CN111607094B - 一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 - Google Patents
一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 Download PDFInfo
- Publication number
- CN111607094B CN111607094B CN202010497730.2A CN202010497730A CN111607094B CN 111607094 B CN111607094 B CN 111607094B CN 202010497730 A CN202010497730 A CN 202010497730A CN 111607094 B CN111607094 B CN 111607094B
- Authority
- CN
- China
- Prior art keywords
- dopamine
- polyethylene glycol
- nanoparticles
- polyaspartic acid
- contrast agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1857—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Radiology & Medical Imaging (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明公开了一种聚天冬氨酸‑多巴胺/聚乙二醇聚合物及其制备造影剂的用途,该聚合物为聚天冬氨酸‑多巴胺/聚乙二醇接枝共聚物,以及将该共聚物与Fe3+螯合制备纳米颗粒,和用该共聚物包裹四氧化三铁纳米晶体颗粒,用于核磁共振造影剂。
Description
技术领域
本发明涉及纳米化学及磁共振造影剂领域,特别涉及一种修饰磁性纳米粒子的配体聚合物及其修饰的磁性纳米颗粒,以及作为磁共振造影剂的用途。
背景技术
纳米磁性材料是2O世纪8O年代出现的一种新型材料。纳米磁性颗粒表面包覆小分子或高分子物质后形成磁性微球在载药和医疗诊断等生物医学方面的应用引起越来越多的关注。在已报道的磁性纳米粒子中,关于超顺磁性纳米氧化铁(SPIO)的制备及在磁共振成像(MRI)诊断中的应用研究尤其受到重视。MRI具有无创、安全性好、无电离辐射、多参数成像等优点,可以快速提供患者全身任何部位、任意方向(矢状面、冠状面、横断面)、任意断层的高分辨率解剖图像。MRI 应用于人体脑部、神经系统、腹部及心血管造影,对于检测组织坏死、局部缺血和多种恶性肿瘤的探查特别有效,可以满足病灶早期诊断的要求,被视为一种颇具潜力的诊断方法,在临床医学影像学诊断中得到迅速广泛的应用。按物质的磁化特性,MRI造影剂可分为顺磁性造影剂和超顺磁性造影剂。顺磁性造影剂一般是顺磁性金属离子(Fe3+、Mn2+或Gd3+等)或其螯合物,超顺磁性造影剂一般是磁性纳米晶体颗粒。顺磁性造影剂,如钆(Gd)胺羧类MRI对比剂,主要缩短邻近氢质子的纵向弛豫时间T1,在磁共振T1加权像上呈现信号增加,为阳性造影剂。超顺磁性造影剂是一种特殊的铁磁性物质,主要成分为具有独特晶体结构的 Fe3O4,包括超小型超顺磁性氧化铁、单晶氧化铁微聚体、脂质体包裹的超顺磁性氧化铁和白蛋白、葡聚糖、聚苯乙烯、单克隆抗体等包裹的超小型超顺磁性氧化铁等。氧化铁纳米粒可同时缩短邻近氢质子的纵向弛豫时间T1和横向弛豫时间T2,通过优化磁共振系列参数,可在T1加权像上获得高信号,在T2加权像上获得低信号,因而具有更优异的MRI造影性能。
SPIO相互之间由于磁性吸引和范德华力作用会产生聚沉现象,为了有效地稳定SPIO,可通过表面共聚和表面改性,降低纳米粒子的表面能,得到分散性良好的纳米粒子。生物相容性有机高分子材料被广泛用作纳米粒子的稳定剂,这些生物相容性高分子可分为天然生物大分子和合成高分子两大类。常用的天然生物大分子包括氨基酸类聚合物(如明胶、多肽、蛋白质和多糖类聚合物)。典型的合成聚合物有:聚甲基丙烯酸、聚乙二醇、聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯酸、聚乳酸、热敏性聚合物聚N一异丙基丙烯酰以及它们的共聚物。通过原位法 (在合成磁性纳米粒子过程中用聚合物包覆)和合成后包覆法(磁性纳米粒子形成后将聚合物嫁接到其表面)可将有机高分子包被到磁性纳米粒子的表面。
CN102579336A公开一种MRI可见的超稳定阿霉素纳米胶束药物传递系统,所述系统在透射电镜下为球形纳米复合粒子,其包括载体、以及用所述载体物理包裹的阿霉素;所述载体的结构如下式(IV)所示,其以纳米四氧化三铁为核、以阿霉素为抗癌药物、以聚乙二醇单甲醚胱胺衍生物作为亲水基团、以多巴胺为连接所述纳米四氧化三铁的配体、以聚天冬氨酸为所述聚乙二醇单甲醚胱胺衍生物和所述多巴胺之间的连接臂。
由于CN102579336的纳米胶束药物传递系统是多包裹类型(一个纳米颗粒中包含多个氧化铁纳米晶体),所以在T2弛豫率上非常高,能达到99.7mM-1s-1,可用于磁共振T2造影剂,但不能同时用作磁共振T1造影剂。
目前临床应用的T1造影剂主要是钆剂,近年来发现有钆剂会产生肾源性系统性纤维化疾病和脑部残留风险。
发明内容
本发明的目的在于提供一种聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物以及该聚合物制备磁共振造影剂的用途。
在一实施方案中本发明的一种如式I所示的聚天冬氨酸-多巴胺/聚乙二醇接枝聚合物(以下也可称为“聚天冬氨酸-多巴胺/聚乙二醇共聚物”),
其中,R=-CH3、H;x是0~500,y、z和m相互独立地是1~500。
优选的,上述式I所示的聚天冬氨酸-多巴胺/聚乙二醇聚合物,其平均分子量约为15000Da。
在另一实施方案中,本发明的一种式II所示的螯合Fe3+纳米粒子,
其中,x是0~500,y、z和m相互独立地是1~500。
在又一实施方案中,本发明的一种由式I所示的聚合物包覆的超顺磁纳米粒子,为式III所示的包覆四氧化三铁纳米颗粒,
其中,x是0~500,y、z和m相互独立地是1~500。
一方面,本发明提供了一种制备式I所示的聚合物的方法,包括:
将聚琥珀酰亚胺与端氨基聚乙二醇置于反应瓶中,加入二甲基亚砜搅拌溶解,再将多巴胺盐酸盐用二甲基亚砜和三乙胺溶解,在氩气保护下一并加入到反应瓶中在80℃下反应,再加入氢氧化钠溶液,继续反应,反应结束后,用盐酸溶液调节pH至6,将反应溶液置于透析袋中,水溶液中透析24小时。收集透析袋中溶液,冻干得产物。
另一方面,本发明提供一种制备式II所示的螯合Fe3+纳米粒子,包括将式 I的聚天冬氨酸-多巴胺/聚乙二醇共聚物用超纯水溶解,搅拌下滴入FeCl3溶液,室温反应30min后,用NaOH将溶液pH调至7,用蒸馏水透析三天即得螯合Fe3+纳米粒子的水溶液。
再一方面,本发明提供了一种制备式III所示的包覆四氧化三铁纳米颗粒的方法,包括:将式I的聚天冬氨酸-多巴胺/聚乙二醇共聚物溶于超纯水中,搅拌下滴入柠檬酸包裹的超顺磁性氧化铁纳米颗粒水溶液,室温反应4h后,用NaOH 将溶液pH调至7,用蒸馏水透析三天即得包覆四氧化三铁纳米颗粒水溶液。所述柠檬酸包裹的超顺磁性氧化铁纳米晶体颗粒为SPIO@CA(为柠檬酸包裹的超顺磁性氧化铁纳米颗粒的英文缩写)。
本发明的式I所示的聚天冬氨酸-多巴胺/聚乙二醇共聚物用于螯合Fe3+,形成如式II所示的螯合Fe3+纳米粒子,该纳米粒子用作磁共振造影剂。
本发明的式I所示的聚天冬氨酸-多巴胺/聚乙二醇共聚物用于包裹四氧化三铁纳米晶体颗粒,制备式III所示的纳米颗粒:该纳米颗粒用作磁共振造影剂。
本发明的聚合物螯合Fe3+类型,具有较好的T1弛豫效率(2.76mM-1s-1,对 T1造影剂来说表现不错),可用于磁共振T1造影剂。在聚合物包裹氧化铁纳米颗粒时,为单包裹类型(一个纳米颗粒中包一个氧化铁纳米晶体),其弛豫效率与氧化铁纳米晶体粒径有关,目前用的氧化铁纳米颗粒其T1、T2弛豫率分别为r1= 6.78mM-1s-1,r2=11.43mM-1s-1,r2/r1=1.69(0.5T),在临床1.5T和3.0T磁共振下同时具有很好的T1和T2增强效果,这种情况可用于磁共振T1-T2双功能造影剂。所以本发明的氧化铁纳米颗粒可以作为T1-T2双功能造影剂,与CN102579336 的多包裹类型的氧化铁纳米颗粒(仅能用作T2造影剂)相比在成像方面有更广的用途,且成像效果更好。
附图说明
图1实施例1的聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物的1H NMR谱图;
图2实施例3的聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物螯合Fe3+纳米颗粒的动态光散射粒径分布;
图3实施例3的聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物螯合Fe3+纳米颗粒的 T1和T2弛豫效率;
图4实施例3的聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物包覆四氧化三铁纳米颗粒的动态光散射粒径分布;
图5实施例3的聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物包覆四氧化三铁纳米颗粒的的T1和T2弛豫效率;
图6为纳米颗粒不同浓度水溶液在1.5T下的T1和T2加权成像效果;
图7为纳米颗粒不同浓度水溶液在3.0T下的T1和T2加权成像效果。
具体实施方式
以下实施例仅是代表性的,用于进一步理解本发明的精神实质,但不以此限制本发明的范围。
实施例1聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物
制备方法:
精确称取0.5g聚琥珀酰亚胺(PSI,重均分子量7000g/mol)和0.5g端氨基甲氧基聚乙二醇(CH3-PEG-NH2,分子量550g/mol)于反应瓶中,加入2.5ml 的二甲基亚砜(DMSO)搅拌溶解。再精确称取0.25g多巴胺盐酸盐(Dopamine hydrochloride),用1ml二甲基亚砜(DMSO)和0.2ml三乙胺溶解,在氩气保护下一并加入到反应瓶中。将反应瓶置于80℃油浴中反应24小时,调整油浴温度为60℃。精确称取0.2g氢氧化钠,用3ml水溶解加入反应瓶中,继续反应24 小时。反应结束后,用1M的盐酸溶液调节pH至6。将反应溶液置于截留分子量为3500Da的透析袋中,水溶液中透析24小时。收集透析袋中溶液,冻干得目标产物。反应产物用氢核磁表征,如图1所示。目标产物聚天冬氨酸-多巴胺/聚乙二醇聚合物,其平均分子量约为15000Da。
实施例2聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物螯合Fe3+纳米颗粒
制备工艺:
精确称取9.6mg聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物于反应瓶中,加入9ml的超纯水溶解。磁力搅拌下滴入77μl FeCl3溶液(Fe浓度53.7mmol/L)。室温反应30min后,用1M的NaOH将溶液pH调至7。用蒸馏水透析三天得纳米颗粒水溶液。用原子吸收测定溶液中铁浓度,动态光散射测定纳米颗粒粒径、粒径分布及Zeta电位。按铁浓度将纳米颗粒溶液配制成含铁量为0.048、0.096、 0.190、0.285、0.381mM等不同浓度的溶液,用0.5T纽迈磁共振弛豫效率仪上分别测定各样品得T1和T2弛豫时间,计算T1和T2弛豫效率(r1和r2)。图2为纳米颗粒的动态光散射粒径分布,平均粒径为67.3±15.3nm,Zeta电位为-5.17 ±0.82mV。如图3所示,纳米颗粒在0.5T下的弛豫效率为:r1=2.76mM-1s-1, r2=3.11mM-1s-1,r2/r1=1.13。
获得的纳米颗粒具有较高的T1弛豫效率。用于磁共振T1造影剂,较目前临床使用的T1造影剂(钆剂)相比的优势在于:①无产生肾源性系统性纤维化疾病和体内钆残留风险;②使用的材料为Fe3+、天冬氨酸、多巴胺和聚乙二醇等,均为生物相容性材料,生物安全性高;③为纳米造影剂,具有更长的血液半衰期和成像时间窗口。
实施例3聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物包裹四氧化三铁纳米晶体颗粒制备纳米颗粒
制备工艺:
精确称取10.4mg聚天冬氨酸-多巴胺/聚乙二醇接枝共聚物于反应瓶中,加入9ml的超纯水溶解。磁力搅拌下滴入1ml柠檬酸包裹的超顺磁性氧化铁纳米颗粒水溶液(4nmSPIO@CA,Fe浓度为2.4mg/mL)。室温反应4h后,用 1M的NaOH将溶液pH调至7。用蒸馏水透析三天得纳米颗粒水溶液。用原子吸收测定溶液中铁浓度,动态光散射测定纳米颗粒粒径、粒径分布及Zeta电位。按铁浓度将纳米颗粒溶液配制成含铁量为0.051、0.103、0.204、0.302、0.402、 0.505mM等不同浓度的溶液,用0.5T纽迈磁共振弛豫效率仪上分别测定各样品得T1和T2弛豫时间,计算T1和T2弛豫效率(r1和r2)。图4为纳米颗粒的动态光散射粒径分布,平均粒径为5.3±1.1nm,Zeta电位为-4.64±0.62mV。如图5 所示,纳米颗粒在0.5T下的弛豫效率为:r1=6.78mM-1s-1,r2=11.43mM-1s-1, r2/r1=1.69。图6为纳米颗粒不同浓度水溶液(铁浓度从0.05~0.5mM)在1.5T 下的T1和T2加权成像效果,图7为纳米颗粒不同浓度水溶液(铁浓度从0.05~ 0.5mM)在3.0T下的T1和T2加权成像效果。显示纳米颗粒在临床普遍使用的1.5T和3.0T磁共振下同时具有很好的T1和T2增强效果(T1加权成像中提高MRI 信号,T2加权成像中降低MRI信号)。本发明的纳米颗粒可用于磁共振T1-T2双功能造影剂,较目前临床使用的T1造影剂(钆剂)相比:①无产生肾源性系统性纤维化疾病和体内钆残留风险;②使用的材料为氧化铁纳米晶体、天冬氨酸、多巴胺和聚乙二醇等,均为生物相容性材料,生物安全性高;③高的T1弛豫效率,且为纳米造影剂,具有更长的血液半衰期和成像时间窗口;④T1-T2双功能纳米造影剂,磁共振成像中可提供更全的多模式交叉印证信息。
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010497730.2A CN111607094B (zh) | 2020-06-04 | 2020-06-04 | 一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010497730.2A CN111607094B (zh) | 2020-06-04 | 2020-06-04 | 一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111607094A CN111607094A (zh) | 2020-09-01 |
CN111607094B true CN111607094B (zh) | 2022-03-15 |
Family
ID=72205347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010497730.2A Active CN111607094B (zh) | 2020-06-04 | 2020-06-04 | 一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111607094B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114306650B (zh) * | 2022-01-21 | 2022-12-06 | 南方医科大学 | 一种磁性四氧化三铁纳米粒及其制备方法和应用 |
CN114848840B (zh) * | 2022-03-24 | 2023-08-29 | 北京福纳康生物技术有限公司 | 修饰的铁基纳米材料、铁基纳米脂质体及其抗肿瘤的应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102327625A (zh) * | 2011-08-19 | 2012-01-25 | 中国科学院宁波材料技术与工程研究所 | 一种水溶性纳米复合材料及其制备方法和应用 |
CN102579336A (zh) * | 2012-03-07 | 2012-07-18 | 华东师范大学 | Mri可见的超稳定阿霉素纳米胶束药物传递系统及其制备方法和用途 |
CN104258425A (zh) * | 2014-09-17 | 2015-01-07 | 东南大学 | 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用 |
CN106187800A (zh) * | 2016-07-05 | 2016-12-07 | 川北医学院 | 一种含有邻二酚羟基的类edta配体和非钆磁共振造影剂及其制备方法 |
CN110623937A (zh) * | 2018-06-21 | 2019-12-31 | 四川大学 | 茶多酚基多功能纳米复合物及其制备方法与应用 |
-
2020
- 2020-06-04 CN CN202010497730.2A patent/CN111607094B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102327625A (zh) * | 2011-08-19 | 2012-01-25 | 中国科学院宁波材料技术与工程研究所 | 一种水溶性纳米复合材料及其制备方法和应用 |
CN102579336A (zh) * | 2012-03-07 | 2012-07-18 | 华东师范大学 | Mri可见的超稳定阿霉素纳米胶束药物传递系统及其制备方法和用途 |
CN104258425A (zh) * | 2014-09-17 | 2015-01-07 | 东南大学 | 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用 |
CN106187800A (zh) * | 2016-07-05 | 2016-12-07 | 川北医学院 | 一种含有邻二酚羟基的类edta配体和非钆磁共振造影剂及其制备方法 |
CN110623937A (zh) * | 2018-06-21 | 2019-12-31 | 四川大学 | 茶多酚基多功能纳米复合物及其制备方法与应用 |
Non-Patent Citations (3)
Title |
---|
Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro;Haitao Pan,等;《JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A》;20140215;第102卷(第12期);第4526-4535页 * |
MRI可见超稳定阿霉素胶束药物的制备及其细胞毒性研究;李向阳;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20130115(第1期);第B016-396页 * |
Poly(ethylene glycol) shell-sheddable magnetic nanomicelle as the carrier of doxorubicin with enhanced cellular uptake;Jiahui Yua,等;《Colloids and Surfaces B: Biointerfaces》;20130226;第107卷;第213-219页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111607094A (zh) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Iron oxide nanoparticle based contrast agents for magnetic resonance imaging | |
Bae et al. | Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging | |
Patel et al. | The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents | |
Roca et al. | Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles | |
Salehipour et al. | Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents | |
Lee et al. | Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent | |
Yan et al. | Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging | |
Huang et al. | Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging | |
Amiri et al. | Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent | |
Hu et al. | High-performance nanostructured MR contrast probes | |
US20100119458A1 (en) | Compositions Containing Metal Oxide Particles and Their Use | |
KR101805873B1 (ko) | 단당류 인산 또는 그 유도체로 표면이 개질된 친수성 나노입자, 그의 콜로이드 용액 및 그 용도 | |
Liu et al. | Stable gadolinium based nanoscale lyophilized injection for enhanced MR angiography with efficient renal clearance | |
Pour et al. | Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system | |
EP2922577B1 (en) | Superparamagnetic iron oxide nanoparticles with ultra-thin polymer layers | |
CN111607094B (zh) | 一种聚天冬氨酸-多巴胺/聚乙二醇聚合物及其制备造影剂的用途 | |
Yoo et al. | Superparamagnetic iron oxide nanoparticles coated with galactose‐carrying polymer for hepatocyte targeting | |
Hemalatha et al. | Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging | |
Antwi‐Baah et al. | Metal‐based nanoparticle magnetic resonance imaging contrast agents: classifications, issues, and countermeasures toward their clinical translation | |
CN110013559B (zh) | 一种ha靶向的双金属氢氧化物-超小铁纳米材料及其制备和应用 | |
Xiao et al. | Facile synthesis of acetylated dendrimer-entrapped gold nanoparticles with enhanced gold loading for CT imaging applications | |
Xie et al. | Ultracompact iron oxide nanoparticles with a monolayer coating of succinylated heparin: a new class of renal-clearable and nontoxic T1 agents for high-field MRI | |
CN104436220A (zh) | 一种壳聚糖磁性纳米微球的制备方法及其用途 | |
Wang et al. | Transferrin-conjugated superparamagnetic iron oxide nanoparticles as in vivo magnetic resonance imaging contrast agents | |
Yang et al. | Synthesis of water well-dispersed PEGylated iron oxide nanoparticles for MR/optical lymph node imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |