CN111638252A - 一种氢气传感器及其制备方法 - Google Patents

一种氢气传感器及其制备方法 Download PDF

Info

Publication number
CN111638252A
CN111638252A CN202010577466.3A CN202010577466A CN111638252A CN 111638252 A CN111638252 A CN 111638252A CN 202010577466 A CN202010577466 A CN 202010577466A CN 111638252 A CN111638252 A CN 111638252A
Authority
CN
China
Prior art keywords
hydrogen
palladium
film
coating
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010577466.3A
Other languages
English (en)
Inventor
谢波
丁伯胜
王一涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Guwei Technology Co ltd
Original Assignee
Zhejiang Guwei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Guwei Technology Co ltd filed Critical Zhejiang Guwei Technology Co ltd
Priority to CN202010577466.3A priority Critical patent/CN111638252A/zh
Publication of CN111638252A publication Critical patent/CN111638252A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers

Abstract

本发明涉及一种氢气传感器及其制备方法,包括氢气气敏膜、导电电极和绝缘衬底,所述氢气气敏膜附着于绝缘衬底表面,通过导电电极测量氢气气敏膜的电阻或导电值,所述氢气气敏膜包括至少一层钯基纳米粒子组装薄膜和至少一层金属有机物框架涂层,所述金属有机物框架涂层将钯基纳米粒子组装薄膜完全包裹。本发明中金属有机物框架涂层材料的多孔结构使其能在一定程度上隔离较大尺寸的气体分子,提高氢气气敏的选择性。此外,由于金属有机物框架材料对钯或合金粒子之间的表面修饰作用,还能提高纳米粒子气敏膜对氢气的响应值。

Description

一种氢气传感器及其制备方法
技术领域
本发明涉及气体传感技术领域,特别涉及一种钯基纳米粒子组装薄膜@金属有机物框架复合氢气气敏膜纳米粒子在氢气传感器上的构筑与应用。
背景技术
氢气作为能源的一种形式,具有高的燃烧效率,且产物水具有无污染等优点,有潜力替换传统的化石燃料。然而,氢气作为一种易燃易爆气体,在生产、储存和使用过程中存在安全隐患问题,且氢气属于无色、无嗅、无味气体,在发生氢气泄漏时,无法被人的感官系统所发觉。因此,开发具备实际应用价值的氢气传感技术是实现氢能规模化应用的重要安全保障。目前,基于量子隧道效应的钯(palladium,Pd)基纳米结构氢气传感器以其优异的传感性能受到了学界和业界的广泛关注(参见Sensors, 19 (2019) 4478–4518;Sensorsand Actuators B: Chemical, 255 (2018) 1841–1848;ACS Applied Materials &Interfaces, 10 (2018) 44603–44613;CN 200910028487.3)。然而,此类传感器仍然存在传感选择性较差的共性技术难题,这限制了其商用化进程。一种提高传感选择性的思路是在钯基敏感材料表面设置隔离层,通过隔离层的微孔结构过滤干扰气体成分,一个典型的例子是用聚甲基丙烯酸甲酯(PMMA)有机膜包覆钯纳米粒子薄膜,实现了对氢气的高选择性响应(参见ACS Applied Materials & Interfaces, 9 (2017) 27193–27201)。然而,有机物的包裹在实现隔离干扰气体的同时也对传感器响应灵敏度和响应速度造成了一定的负面影响。如何在不降低传感性能的前提下,解决钯基氢气传感器的响应选择性较差的问题仍然是一项富有挑战性的任务。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种氢气传感器,实现氢气响应选择性和响应性能双优化的目的。
为实现上述目的,本发明提出了一种氢气传感器,包括氢气气敏膜、导电电极和绝缘衬底,所述氢气气敏膜附着于绝缘衬底表面,通过导电电极测量氢气气敏膜的电阻或导电值,所述氢气气敏膜包括至少一层钯基纳米粒子组装薄膜和至少一层金属有机物框架涂层,所述金属有机物框架涂层将钯基纳米粒子组装薄膜完全包裹,且钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中。
本发明的创新点在于:由于金属有机物框架涂层具有可调控孔道结构,具有气体分离的巨大优势,本发明将金属有机物框架和钯基纳米粒子组装薄膜以完全包裹和嵌埋的形式相结合组成氢气气敏膜,并将该氢气气敏膜应用于氢气传感器上,当上述氢气气敏膜接触到一定浓度的氢气时,氢气分子会透过金属有机物框架涂层,并且进一步通过扩散溶解在钯基纳米粒子组装薄膜中,造成晶格膨胀,改变组装薄膜中粒子间的面间距,导致薄膜整体的电阻或电导值发生变化,提高纳米粒子的化学活性,能显著增强对氢气响应的灵敏度和响应速度;此外,由于金属有机物框架涂层的孔道结构能够有效的过滤其他气体,使纳米粒子表面能暴露更多的活性位点,进而提升器件的响应选择性和传感性能;其中纳米粒子点阵中量子隧穿是主要的导电机制,纳米粒子数密度要大于渗流阈值,确保通过组装薄膜中的电流能被测出。
作为优选,还包括至少一层有机高分子涂层,所述有机高分子涂层覆盖在金属有机物框架涂层表面。通过设置有机高分子涂层,用于包覆钯基纳米粒子组装薄膜和金属有机物框架涂层,对氢气气敏膜表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。
作为优选,所述有机高分子涂层的厚度为1~100nm,该厚度的有机高分子涂层具有较好氢气透过性,例如,聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚乙烯吡咯烷酮等。
作为优选,所述钯基纳米粒子组装薄膜中的纳米粒子尺寸为1~50nm纳米粒子。
作为优选,所述金属有机物框架涂层的孔径大于氢气分子的动力学尺寸,金属有机物框架涂层起到过滤气体分子提高传感选择性的作用,通过将其孔径设置为大于氢气分子的动力学尺寸(0.29nm),例如,ZIF-8和ZIF-67等,使氢气能通过扩散机制与钯基纳米粒子组装薄膜发生相互作用,能达到氢气分子在纳米粒子表面的选择性吸附,使传感器获得较高的选择性。此外,由于金属有机物框架涂层对纳米粒子表面的化学修饰作用,使其化学活性增强,因此,也提高钯基纳米粒子组装薄膜的氢传感性能。
一种氢气传感器的制备方法,所述气敏膜的制备过程包括以下步骤:(1)将金属有机物框架涂层覆盖在钯基纳米粒子组装薄膜表面,使钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中;
(2)将有机高分子溶液覆盖在金属有机物框架涂层表面,得到复合氢气气敏膜。
作为优选,所述钯基纳米粒子组装薄膜的制备过程包括以下步骤:
采用磁控等离子体气体聚集法制备钯基纳米粒子,溅射气为氩气,缓冲气为氩气,将钯基纳米粒子沉积于带有一对导电电极绝缘衬底表面,钯基纳米粒子的覆盖率通过检测沉积时电极两端的电流值确定。
本发明的有益效果:本发明通过钯基纳米粒子组装薄膜、金属有机物框架涂层和有机高分子涂层相互结合形成的氢气气敏膜,对氢气具有良好的选择性,同时金属有机物框架涂层对钯基纳米粒子组装薄膜的包覆还进一步增加了氢气传感性能,提高氢气响应选择性和响应性能,提高氢气传感器件的性能;有机高分子涂层对氢气气敏膜表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。
发明的特征及优点将通过实施例及附图进行详细说明。
附图说明
图1是本发明的结构示意图。
图2是气敏膜实时电流响应的曲线图。
图3是气敏膜响应值的示意图。
图4是气敏膜选择性响应值的示意图。
1-氢气气敏膜、2-导电电极、3-绝缘衬底、11-钯基纳米粒子组装薄膜、12-金属有机物框架涂层、13-有机高分子涂层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,本发明一种氢气传感器,包括氢气气敏膜1、导电电极2和绝缘衬底3,氢气气敏膜1包括至少一层钯基纳米粒子组装薄膜11、至少一层金属有机物框架涂层12和至少一层有机高分子涂层13,金属有机物框架涂层12将钯基纳米粒子组装薄膜11完全包裹,且钯基纳米粒子组装薄膜11嵌埋于金属有机物框架涂层12中,提高氢气响应选择性和响应性能,金属有机物框架涂层12附着于绝缘衬底3表面,通过两侧的一对导电电极2测量氢气气敏膜1的电阻或导电值,有机高分子涂层13覆盖在金属有机物框架涂层12表面,对氢气气敏膜1表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。
为了更好的理解本发明,本发明中的钯基纳米粒子组装薄膜11、金属有机物框架12、有机高分子溶液和氢气气敏膜1的制备如下:
(1)钯基(Pd)纳米粒子组装薄膜11的制备:采用磁控等离子体气体聚集法制备钯基纳米粒子,溅射气为氩气,缓冲气为氩气,溅射功率为20~30w均可,将Pd纳米粒子沉积于带有一对导电电极2绝缘衬底3表面,纳米粒子的覆盖率通过检测沉积时电极两端的电流值确定。
(2)金属有机物框架(MOF)的制备:以MOF中一类沸石咪唑酯骨架结构材料(Zeolitic Imidazolate Frameworks, ZIFs)的ZIF-8为例,采用化学合成的方法,将一定量的Zn(NO3)2·6H2O和2-甲基咪唑溶解于甲醇溶剂中,并进行磁力搅拌数小时,使其反应完全,后续再进行多次离心、洗涤操作。
(3)有机高分子溶液的制备:以聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)为例:将不同分子量的PMMA粉末溶解于苯甲醚溶剂中,通过控制加入PMMA的质量,可配制不同质量百分数的PMMA溶液。
(4)一种具有复合材料层结构的Pd纳米粒子组装薄膜的制备:使用台式匀胶机,转速控制在1000~4000 r/min,将ZIF-8纳米晶体通过旋涂方法覆盖在Pd纳米粒子表面,使Pd纳米粒子嵌埋于MOF中,再将PMMA溶液使用旋涂工艺覆盖在ZIF-8涂层的表面,得到Pd@ZIF-8@PMMA复合氢气气敏膜1。
对Pd@ZIF-8@PMMA复合氢气气敏膜1的性能进行测试。
(1)气敏膜的氢气响应测试:将气敏膜置于腔体中并通入一定量氢气,在两端电极施加偏压,分别测量Pd纳米粒子、具有ZIF-8涂层的Pd纳米粒子和具有PMMA、ZIF-8涂层的Pd纳米粒子组装薄膜的电流值。电流值的变化反映出气敏膜对氢气的响应性能,其中,响应值=(I H2I 0) /I 0 ×0.9×100%,如图2和图3分别示出20 sccm流量下,气敏膜对6000 ppm氢气浓度的实时电流响应曲线和响应值。可以看出含有ZIF-8涂层的复合膜的氢气响应值明显高于单质钯纳米粒子薄膜。
(2)气敏膜的氢气选择性测试:一氧化碳(CO)是很容易导致Pd中毒失去响应能力的干扰气体。为此,在腔体中通入一定量氢气的同时,通入一定量的CO,在两端电极施加偏压,分别测量Pd纳米粒子、具有PMMA、ZIF-8涂层的Pd纳米粒子气敏膜的电流值,图4示出20sccm流量下,气敏膜对6000 ppm氢气浓度和1% CO浓度选择性响应值。结果显示,Pd纳米粒子薄膜在通入CO的情况下,对氢气的响应值明显下降约30%;而带有ZIF-8和PMMA涂层的复合薄膜在通入CO的情况下,响应值仅略有下降。说明该复合气敏膜具备较好的CO隔离性能,体现了较好的氢气选择性。
由此可见,具有该复合气敏膜的氢气传感器不仅能够提高氢气的的传感性能,提高氢气响应选择性和响应性能,同时还具有一定的防水防湿效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种氢气传感器,其特征在于:包括氢气气敏膜、导电电极和绝缘衬底,所述氢气气敏膜附着于绝缘衬底表面,通过导电电极测量氢气气敏膜的电阻或导电值,所述氢气气敏膜包括至少一层钯基纳米粒子组装薄膜和至少一层金属有机物框架涂层,所述金属有机物框架涂层将钯基纳米粒子组装薄膜完全包裹,且钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中。
2.如权利要求1所述的氢气传感器,其特征在于:所述氢气气敏膜还包括至少一层有机高分子涂层,所述有机高分子涂层覆盖在金属有机物框架涂层表面。
3.如权利要求2所述的氢气传感器,其特征在于:所述有机高分子涂层的厚度为1~100nm。
4.如权利要求1或2所述的氢气传感器,其特征在于:所述钯基纳米粒子组装薄膜中的纳米粒子尺寸为1~50nm纳米粒子。
5.如权利要求1或2所述的氢气传感器,其特征在于:所述金属有机物框架涂层的孔径大于氢气分子的动力学尺寸。
6.一种如权利要求1-5中任一项所述的氢气传感器的制备方法,其特征在于,所述气敏膜的制备过程包括以下步骤:
(1)将金属有机物框架涂层覆盖在钯基纳米粒子组装薄膜表面,使钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中;
(2)将有机高分子溶液覆盖在金属有机物框架涂层表面,得到复合氢气气敏膜。
7.如权利要求6所述的氢气传感器的制备方法,其特征在于,所述钯基纳米粒子组装薄膜的制备过程包括以下步骤:
采用磁控等离子体气体聚集法制备钯基纳米粒子,溅射气为氩气,缓冲气为氩气,将钯基纳米粒子沉积于带有一对导电电极绝缘衬底表面,钯基纳米粒子的覆盖率通过检测沉积时电极两端的电流值确定。
CN202010577466.3A 2020-06-23 2020-06-23 一种氢气传感器及其制备方法 Pending CN111638252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010577466.3A CN111638252A (zh) 2020-06-23 2020-06-23 一种氢气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010577466.3A CN111638252A (zh) 2020-06-23 2020-06-23 一种氢气传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN111638252A true CN111638252A (zh) 2020-09-08

Family

ID=72329360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010577466.3A Pending CN111638252A (zh) 2020-06-23 2020-06-23 一种氢气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN111638252A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730537A (zh) * 2020-12-22 2021-04-30 杭州未名信科科技有限公司 电容式氢气传感器及其制备方法
CN112730529A (zh) * 2020-12-22 2021-04-30 杭州未名信科科技有限公司 电阻式氢气传感器及其制备方法
CN113147106A (zh) * 2021-03-22 2021-07-23 长春工业大学 一种高防潮性稳定的室温气体传感器制备方法
CN113155906A (zh) * 2021-03-05 2021-07-23 中山大学 氢气传感器及其制备方法和氢气检测方法
CN113406147A (zh) * 2021-05-08 2021-09-17 中北大学 一种氢气敏感元件及制备方法
CN113791123A (zh) * 2021-07-30 2021-12-14 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
CN114505058A (zh) * 2022-03-17 2022-05-17 中国石油大学(华东) 一种金属有机框架材料辅助的高灵敏度氢气检测纳米材料及其制备方法
CN114570922A (zh) * 2022-03-17 2022-06-03 中国石油大学(华东) 一种可快速重复检测氢气的纳米材料及其制备方法
WO2023123669A1 (zh) * 2021-12-27 2023-07-06 浙江工业大学 一种催化燃烧式氢气传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124476A (zh) * 2005-02-22 2008-02-13 毫微-专卖股份有限公司 连续范围氢传感器
JP2008051672A (ja) * 2006-08-25 2008-03-06 Kyushu Univ 水素ガスセンサ及びその製造方法
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN104502421A (zh) * 2014-12-16 2015-04-08 电子科技大学 一种室温p-n-p异质结型氢气传感器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124476A (zh) * 2005-02-22 2008-02-13 毫微-专卖股份有限公司 连续范围氢传感器
JP2008051672A (ja) * 2006-08-25 2008-03-06 Kyushu Univ 水素ガスセンサ及びその製造方法
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN104502421A (zh) * 2014-12-16 2015-04-08 电子科技大学 一种室温p-n-p异质结型氢气传感器及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALI MIRZAEI 等: "An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas", 《SCIENCEDIRECT》 *
BO XIE 等: "Metal Nanocluster—Metal Organic Framework—Polymer Hybrid Nanomaterials for Improved Hydrogen Detection", 《NANO MICRO SMALL》 *
GOBENG R. MONAMA 等: "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction", 《RENEWABLE ENERGY》 *
HYEONGHUN KIM 等: "Molecular Sieve Based on a PMMA/ZIF‑8 Bilayer for a CO-Tolerable H2 Sensor with Superior Sensing Performance", 《ACS APPLIED MATERIALS INTERFACES》 *
MATTHIEU WEBER 等: "High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal−Organic Framework Membranes", 《ACS APPLIED MATERIALS INTERFACES》 *
沈林武 等: "一种基于电子隧穿机制的柔性氢气传感器", 《传感技术学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730537A (zh) * 2020-12-22 2021-04-30 杭州未名信科科技有限公司 电容式氢气传感器及其制备方法
CN112730529A (zh) * 2020-12-22 2021-04-30 杭州未名信科科技有限公司 电阻式氢气传感器及其制备方法
WO2022134494A1 (zh) * 2020-12-22 2022-06-30 杭州未名信科科技有限公司 电容式氢气传感器及其制备方法
CN113155906A (zh) * 2021-03-05 2021-07-23 中山大学 氢气传感器及其制备方法和氢气检测方法
CN113147106A (zh) * 2021-03-22 2021-07-23 长春工业大学 一种高防潮性稳定的室温气体传感器制备方法
CN113406147A (zh) * 2021-05-08 2021-09-17 中北大学 一种氢气敏感元件及制备方法
CN113791123A (zh) * 2021-07-30 2021-12-14 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
CN113791123B (zh) * 2021-07-30 2024-02-13 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
WO2023123669A1 (zh) * 2021-12-27 2023-07-06 浙江工业大学 一种催化燃烧式氢气传感器及其制备方法
CN114505058A (zh) * 2022-03-17 2022-05-17 中国石油大学(华东) 一种金属有机框架材料辅助的高灵敏度氢气检测纳米材料及其制备方法
CN114570922A (zh) * 2022-03-17 2022-06-03 中国石油大学(华东) 一种可快速重复检测氢气的纳米材料及其制备方法
CN114570922B (zh) * 2022-03-17 2023-06-02 中国石油大学(华东) 一种可快速重复检测氢气的纳米材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111638252A (zh) 一种氢气传感器及其制备方法
Mirzaei et al. An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas
Yoon et al. A new strategy for humidity independent oxide chemiresistors: dynamic self‐refreshing of In2O3 sensing surface assisted by layer‐by‐layer coated CeO2 nanoclusters
Lei et al. Thin films of tungsten oxide materials for advanced gas sensors
Mao et al. High performance hydrogen sensor based on Pd/TiO2 composite film
Zhu et al. Humidity-tolerant chemiresistive gas sensors based on hydrophobic CeO2/SnO2 heterostructure films
Li et al. Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4
Nair et al. ZnO@ ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity
Choi et al. Room-temperature NO2 sensor based on electrochemically etched porous silicon
Guan et al. Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials
JPH0996622A (ja) ガスセンサおよびその製造方法
Abuzalat et al. High-performance, room temperature hydrogen sensing with a Cu-BTC/polyaniline nanocomposite film on a quartz crystal microbalance
Zhao et al. Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties
Xu et al. Tunable resistance of MOFs films via an anion exchange strategy for advanced gas sensing
Kim et al. Aerogel sheet of carbon nanotubes decorated with palladium nanoparticles for hydrogen gas sensing
Xie et al. Metal nanocluster—metal organic framework—polymer hybrid nanomaterials for improved hydrogen detection
Fardindoost et al. Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@ GO)
Gao et al. Synthesis of Cr2O3 nanoparticle-coated SnO2 nanofibers and C2H2 sensing properties
Wei et al. A novel hydrogen-sensitive sensor based on Pd nanorings/TNTs composite structure
Zeb et al. Synergistic Effect of Au–PdO Modified Cu-Doped K2W4O13 Nanowires for Dual Selectivity High Performance Gas Sensing
Zhuiykov Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films
André et al. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies
Dun et al. Synergistic effect of PdO and parallel nanowires assembled CuO microspheres enables high performance room-temperature H2S sensor
Zheng et al. Low-cost high-performance NO2 sensor based on nanoporous indium tin oxide (ITO) film
Lin et al. Nanotechnology on toxic gas detection and treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination