CN111640815A - 一种高效率双面受光柔性硅异质结太阳电池的制备方法 - Google Patents

一种高效率双面受光柔性硅异质结太阳电池的制备方法 Download PDF

Info

Publication number
CN111640815A
CN111640815A CN202010476722.XA CN202010476722A CN111640815A CN 111640815 A CN111640815 A CN 111640815A CN 202010476722 A CN202010476722 A CN 202010476722A CN 111640815 A CN111640815 A CN 111640815A
Authority
CN
China
Prior art keywords
film
amorphous silicon
metal
tco
back reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010476722.XA
Other languages
English (en)
Other versions
CN111640815B (zh
Inventor
张丽平
姚宇波
刘正新
孟凡英
石建华
刘文柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liuzhitao New Energy Technology Shanghai Co ltd
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202010476722.XA priority Critical patent/CN111640815B/zh
Publication of CN111640815A publication Critical patent/CN111640815A/zh
Application granted granted Critical
Publication of CN111640815B publication Critical patent/CN111640815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种高效率双面受光柔性硅异质结太阳电池的制备方法,包括:提供一经过制绒清洗得到的表面清洁的柔性晶体硅衬底;在柔性衬底的相对两侧分别沉积非晶硅薄膜钝化层;在非晶硅薄膜钝化层上分别沉积第一TCO薄膜形成第一受光面和具有增强的红外波段光谱响应的背反射复合薄膜形成第二受光面,其中,背反射复合薄膜由第二TCO薄膜和金属纳米颗粒构成;在第一TCO薄膜和背反射复合薄膜上分别形成金属栅极。本发明利用第二受光面中不同分布的金属纳米颗粒的表面等离子体激元效应增强红外波段的光谱响应,克服柔性硅异质结太阳电池由于基底厚度不足引起的红外区域光谱响应差的缺点,有效提升柔性硅异质结太阳电池的短路电流和转换效率。

Description

一种高效率双面受光柔性硅异质结太阳电池的制备方法
技术领域
本发明涉及太阳电池制造,更具体地涉及一种高效率双面受光柔性硅异质结太阳电池的制备方法。
背景技术
能源是一个国家赖以生存和发展的动力。在化石能源日益枯竭和环境问题凸显的时代,新型可替代能源的发展将为国民经济持续发展提供有力的保障。太阳能可以稳定而持续的输出,在清洁能源中更具竞争力。目前,各种构型的晶体硅(c-Si)组件占据市场份额的90%以上,从发电量和节约成本两方面考虑,高效组件在光伏系统安装中占有绝对优势。获得高效率晶体硅太阳电池是获得高效组件的基础,高效硅异质结(SHJ)太阳电池的开发可以获得更高效率的组件。同时为了进一步扩大光伏装机量,降低成本是必经之路,晶体硅基底的薄片化趋势受到人们的重视。此外,充当吸收层的晶体硅减薄后,SHJ太阳电池具有可弯曲的柔性特征,制成的组件同样有柔性特征,可装在有曲度的表面实现电力输出,因此柔性组件在降低成本的同时有更广泛的用途。
然而,由数值模拟和实际器件性能输出可知:SHJ太阳电池的I-V参数会随着硅片减薄而变化,其中开路电压和填充因子随着晶体硅基底厚度减薄而增加,而短路电流由于基底减薄导致光生载流子数量减少而降低。因此,晶体硅基底越薄导致短路电流的损失就越高,电池的转换效率就降低越多。
发明内容
为了解决现有技术中为了降低成本减薄晶体硅衬底导致的硅异质结太阳电池的短路电流和转换效率降低的问题,本发明提供一种高效率双面受光柔性硅异质结太阳电池的制备方法。
根据本发明的高效率双面受光柔性硅异质结太阳电池的制备方法,其包括如下步骤:S1,提供一经过制绒清洗得到的表面清洁的柔性晶体硅衬底;S2,在柔性晶体硅衬底的相对两侧分别沉积非晶硅薄膜钝化层;S3,在非晶硅薄膜钝化层上分别沉积第一TCO(透明导电氧化物)薄膜形成第一受光面和具有增强的红外波段光谱响应的背反射复合薄膜形成第二受光面,其中,背反射复合薄膜由第二TCO薄膜和金属纳米颗粒构成;S4,在第一TCO薄膜和背反射复合薄膜上分别形成金属栅极。
本发明利用第二受光面中不同分布的金属纳米颗粒的表面等离子体激元效应增强红外波段的光谱响应,克服柔性硅异质结太阳电池由于基底厚度不足引起的红外区域光谱响应差的缺点,有效提升柔性硅异质结太阳电池的短路电流和转换效率。本发明的背反射复合薄膜具有陷光作用兼具高效反射和高效收集载流子的能力,通过高效的光陷获改善柔性硅异质结太阳电池的红外响应和吸收。本发明的背反射复合薄膜可采用椭圆偏振光谱仪测试表征,氧化物和金属纳米颗粒的成分比例及复合薄膜的折射率通过等效媒介理论拟合和计算。本发明的背反射复合薄膜的反射机制包括等离子体激元近场增强效应和多次散射光的再次反射原理。本发明的不同形状的背反射复合薄膜可以减少对太阳电池背面光吸收的阻挡,调节太阳电池的短路电流大小。
优选地,TCO薄膜为ITO、IWO、IGO和/或IOH薄膜。应该理解,TCO薄膜还可以是其他可以导电的氧化物材料。更优选地,TCO薄膜为包含铟基的透明导电氧化物薄膜。在优选的实施例中,TCO薄膜包括铟锡氧、铟钨氧、和/或铟镓氧等。
优选地,金属纳米颗粒为金、银、铟和/或铝。应该理解,金属纳米颗粒还可以是其他能够配合TCO增强红外波段光谱响应的金属颗粒。
优选地,金属纳米颗粒的粒径为100~300nm。更优选地,金属纳米颗粒的粒径为100~250nm,从而更为有效地收集和陷获入射光。
优选地,背反射复合薄膜通过热蒸发、电子束蒸发、物理气相沉积、磁控溅射法和反应等离子体沉积(RPD)中的至少一种方法制备。
优选地,背反射复合薄膜为夹心结构或周期性交替沉积堆叠结构。
优选地,背反射复合薄膜的制备工艺包括:在非晶硅薄膜钝化层上制备第一子TCO薄膜;在第一子TCO薄膜上制备金属薄膜;金属薄膜退火形成金属纳米颗粒;在金属纳米颗粒上制备第二子TCO薄膜。
优选地,金属薄膜通过小于等于200℃的低温退火形成金属纳米颗粒。在优选的实施例中,金属薄膜在150℃~200℃的N2、H2或Ar中退火60~90分钟形成金属纳米颗粒。
优选地,在制备金属薄膜的过程中借助于掩膜板或光刻,控制金属薄膜沉积出不同的形状图案,对电池全面积覆盖比例在5%~98%之间。
优选地,所述步骤S1具体为:提供柔性晶体硅衬底,利用碱溶液(例如KOH、NaOH等)对其各向异性腐蚀进行表面制绒后进行清洗(例如利用RCA1和RCA2溶液或氧化方法进行清洗)。
优选地,所述步骤S2具体为:在柔性衬底的第一表面制备第一本征非晶硅薄膜和n型掺杂非晶硅薄膜,在柔性衬底的与第一表面相对的第二表面制备第二本征非晶硅薄膜和p型掺杂非晶硅薄膜。
优选地,所述步骤S3具体为:在n型掺杂非晶硅薄膜上制备第一TCO薄膜,在p型掺杂非晶硅薄膜上制备背反射复合薄膜。在优选的实施例中,通过真空化学气相沉积在该柔性衬底上制备第一本征非晶硅薄膜、n型掺杂非晶硅薄膜、第二本征非晶硅薄膜和p型掺杂非晶硅薄膜。
根据本发明的高效率双面受光柔性硅异质结太阳电池的制备方法,通过吸收层减薄的柔性衬底来降低柔性硅异质结太阳电池的生产成本,使其能够应用在特殊曲面上;通过背反射复合薄膜来提高红外部分的光谱响应,对进一步获得高效率柔性硅异质结太阳电池并拓展其应用领域具有突出的意义。根据本发明的背反射结构的制备方法,还可以用于提升任何因为吸收层薄而缺失红外响应的太阳电池光电转换效率。所以,本发明可以对大规模生产的硅异质结太阳电池降低成本且提高转换效率,具有高度产业化利用价值。
附图说明
图1显示为本发明的双面受光的高效率柔性SHJ太阳电池结构示意图;
图2显示为背反射结构的制备流程图;
图3显示为第二受光面上背反射结构的陷光原理示意图;
图4显示为第二受光面上背反射结构的反射光谱图。
具体实施方式
在本文中,柔性衬底指的是厚度小于等于100μm的衬底。
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
例1
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法首先包括提供柔性衬底101。具体地,该柔性衬底101为厚度小于等于100μm,面积为125×125mm2的n型单晶硅。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来是对柔性衬底101进行制绒清洗。具体地,利用KOH、NaOH等碱溶液对柔性衬底101各向异性腐蚀进行表面制绒,利用RCA1和RCA2溶液对硅片进行清洗。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来在该柔性衬底101的第一表面制备第一本征非晶硅薄膜102和n型掺杂非晶硅薄膜103,然后在柔性衬底101的第二表面制备第二本征非晶硅薄膜104和p型掺杂非晶硅薄膜105。具体地,通过真空化学气相沉积在该柔性衬底101上制备第一本征非晶硅薄膜102、n型掺杂非晶硅薄膜103、第二本征非晶硅薄膜104和p型掺杂非晶硅薄膜105。在优选的实施例中,真空化学气相沉积为等离子体增强化学气相沉积工艺(PECVD),第一本征非晶硅薄膜102厚度为5nm,n型掺杂非晶硅薄膜103厚度为8nm,第二本征非晶硅薄膜104厚度为5nm,p型掺杂非晶硅薄膜105厚度为10nm。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来在n型掺杂非晶硅薄膜103上制备第一透明导电氧化物(TCO)薄膜106形成第一受光面。具体地,通过磁控溅射、反应等离子体沉积(RPD)等方法制备第一TCO薄膜106,第一TCO薄膜106的材料选用任意可以导电的氧化物。在优选的实施例中,采用反应等离子体沉积(RPD)方法制备第一TCO薄膜106,选用掺钨的氧化铟(IWO)作为第一TCO薄膜106的材料,沉积厚度为80nm。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来以图2所示流程图制备由第二TCO薄膜107和金属纳米颗粒108构成的背反射复合薄膜109形成第二受光面。具体地,通过磁控溅射、反应等离子体沉积(RPD)等方法制备厚度为d1的第一子TCO薄膜,d1可选取范围为20~30nm,通过热蒸发、电子束蒸发、磁控溅射等方法制备金、银、铝等金属薄膜,厚度范围为10~20nm,然后在150℃~200℃的N2、H2、Ar等不同气氛中退火60~90分钟形成金属纳米颗粒108,后续在金属纳米颗粒108上通过磁控溅射、反应等离子体沉积(RPD)等方法制备厚度为d2的第二子TCO薄膜,d2可选取范围为40~70nm,厚度分别为d1和d2的子TCO薄膜共同构成第二TCO薄膜107,第二TCO薄膜107的材料选用任意可以导电的氧化物。在优选的实施例中,采用反应等离子体沉积(RPD)方法制备厚度分别为d1和d2的子TCO薄膜,d1为20nm,d2为60nm,选用掺钨的氧化铟(IWO)作为第二TCO薄膜107的材料,通过真空蒸镀的方法制备金属银薄膜,用掩膜板控制金属薄膜沉积区域,本例中的掩膜板有三个3mm×100mm的区域,分别对应丝网印刷背电极主栅的覆盖区域,沉积的金属银薄膜厚度为10nm,在全面积覆盖比例为5.7%,然后在180℃的N2气氛中退火形成银纳米颗粒,退火时间为60分钟,退火形成的银纳米颗粒粒径为100~250nm。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来对背反射复合薄膜109进行测试表征。具体地,采用椭圆偏振分光光谱仪测试表征,通过等效媒介理论对氧化物和金属纳米颗粒的成分比例及复合薄膜的折射率进行拟合和计算。
如图1所示,根据本发明的第一种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来分别在第一TCO薄膜106和复合薄膜109上制作前金属栅极110和后金属栅极111。具体地,通过丝网印刷的方法制备银栅线电极。
例2
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法首先包括提供柔性衬底101。具体地,该柔性衬底101为厚度小于等于100μm,面积为125×125mm2的n型单晶硅。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来是对柔性衬底101进行制绒清洗。具体地,利用KOH、NaOH等碱溶液对柔性衬底101各向异性腐蚀进行表面制绒,利用RCA1和RCA2溶液对硅片进行清洗。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来在该柔性衬底101的第一表面制备第一本征非晶硅薄膜102和n型掺杂非晶硅薄膜103,然后在柔性衬底101的第二表面制备第二本征非晶硅薄膜104和p型掺杂非晶硅薄膜105。具体地,通过真空化学气相沉积在该柔性衬底101上制备第一本征非晶硅薄膜102、n型掺杂非晶硅薄膜103、第二本征非晶硅薄膜104和p型掺杂非晶硅薄膜105。在优选的实施例中,真空化学气相沉积为等离子体增强化学气相沉积工艺(PECVD),第一本征非晶硅薄膜102厚度为5nm,n型掺杂非晶硅薄膜103厚度为8nm,第二本征非晶硅薄膜104厚度为5nm,p型掺杂非晶硅薄膜105厚度为10nm。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来在n型掺杂非晶硅薄膜103上制备透明导电氧化物(TCO)薄膜106形成第一受光面。具体地,通过磁控溅射、反应等离子体沉积(RPD)等方法制备第一TCO薄膜106,第一TCO薄膜106的材料选用任意可以导电的氧化物。在优选的实施例中,采用磁控溅射的方法制备第一TCO薄膜106,选用掺锡的氧化铟(ITO)作为第一TCO薄膜106的材料,沉积厚度为80nm。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来以图2所示流程图制备由第二TCO薄膜107和金属纳米颗粒108构成的背反射复合薄膜109形成第二受光面。具体地,通过磁控溅射、反应等离子体沉积(RPD)等方法制备厚度为d1的第一子TCO薄膜,d1可选取范围为20~30nm,通过热蒸发、电子束蒸发、磁控溅射等方法制备金、银、铝等金属薄膜,厚度范围为10~20nm,然后在150℃~200℃的N2、H2、Ar等不同气氛中退火60~90分钟形成金属纳米颗粒108,后续在金属纳米颗粒上通过磁控溅射、反应等离子体沉积(RPD)等方法制备厚度为d2的第二子TCO薄膜,d2可选取范围为50~70nm,厚度分别为d1和d2的子TCO薄膜共同构成第二TCO薄膜107,第二TCO薄膜107的材料选用任意可以导电的氧化物。在优选的实施例中,采用磁控溅射的方法制备厚度分别为d1和d2的子TCO薄膜,d1为30nm,d2为50nm,选用氧化铟锡(ITO)作为第二TCO薄膜107的材料,通过磁控溅射的方法制备金属银薄膜,用特制的掩膜板控制金属薄膜沉积区域,本例中掩膜板有9个30mm×30mm的区域,沉积的金属银薄膜厚度为12nm,在全面积覆盖比例为52%,然后在180℃的N2气氛中退火形成银纳米颗粒,退火时间为60分钟,退火形成的银纳米颗粒粒径为100~290nm。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来对背反射复合薄膜109进行测试表征。具体地,采用椭圆偏振光谱仪测试表征,通过等效媒介理论对氧化物和金属纳米颗粒的成分比例及复合薄膜的折射率进行拟合和计算。
如图1所示,根据本发明的第二种实施方式的高效率双面受光柔性硅异质结太阳电池的制备方法的制作方法接下来分别在第一TCO薄膜106和复合薄膜109上制作前金属栅极110和后金属栅极111。具体地,通过丝网印刷的方法制备银栅线电极。
如图3所示,根据本发明的方法制备的第二受光面上的背反射结构,利用金属纳米颗粒的表面等离子体激元增强效应,可以对到达金属纳米颗粒表面的光进行有效的光管理,通过多次高角度散射有效延长光路,提高电池的光学吸收。具体地,到达金属纳米颗粒表面的光包括从第一受光面进入电池而未被电池完全吸收的光、颗粒之间散射的光、后金属栅极反射的光以及从第二受光面进入的光。
根据本发明的方法制备的第二受光面上背反射结构的反射光谱图如图4所示,对比TCO薄膜,由TCO薄膜和金属纳米颗粒组成的背反射薄膜能够有效增强对800~1200nm波段红外光的反射。应用于柔性硅异质结太阳电池时,背反射复合薄膜能够将在单程光路中未被完全吸收的近硅带隙的红外光反射回电池中,延长红外光在电池中的光路,减少由于硅片基底减薄造成的红外光逃逸损失,有效提升电池对红外光的吸收,从而提升电池的红外光谱响应。
总之,根据本发明的方法制备的背反射结构可以有效提升双面受光柔性硅异质结电池的光学吸收,特别是红外波段的光谱响应得到了明显的提升,从而有效地提高了柔性硅异质结电池的短路电流和转换效率。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

1.一种高效率双面受光柔性硅异质结太阳电池的制备方法,其特征在于,其包括如下步骤:
S1,提供一经过制绒清洗得到的表面清洁的柔性晶体硅衬底;
S2,在柔性衬底的相对两侧分别沉积非晶硅薄膜钝化层;
S3,在非晶硅薄膜钝化层上分别沉积第一TCO薄膜形成第一受光面和具有增强的红外波段光谱响应的背反射复合薄膜形成第二受光面,其中,背反射复合薄膜由第二TCO薄膜和金属纳米颗粒构成;
S4,在第一TCO薄膜和背反射复合薄膜上分别形成金属栅极。
2.根据权利要求1所述的制备方法,其特征在于,金属纳米颗粒为金、银、铟和/或铝。
3.根据权利要求1所述的制备方法,其特征在于,金属纳米颗粒的粒径为100~300nm。
4.根据权利要求1所述的制备方法,其特征在于,背反射复合薄膜通过热蒸发、电子束蒸发、物理气相沉积、磁控溅射法和反应等离子体沉积中的至少一种方法制备。
5.根据权利要求1所述的制备方法,其特征在于,背反射复合薄膜为夹心结构或周期性交替沉积堆叠结构。
6.根据权利要求1所述的制备方法,其特征在于,背反射复合薄膜的制备工艺包括:在非晶硅薄膜钝化层上制备第一子TCO薄膜;在第一子TCO薄膜上制备金属薄膜;金属薄膜退火形成金属纳米颗粒;在金属纳米颗粒上制备第二子TCO薄膜。
7.根据权利要求6所述的制备方法,其特征在于,金属薄膜通过小于等于200℃的低温退火形成金属纳米颗粒。
8.根据权利要求6所述的制备方法,其特征在于,在制备金属薄膜的过程中借助于掩膜板或光刻,控制金属薄膜沉积出不同的形状图案,对电池全面积覆盖比例在5%~98%之间。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤S2具体为:在柔性衬底的第一表面制备第一本征非晶硅薄膜和n型掺杂非晶硅薄膜,在柔性衬底的与第一表面相对的第二表面制备第二本征非晶硅薄膜和p型掺杂非晶硅薄膜。
10.根据权利要求9所述的制备方法,其特征在于,所述步骤S3具体为:在n型掺杂非晶硅薄膜上制备第一TCO薄膜,在p型掺杂非晶硅薄膜上制备背反射复合薄膜。
CN202010476722.XA 2020-05-29 2020-05-29 一种高效率双面受光柔性硅异质结太阳电池的制备方法 Active CN111640815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010476722.XA CN111640815B (zh) 2020-05-29 2020-05-29 一种高效率双面受光柔性硅异质结太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010476722.XA CN111640815B (zh) 2020-05-29 2020-05-29 一种高效率双面受光柔性硅异质结太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN111640815A true CN111640815A (zh) 2020-09-08
CN111640815B CN111640815B (zh) 2024-03-01

Family

ID=72329447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010476722.XA Active CN111640815B (zh) 2020-05-29 2020-05-29 一种高效率双面受光柔性硅异质结太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN111640815B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635609A (zh) * 2021-01-25 2021-04-09 苏州迈为科技股份有限公司 一种硅基异质结太阳能电池及其制备方法
CN116435403A (zh) * 2023-02-28 2023-07-14 中国科学院上海微系统与信息技术研究所 一种柔性单晶硅片和柔性太阳电池及其制备方法
CN116995106A (zh) * 2023-09-26 2023-11-03 无锡釜川科技股份有限公司 一种含有ir高反膜的异质结电池片/电池组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866961A (zh) * 2010-06-09 2010-10-20 中国科学院电工研究所 一种用于薄膜硅/晶体硅异质结太阳电池的陷光结构
US20120097225A1 (en) * 2009-07-06 2012-04-26 Hidefumi Nomura Photoelectric conversion device
CN103038895A (zh) * 2010-07-30 2013-04-10 Lg伊诺特有限公司 太阳能电池及其制造方法
CN107359211A (zh) * 2016-05-09 2017-11-17 中国科学院上海高等研究院 具有二维导电材料阵列嵌入式透明电极薄膜的太阳电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097225A1 (en) * 2009-07-06 2012-04-26 Hidefumi Nomura Photoelectric conversion device
CN101866961A (zh) * 2010-06-09 2010-10-20 中国科学院电工研究所 一种用于薄膜硅/晶体硅异质结太阳电池的陷光结构
CN103038895A (zh) * 2010-07-30 2013-04-10 Lg伊诺特有限公司 太阳能电池及其制造方法
CN107359211A (zh) * 2016-05-09 2017-11-17 中国科学院上海高等研究院 具有二维导电材料阵列嵌入式透明电极薄膜的太阳电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635609A (zh) * 2021-01-25 2021-04-09 苏州迈为科技股份有限公司 一种硅基异质结太阳能电池及其制备方法
CN112635609B (zh) * 2021-01-25 2023-03-14 苏州迈为科技股份有限公司 一种硅基异质结太阳能电池及其制备方法
CN116435403A (zh) * 2023-02-28 2023-07-14 中国科学院上海微系统与信息技术研究所 一种柔性单晶硅片和柔性太阳电池及其制备方法
CN116435403B (zh) * 2023-02-28 2024-09-17 六智韬新能源科技(上海)有限公司 一种柔性单晶硅片和柔性太阳电池及其制备方法
CN116995106A (zh) * 2023-09-26 2023-11-03 无锡釜川科技股份有限公司 一种含有ir高反膜的异质结电池片/电池组件

Also Published As

Publication number Publication date
CN111640815B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN111640815B (zh) 一种高效率双面受光柔性硅异质结太阳电池的制备方法
Berginski et al. The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells
EP2441095A2 (en) Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
Tamang et al. On the interplay of cell thickness and optimum period of silicon thin‐film solar cells: light trapping and plasmonic losses
Yin et al. Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu (In, Ga) Se2 solar cells
CN113140640B (zh) 一种高效背反射晶体硅异质结太阳电池及其制备方法
Sharma et al. Simulating the role of TCO materials, their surface texturing and band gap of amorphous silicon layers on the efficiency of amorphous silicon thin film solar cells
US20100212721A1 (en) Thin film type solar cell and method for manufacturing the same
JP2011114153A (ja) 光電変換装置およびその製造方法
Kanneboina Detailed review on c-Si/a-Si: H heterojunction solar cells in perspective of experimental and simulation
Samantaray et al. Large-area Si solar cells based on molybdenum oxide hole selective contacts
Richter et al. Light management in planar silicon heterojunction solar cells via nanocrystalline silicon oxide films and nano‐imprint textures
JP2011166016A (ja) 太陽電池の製造方法及び太陽電池
KR20120060185A (ko) 무반사 나노구조가 집적된 기판을 이용한 고효율 태양전지 및 그 제조방법
Maria et al. Carrier transport and performance limit of semi-transparent photovoltaics: CuIn1− xGaxSe2 as a case study
KR101190197B1 (ko) 무반사 나노구조가 집적된 기판을 이용한 고효율 태양전지 및 그 제조방법
CN211295115U (zh) 一种基于硅纳米线结构的太阳能电池
TW201822371A (zh) 異質接面太陽能電池及其製造方法
CN102856421A (zh) 一种新型三结薄膜太阳能电池及其生产方法
CN106024919A (zh) 非晶硅薄膜太阳能电池及其制造方法
US9952360B2 (en) Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector
Su et al. Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at wavelength above 1.1 µm
WO2006006368A1 (ja) 薄膜光電変換装置の製造方法
CN112234106A (zh) 金属tco叠层薄膜及其制备方法和hit太阳能电池
CN103378183A (zh) 一种双面透光纳米线织构异质结太阳能电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240729

Address after: 201800 room 1611, 16 / F, building 1, No. 811, Pingcheng Road, Juyuan New District, Jiading District, Shanghai

Patentee after: Shanghai Qusi Energy Technology Partnership Enterprise (Limited Partnership)

Country or region after: China

Patentee after: Liu Zhengxin

Address before: 200050 No. 865, Changning Road, Shanghai, Changning District

Patentee before: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240830

Address after: Room 1611, 16th Floor, Building 1, 811 Pingcheng Road, Juyuan New District, Jiading District, Shanghai, 201800 JT2759

Patentee after: Liuzhitao New Energy Technology (Shanghai) Co.,Ltd.

Country or region after: China

Address before: 201800 room 1611, 16 / F, building 1, No. 811, Pingcheng Road, Juyuan New District, Jiading District, Shanghai

Patentee before: Shanghai Qusi Energy Technology Partnership Enterprise (Limited Partnership)

Country or region before: China

Patentee before: Liu Zhengxin