capsule was measured to be 71%.
Example 2
And immersing the porous ceramsite with the particle size of 1.2cm in a carboxyl amino alcohol rust inhibitor (yellow liquid, the mass fraction of which is 30 percent), and carrying out vacuum treatment for 24 hours to ensure that the porous ceramsite is fully loaded with the carboxyl amino alcohol rust inhibitor. Heating paraffin (phase transition temperature 55-60 ℃) at 70 ℃ to melt the paraffin, adding 15% of Fe3O4, and slowly stirring to enable Fe3O4Evenly distributed in the molten paraffin, and the porous ceramsite loaded with the carboxyl amino alcohol rust inhibitor is quickly put into the molten paraffin and doped with Fe3O4The molten paraffin is quickly rolled for a plurality of circles to enable the surface of the porous ceramsite to be uniformly coated with a layer of paraffin, and the porous ceramsite is taken out and cooled to room temperature to obtain the active release capsule.
Placing the active release capsules into a concrete simulated solution of 3.5% NaCl saturated Ca (OH)2The volume ratio of the solution to the concrete simulation solution to the active release capsule is 4: 1, applying microwave with power of 500W to treat Fe for 90s3O4Absorbing microwave to generate heat when Fe3O4When the temperature is higher than the paraffin phase transition temperature, the paraffin is melted, and the release of a light yellow liquid in the solution can be observed, namely the carboxyl amino alcohol rust inhibitor is released, as shown in figure 2.
Example 3
Immersing the porous ceramsite with the particle size of 1.1cm into a polyethylene glycol tackifier (with the molecular weight of 1000 and the mass fraction of 20%), and carrying out vacuum treatment for 24 hours to fully load the polyethylene glycol tackifier on the porous ceramsite. Heating stearic acid (phase transition temperature 55-6) at 70 DEG CMelting at 0 deg.C, adding 25% Fe3O4And slowly stirring to make Fe3O4Uniformly distributed in molten stearic acid, and quickly putting the porous ceramsite loaded with the polyethylene glycol tackifier into the porous ceramsite mixed with Fe3O4And (3) rapidly rolling for a plurality of circles in the molten stearic acid to uniformly coat a layer of stearic acid on the surface of the porous ceramsite, taking out the porous ceramsite, and cooling the porous ceramsite to room temperature to obtain the active release capsule.
Placing the active release capsules into a concrete simulation solution, wherein the concrete simulation solution is a 3.5% NaCl saturated Ca (OH)2 solution, and the volume ratio of the concrete simulation solution to the active release capsules is 6: 1, applying microwave with power of 600W to treat Fe for 60s3O4Absorbing microwave to generate heat when Fe3O4Above the stearic acid phase transition temperature, the stearic acid melts, thereby releasing the polyethylene glycol tackifier.
The concentration of the released polyethylene glycol tackifier is tested by using an ultraviolet-visible spectrophotometer, the release rate of the active release capsule is defined as the percentage of the mass of the tackifier released into an external medium to the mass of the tackifier in the active release capsule, the release rate of the active release capsule at a given time (0h, 2h, 4h, … …, 10h, 12h, 24h, 48h and 72h) is calculated, and the release behavior of the active release capsule is characterized, as shown in fig. 3.
Example 4
And immersing the porous ceramsite with the particle size of 1.0cm in the alcamines rust inhibitor (the mass fraction is 20%), and performing vacuum treatment for 24 hours to fully load the alcamines rust inhibitor into the porous ceramsite. Heating paraffin (the phase transition temperature is 55-60 ℃) at 70 ℃ to melt the paraffin, adding 30% of Fe3O4, slowly stirring to ensure that Fe3O4 is uniformly distributed in the molten paraffin, quickly putting the porous ceramsite loaded with the alcamines rust inhibitor into the molten paraffin doped with Fe3O4, quickly rolling for a plurality of circles to uniformly coat a layer of paraffin on the surface of the porous ceramsite, taking out the porous ceramsite, and cooling the porous ceramsite to room temperature to obtain the active release capsule.
Forming 150mm concrete test piece (water cement ratio 0.53; raw material dosage per cubic meter cement 223kg, water 118kg, medium sand 840kg, 5-20mm continuous graded broken stone 1260 kg), pouring concreteA smooth Q235 reinforcing steel bar (coated with epoxy resin except for exposed surfaces) with the diameter of 12mm and the length of 200mm is fixed at the center of the surface, alcamines rust inhibitor active release capsules with the mass of 2% of cement are doped in an experimental group in the forming process, and Fe with the same amount as that of the experimental group is doped in a blank group3O4. And (3) standard maintenance for 28d, applying a 800W microwave signal, processing for 120s to control the release of the alcohol amine rust inhibitor in the concrete, testing the corrosion degree of the steel bars in the concrete of the experimental group and the blank group by using an electrochemical method, and indirectly reflecting the release effect of the alcohol amine rust inhibitor in the concrete by comparing the corrosion degrees.
The above examples illustrate the technical solution of the present invention in detail. It will be clear that the invention is not limited to the described embodiments. Various changes may be made by those skilled in the art based on the embodiments of the invention, and any changes which are equivalent or similar to the embodiments of the invention are intended to fall within the scope of the invention.

Claims (7)

1. A microwave response concrete admixture active release capsule is characterized by comprising a capsule wall, a capsule core and a packaging material, wherein the capsule wall is porous ceramsite; the capsule core is a concrete admixture needing to be controlled to be actively released; the packaging material is doped with Fe3O4The organic phase change material of (1).
2. The active release capsule of concrete admixture according to claim 1, wherein the capsule wall is porous ceramsite, the particle size is 1.0-1.5 cm, the porosity is 30-45%, and the crushing resistance is 450-600N.
3. The concrete admixture active release capsule according to claim 1, wherein the encapsulating material is doped with Fe3O4Of an organic phase-change material of, Fe3O4The grain diameter is 20nm, and the purity is 99.5%; the organic phase change material is one of paraffin, stearic acid, hydrogel or polymer gel, and the phase change temperature is 55-60 ℃.
4. According to the rightThe concrete admixture active-release capsule according to claim 1, wherein the Fe is3O4The doping amount in the organic phase change material is 10% -30%.
5. The method for preparing the microwave responsive concrete admixture active release capsule according to any one of claims 1 to 4, characterized by comprising the steps of:
(1) loading the concrete admixture into the packaging material porous ceramsite:
immersing the porous ceramsite in the concrete admixture, and carrying out vacuum treatment, wherein the negative pressure pumping condition of the vacuum treatment is less than 20KPa, and the time is 24 hours, so that the porous ceramsite is fully loaded with the concrete admixture;
(2) by doping with Fe3O4The organic phase-change material encapsulates the porous ceramsite:
heating the organic phase change material to melt it, adding Fe3O4And slowly stirring to make Fe3O4Uniformly distributing the porous ceramsite in the molten organic phase-change material, quickly putting the porous ceramsite loaded with the concrete admixture into the molten organic phase-change material, quickly rolling for a plurality of circles to uniformly coat a layer of packaging material on the surface of the porous ceramsite, taking out the porous ceramsite, and cooling to room temperature to obtain the active release capsule.
6. The method for preparing an active release capsule according to claim 5, wherein the temperature for heating the organic phase change material in the step (2) is 70 to 80 ℃.
7. The method for preparing an active release capsule according to claim 5, wherein in the step (2), the active release capsule is spherical or ellipsoidal and has a particle size of 1.0 to 1.7 cm.
CN202010382083.0A 2020-05-08 2020-05-08 Microwave-responsive concrete admixture active-release capsule and preparation method thereof Active CN111644123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010382083.0A CN111644123B (en) 2020-05-08 2020-05-08 Microwave-responsive concrete admixture active-release capsule and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010382083.0A CN111644123B (en) 2020-05-08 2020-05-08 Microwave-responsive concrete admixture active-release capsule and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111644123A CN111644123A (en) 2020-09-11
CN111644123B true CN111644123B (en) 2022-03-04

Family

ID=72342915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010382083.0A Active CN111644123B (en) 2020-05-08 2020-05-08 Microwave-responsive concrete admixture active-release capsule and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111644123B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094069B (en) * 2020-09-17 2021-08-27 山东大学 Self-repairing microcapsule internally doped with paraffin powder and microwave-assisted self-repairing method
CN114111458B (en) * 2021-11-24 2023-05-26 安徽理工大学 Device and method for activating expansion performance of static crushing agent by temperature control
CN115073055B (en) * 2022-07-11 2023-02-17 中建商品混凝土有限公司 Preparation method of concrete self-repairing microcapsule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450141A (en) * 2003-04-10 2003-10-22 同济大学 Phase-changing energy-storage composite material for building and preparation process thereof
CN106747653A (en) * 2017-02-07 2017-05-31 山东科技大学 A kind of one-component healing capsule and self union concrete
CN107875390A (en) * 2017-10-31 2018-04-06 青岛大学 A kind of shell contains micro- organogel of load medicine of ferroso-ferric oxide and its preparation method and application
WO2018226315A1 (en) * 2017-06-06 2018-12-13 Xinova, LLC Releasable agent apparatus and methods for manufacturing and using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799383B2 (en) * 1989-10-12 1998-09-17 清水建設株式会社 Electrical stimulus-responsive microcapsule-type cement admixture and method for controlling setting of cement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450141A (en) * 2003-04-10 2003-10-22 同济大学 Phase-changing energy-storage composite material for building and preparation process thereof
CN106747653A (en) * 2017-02-07 2017-05-31 山东科技大学 A kind of one-component healing capsule and self union concrete
WO2018226315A1 (en) * 2017-06-06 2018-12-13 Xinova, LLC Releasable agent apparatus and methods for manufacturing and using the same
CN107875390A (en) * 2017-10-31 2018-04-06 青岛大学 A kind of shell contains micro- organogel of load medicine of ferroso-ferric oxide and its preparation method and application

Also Published As

Publication number Publication date
CN111644123A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
CN111644123B (en) Microwave-responsive concrete admixture active-release capsule and preparation method thereof
Karagöl et al. The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures
WO2009140837A1 (en) A self repairing concrete containing microcapsules of urea formaldehyde resin and producing method thereof
WO2009140835A1 (en) A self repairing concrete containing microcapsules of polyurethane and producing method thereof
CN111499253B (en) Microwave controlled release-based additive microcapsule and preparation method thereof
CN110423072A (en) It is a kind of can be in the sleeve grouting material of -10 DEG C of construction in minus-temperature environment
Lv et al. Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive
WO2009140836A1 (en) A self repairing concrete containing microcapsules of polyurea resin and producing method thereof
CN102320770A (en) Efficient liquid antifreezing agent for concrete, and preparation method thereof
WO2022156205A1 (en) Microbial remediation agent with strength increasing with strength of concrete matrix and preparation method therefor
CN102936115A (en) Production method of cement-based grouting material
CN105541154A (en) Concrete-autolysis-type rapid self-repairing system in water environment and preparing method thereof
Sun et al. The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system
CN114315210A (en) Double-core microcapsule for concrete self-repairing and preparation method thereof
CN112521057A (en) Double repairing agent for concrete and preparation method
CN117263623B (en) Cement-based phase change material and preparation method thereof
CN111777349B (en) Shrinkage-resistant and crack-resistant additive for cement-based composite material and preparation method thereof
CN114195419B (en) Carbon-based composition, cement-based composite material, and preparation method and application thereof
CN113800828B (en) Microcapsule technology-based reinforcement anticorrosion system for concrete
CN113233850B (en) Modified concrete and preparation method thereof
CN104261757A (en) Sintering-free lightweight aggregate and preparation method thereof
CN112830708B (en) Efficient self-compensation hydration heat regulating agent and preparation method and application thereof
Jia et al. Preparation and Mechanism Research of Hydration-heat-inhibiting Materials with Microcapsule Sustained-releasing Technology
CN103570301B (en) A kind of ultraviolet light polymerization engineering materials and using method thereof
Shu et al. Experimental study on the mix proportion of self-heating grouting materials in alpine regions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant