CN111634956B - 一种含氧金属化合物氧空位的合成方法 - Google Patents

一种含氧金属化合物氧空位的合成方法 Download PDF

Info

Publication number
CN111634956B
CN111634956B CN202010465686.7A CN202010465686A CN111634956B CN 111634956 B CN111634956 B CN 111634956B CN 202010465686 A CN202010465686 A CN 202010465686A CN 111634956 B CN111634956 B CN 111634956B
Authority
CN
China
Prior art keywords
oxygen
coo
containing metal
metal compound
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010465686.7A
Other languages
English (en)
Other versions
CN111634956A (zh
Inventor
唐量
陈文倩
冯元
朱慜
吴明红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010465686.7A priority Critical patent/CN111634956B/zh
Publication of CN111634956A publication Critical patent/CN111634956A/zh
Application granted granted Critical
Publication of CN111634956B publication Critical patent/CN111634956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含氧金属化合物氧空位的合成方法,包括以下步骤:a.石英管抽真空,用氩气洗,反复充洗;b.钛粉和研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;c.调节加热温度,加热一段时间;d.自然冷却后研磨收样。本发明利用金属单质钛在真空条件下吸收含氧金属化合物晶格中的氧,使其产生表面缺陷,光催化性能显著提高。本发明方法实验方法简单,可作性强,仪器要求简单,不需要特定的气氛条件,安全性高。

Description

一种含氧金属化合物氧空位的合成方法
技术领域
本发明涉及多元半导体复合材料技术领域,特别涉及一种含氧金属化合物氧空位的合成方法。
背景技术
当前能源危机环境恶化,光催化引起了人们极大的兴趣。在各种含氧半导体中,例如SrTiO3,TiO2,ZnO等由于其优异的电子和光学性质,光化学稳定性,低成本和高催化效率而成为有前途的光催化剂。太阳能驱动光催化过程的高效性很大程度上取决于半导体的吸收可见光和红外光的能力,已经抑制光生电子-空穴的复合能力。但是许多含氧半导体材料带隙较宽,它仅在紫外光照射下才有活性。并且许多半导体材料的电子-空穴复合较高导致低的光催化活性。
众所周知,氧空位在光催化过程中起重要作用。氧空位的存在会在导带下面插入一个施主能级,减小带隙,进而扩大其光响应区间。表面氧空位可作为光致电荷缺陷和吸附位点,其中电荷可转移到被吸附的化合物上,从而阻止了光生电荷载流子的重组,从而改善了光催化性能。
目前,氧空位的合成方法有很多种。气氛脱氧法,就是由特定的气氛种,利用高温使氧从物质中脱离,这种方法需要较高的能量且需要稳定的无氧气流环境;离子掺杂法,利用不同元素离子价态的不同,通过缺氧来使其中价态为零,但是掺杂的方法困难比例难以确定;加温氢化法,高温条件下氢气吸收化合物中的氧,但是氢气气流较危险易爆;化学反应法是通过强还原剂降低金属元素价态,电荷守恒就会缺失氧形成空位,而强还原剂实验亦存在风险;机械化学力法,使用机械力使晶格中的氧脱离,这种方法很容易破坏原有物质结构;高能粒子轰击法,通过高能离子使氧解离,但是设备要求较高,且由辐射危险。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种含氧金属化合物氧空位的合成方法,用于探索光解水制氢和有机染料降解等光催化性能,以降低催化成本,提高催化效率。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种含氧金属化合物氧空位的合成方法,包括以下步骤:
a.石英管抽真空,用氩气洗,反复充洗;
b.钛粉和研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;
c.调节加热温度,加热一段时间;
d.自然冷却后研磨收样。
进一步,步骤b中钛粉的加入量为10mml,CoO的加入量为10mmol。
优选的,步骤b中钛粉的加入量为10mml,CoO的加入量为10mmol。
进一步,步骤c中加热温度为630℃,加热8-12小时。
优选的,步骤c中加热温度为630℃,加热10小时。
本发明具有以下有益效果:
本发明利用金属单质钛在真空条件下吸收含氧金属化合物晶格中的氧,使其产生表面缺陷,以提高光催化活性。本发明方法实验方法简单,可作性强,仪器要求简单,不需要特定的气氛条件,安全性高,具有广阔的应用前景。
附图说明
图1是本发明方法实施例1-3制备的具有氧空位的氧化钴催化剂的XRD图;
图2是本发明方法实施例1-3制备的具有氧空位的氧化钴催化剂固体紫外以及物质颜色变化图;
图3是本发明方法实施例1-3制备的具有氧空位的氧化钴催化剂的荧光图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1
一种含氧金属化合物氧空位的合成方法,包括以下步骤:
a.石英管抽真空,用氩气洗,反复充洗,目的是为了清楚关内残留氧气;
b.10mml钛粉和10mmol研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;
c.调加热温度为630℃,时间为8小时;
d.自然冷却后研磨收样。
实施例2
一种含氧金属化合物氧空位的合成方法,包括以下步骤:
a.石英管抽真空,用氩气洗,反复充洗,目的是为了清楚关内残留氧气;
b.10mml钛粉和10mmol研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;
c.调加热温度为630℃,时间为10小时;
d.自然冷却后研磨收样。
实施例3
一种含氧金属化合物氧空位的合成方法,包括以下步骤:
a.石英管抽真空,用氩气洗,反复充洗,目的是为了清楚关内残留氧气;
b.10mml钛粉和10mmol研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;
c.调加热温度为630℃,时间为12小时;
d.自然冷却后研磨收样。
性能测试:
图1为依据本发明实施例1-3制备的具有氧空位的氧化钴催化剂的XRD图;图中CoO与Ti在630℃ 8h煅烧后,样品xrd衍射峰在31.4°,36.8°,59.3°,65.2°出现Co3O4的峰。说明该物质中有CoO和Co3O4两种组分。CoO与Ti在630℃ 10h煅烧后,样品xrd衍射峰在36.5°,42.4°,61.5°,77.5°出现的峰值与CoO准备卡片一一对应,说明该物质为纯净的CoO。CoO与Ti在630℃ 12h煅烧后,样品xrd衍射峰在43.8°,52.4°出现了钴单质的衍射峰,说明CoO中的晶格氧被完全烧出产生钴。从以上结果分析表明630℃ 8h,10h,12h中,630℃10小时为实验的最优条件,物象CoO更纯。
图2为依据本发明实施例1-3制备的具有氧空位的氧化钴催化剂固体紫外以及物质颜色变化图;CoO与Ti在630℃ 8h,10h,12h煅烧后,颜色出现明显变化,由黑色变为棕色。与CoO原样相比实验后的三组样品在可见光区紫外吸收明显提高。630℃ 12h煅烧的样品在300nm-450nm的吸收值更高,630℃ 12h煅烧的样品在450nm-800nm吸收值更高,说明其可见光活性更强。
图3为依据本发明实施例1-3制备的具有氧空位的氧化钴催化剂荧光图。CoO原样,CoO与Ti在630℃ 8h,12h,10h煅烧后的样品,其荧光强度逐渐降低,说明630℃ 10h电子复合率最低,光催化活性最好。
以上三个方面说明CoO与Ti在630℃8h,10h,12h煅烧的最优实验条件为630℃10h,其物象更纯,可见光吸收能力更强,电子复合率更低,表征效果表明其光催化活性明显强于CoO原样。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (1)

1.一种含氧金属化合物氧空位的合成方法,其特征在于:包括以下步骤:
a .石英管抽真空,用氩气洗,反复充洗;
b.钛粉和研磨后的CoO分别放在两个不同的石英舟里,将两个石英舟平行放入炉中;钛粉的加入量为10mml,CoO的加入量为10mmol;
c.调节加热温度,加热一段时间;加热温度为630℃,加热10小时;
d .自然冷却后研磨收样。
CN202010465686.7A 2020-05-28 2020-05-28 一种含氧金属化合物氧空位的合成方法 Active CN111634956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010465686.7A CN111634956B (zh) 2020-05-28 2020-05-28 一种含氧金属化合物氧空位的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010465686.7A CN111634956B (zh) 2020-05-28 2020-05-28 一种含氧金属化合物氧空位的合成方法

Publications (2)

Publication Number Publication Date
CN111634956A CN111634956A (zh) 2020-09-08
CN111634956B true CN111634956B (zh) 2022-07-05

Family

ID=72326047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010465686.7A Active CN111634956B (zh) 2020-05-28 2020-05-28 一种含氧金属化合物氧空位的合成方法

Country Status (1)

Country Link
CN (1) CN111634956B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542584A (zh) * 2016-10-19 2017-03-29 常州大学 一种富缺陷氧化钴光催化剂的制备方法
CN106552630A (zh) * 2016-10-26 2017-04-05 上海纳米技术及应用国家工程研究中心有限公司 一种球状CoOX基催化剂及制备方法和应用
CN107043135A (zh) * 2017-04-24 2017-08-15 天津大学 一种激光合成四氧化三钴纳米颗粒的方法
CN108380195A (zh) * 2018-03-26 2018-08-10 上海师范大学 一种基于表面氧缺陷构建的分子氧活化催化剂的制备方法及其应用
CN109663584A (zh) * 2018-12-19 2019-04-23 中南大学 氧空位型金属氧化物半导体光催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070438A1 (en) * 2015-10-23 2017-04-27 The Shepherd Color Company Red and red-shade violet inorganic oxide materials containing cobalt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542584A (zh) * 2016-10-19 2017-03-29 常州大学 一种富缺陷氧化钴光催化剂的制备方法
CN106552630A (zh) * 2016-10-26 2017-04-05 上海纳米技术及应用国家工程研究中心有限公司 一种球状CoOX基催化剂及制备方法和应用
CN107043135A (zh) * 2017-04-24 2017-08-15 天津大学 一种激光合成四氧化三钴纳米颗粒的方法
CN108380195A (zh) * 2018-03-26 2018-08-10 上海师范大学 一种基于表面氧缺陷构建的分子氧活化催化剂的制备方法及其应用
CN109663584A (zh) * 2018-12-19 2019-04-23 中南大学 氧空位型金属氧化物半导体光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3-δ ceramics;Trabelsi H et al.;《PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES》;20181221;第108卷;第317-325页 *

Also Published As

Publication number Publication date
CN111634956A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Aadil et al. Mesoporous and macroporous Ag-doped Co3O4 nanosheets and their superior photo-catalytic properties under solar light irradiation
CN107362789B (zh) 一种多孔碳改性的ZnO光催化材料及其制备方法
Chen et al. Ultrafine ZnO quantum dot-modified TiO 2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution
Liu et al. Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe 2 O 3 nanoparticles
Li et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3
Lv et al. Facile synthesis of CdS/Bi 4 V 2 O 11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water
Ni et al. A simple solution combustion route for the preparation of metal-doped TiO 2 nanoparticles and their photocatalytic degradation properties
Tian et al. gC 3 N 4/Bi 4 O 5 I 2 2D–2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity
Pan et al. Structure of flower-like hierarchical CdS QDs/Bi/Bi 2 WO 6 heterojunction with enhanced photocatalytic activity
CN114192171B (zh) Cu:ZnIn2S4-Ti3C2复合光催化剂的制备方法及应用
Jin et al. Construction of ultrafine TiO 2 nanoparticle and SnNb 2 O 6 nanosheet 0D/2D heterojunctions with abundant interfaces and significantly improved photocatalytic activity
Sathish et al. N, S-Co-doped TiO2 nanophotocatalyst: Synthesis, electronic structure and photocatalysis
Zhang et al. Robust, double-shelled ZnGa 2 O 4 hollow spheres for photocatalytic reduction of CO 2 to methane
CN109663584A (zh) 氧空位型金属氧化物半导体光催化剂的制备方法
YUAN et al. Improving photocatalytic performance for hydrogen generation over Co-doped ZnIn2S4 under visible light
CN108435226B (zh) 一种以碳化荷叶为基底制备N掺杂纳米花状TiO2光催化材料的方法
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
CN109158117B (zh) 一种全光谱响应双掺杂氟化镧/凹凸棒石上转换复合光催化材料及其制备方法与应用
CN108671956B (zh) 一种离子填充石墨相氮化碳纳米片的制备方法
CN114054066A (zh) 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用
Pei et al. Vanadium doping of strontium germanate and their visible photocatalytic properties
CN111634956B (zh) 一种含氧金属化合物氧空位的合成方法
Shi et al. Hollow sphere manganese–ceria solid solution enhances photocatalytic activity in tetracycline degradation
CN112138692A (zh) 一种镍离子改性的磷酸铋高效光催化剂及其制备方法和应用
Lin et al. Preparation of NiS-Modified Cd1-x Zn x S by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant