CN111600606A - A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC - Google Patents
A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC Download PDFInfo
- Publication number
- CN111600606A CN111600606A CN202010564041.9A CN202010564041A CN111600606A CN 111600606 A CN111600606 A CN 111600606A CN 202010564041 A CN202010564041 A CN 202010564041A CN 111600606 A CN111600606 A CN 111600606A
- Authority
- CN
- China
- Prior art keywords
- clock
- output
- phase
- signal
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 title claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000000630 rising effect Effects 0.000 claims description 9
- 230000001934 delay Effects 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 5
- 101150032064 VTS1 gene Proteins 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
- H03M1/121—Interleaved, i.e. using multiple converters or converter parts for one channel
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0624—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by synchronisation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
- H03M1/1255—Synchronisation of the sampling frequency or phase to the input frequency or phase
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Manipulation Of Pulses (AREA)
Abstract
本发明涉及一种用于时间交织采样ADC的多相位时钟产生电路,属于时钟产生技术领域,在保证高速的前提下,实现低时钟抖动,低时间偏差和低功耗。电路包括环形压控振荡器、相位跟踪环电路和校准脉冲产生电路;环形压控振荡器与相位跟踪环电路构成PLL环路;环形压控振荡器在相位跟踪环电路输出的第一控制电压的控制下输出多个相位的时钟信号;校准脉冲产生电路与环形压控振荡器连接,用于输出时钟校准信号到环形压控振荡器中,调整环形压控振荡器内部时钟,消除时钟抖动对输出时钟信号的影响。本发明产生低抖动、低时钟偏差、高精度的多相位时钟,且功耗低,硬件开销少。
The invention relates to a multi-phase clock generation circuit for a time-interleaving sampling ADC, belonging to the technical field of clock generation and realizing low clock jitter, low time deviation and low power consumption on the premise of ensuring high speed. The circuit includes a ring voltage controlled oscillator, a phase tracking loop circuit and a calibration pulse generating circuit; the ring voltage controlled oscillator and the phase tracking loop circuit form a PLL loop; The clock signal of multiple phases is output under control; the calibration pulse generation circuit is connected with the ring voltage controlled oscillator, and is used to output the clock calibration signal to the ring voltage controlled oscillator, adjust the internal clock of the ring voltage controlled oscillator, and eliminate the clock jitter on the output. effect of the clock signal. The present invention generates a multi-phase clock with low jitter, low clock deviation and high precision, and has low power consumption and low hardware overhead.
Description
技术领域technical field
本发明涉及时钟产生技术领域,尤其是一种用于时间交织采样ADC的多相位时钟产生电路。The invention relates to the technical field of clock generation, in particular to a multi-phase clock generation circuit for time-interleaving sampling ADC.
背景技术Background technique
模数转换器(Analog-to-Digital Converter,ADC)将连续时间和幅值的信号转换为数字处理系统中离散时间和量化幅值的信号。ADC已广泛应用于语音图像处理器、声呐雷达处理系统、传感网络、有限无限通讯系统、生物医疗系统、测试测量仪器等电子系统之中。随着科技的发展,电子产品的小型化、移动化、穿戴化成为了主流,低功耗成为了电子产品的重要指标,此外,无线通信系统的不断发展、物联网的飞速发展带来的信息爆炸式增长,对系统的处理速度以及通信能力带来了巨大的挑战。综上,高速高精度低功耗ADC通常是整个系统性能的瓶颈。Analog-to-Digital Converter (ADC) converts continuous time and amplitude signals to discrete time and quantized amplitude signals in digital processing systems. ADCs have been widely used in electronic systems such as voice and image processors, sonar radar processing systems, sensor networks, finite and infinite communication systems, biomedical systems, and test and measurement instruments. With the development of science and technology, the miniaturization, mobility, and wearability of electronic products have become the mainstream, and low power consumption has become an important indicator of electronic products. In addition, the continuous development of wireless communication systems and the rapid development of the Internet of Things have brought information explosion. The rapid growth has brought huge challenges to the processing speed and communication capability of the system. To sum up, the high-speed, high-precision, low-power ADC is usually the bottleneck of the overall system performance.
近些年来多路时间交织ADC作为高速高精度低功耗的研究重点,通过多路低速ADC在时间域的交织合成一路高速ADC,突破了在相同工艺下,单路ADC速度的限制。而多路时间交织ADC的精度、功耗也是衡量整个ADC的重要指标。在精度方面主要受限于单路ADC的性能、还有时间交织产生的失调误差、增益误差、时间偏差等;在功耗方面主要受限于单路ADC,参考电压的驱动电路,高速高精度多相位时钟产生电路等。目前单路ADC可以实现在低功耗下保证良好的性能,时间交织产生的失调误差、增益误差、时间偏差可以通过前台或者后台校准技术来解决,参考电压的驱动电路的功耗可以通过校准DAC的不完全建立误差来降低,而高速高精度低功耗的多相位时钟产生电路目前没有较好的解决方案。目前已知的解决思路如下:In recent years, multi-channel time-interleaving ADC has been the research focus of high-speed, high-precision and low-power consumption. Through the interleaving of multiple low-speed ADCs in the time domain, one high-speed ADC is synthesized, which breaks through the speed limitation of single-channel ADC under the same process. The accuracy and power consumption of the multi-channel time-interleaved ADC are also important indicators to measure the entire ADC. In terms of accuracy, it is mainly limited by the performance of the single-channel ADC, as well as the offset error, gain error, and time deviation caused by time interleaving. In terms of power consumption, it is mainly limited by the single-channel ADC, reference voltage drive circuit, high speed and high precision Multiphase clock generation circuit, etc. At present, a single-channel ADC can achieve good performance under low power consumption. The offset error, gain error, and time deviation caused by time interleaving can be solved by foreground or background calibration technology. The power consumption of the reference voltage driving circuit can be calibrated by DAC. There is no better solution for the multi-phase clock generation circuit of high speed, high precision and low power consumption at present. The currently known solutions are as follows:
一是如图1所示,通过外部输入高频时钟通过CML电路分频产生多相位时钟,然后通过CML转CMOS电路将时钟电平转换成CMOS电平,再经过后续的时间偏差调整电路校准后,最终得到多相位采样时钟。这种方案的显著缺点是通过外部输入的高速时钟性能比较差,并且在采样时钟频率较高时,CML电路需要很大的电流才能实现高速分频,使得时钟电路功耗成指数上升。First, as shown in Figure 1, the multi-phase clock is generated by dividing the frequency of the CML circuit through the external input high-frequency clock, and then the clock level is converted into the CMOS level through the CML-to-CMOS circuit, and then calibrated by the subsequent time offset adjustment circuit. , and finally a multiphase sampling clock is obtained. The obvious disadvantage of this scheme is that the performance of the high-speed clock input from the outside is relatively poor, and when the sampling clock frequency is high, the CML circuit needs a large current to achieve high-speed frequency division, which makes the power consumption of the clock circuit increase exponentially.
二是如图2所示,通过PLL产生一路基础时钟,然后通过多个延迟电路,延迟出多相位时钟,再经过CML转CMOS电路将时钟电平转换成CMOS电平,最后经过后续的时间偏差调整电路校准后得到多相位采样时钟。这种方案的显著缺点是高速时钟通过每一个延迟电路都会恶化时钟的抖动(jitter),从而限制ADC的精度。Second, as shown in Figure 2, a basic clock is generated by PLL, and then a multi-phase clock is delayed by multiple delay circuits, and then the clock level is converted into CMOS level by a CML-to-CMOS circuit, and finally after the subsequent time deviation The multi-phase sampling clock is obtained after adjusting the circuit calibration. The significant disadvantage of this scheme is that the high-speed clock will deteriorate the jitter of the clock through each delay circuit, thus limiting the accuracy of the ADC.
发明内容SUMMARY OF THE INVENTION
鉴于上述的分析,本发明旨在提供一种用于时间交织采样ADC的多相位时钟产生电路,在保证高速的前提下,实现低时钟抖动,低时间偏差和低功耗。In view of the above analysis, the present invention aims to provide a multi-phase clock generation circuit for time-interleaved sampling ADC, which can achieve low clock jitter, low time deviation and low power consumption on the premise of ensuring high speed.
本发明公开了一种用于时间交织采样ADC的多相位时钟产生电路,包括环形压控振荡器、相位跟踪环电路和校准脉冲产生电路;The invention discloses a multi-phase clock generation circuit for time interleaving sampling ADC, comprising a ring voltage controlled oscillator, a phase tracking loop circuit and a calibration pulse generation circuit;
环形压控振荡器与相位跟踪环电路构成PLL环路;所述环形压控振荡器在所述相位跟踪环电路输出的第一控制电压的控制下输出多个相位的时钟信号;将其中一个相位的时钟信号反馈到所述相位跟踪环电路中与输入的参考时钟信号进行鉴相,对第一控制电压的幅度进行调整,使环形压控振荡器输出的多个相位的时钟信号频率与参考时钟频率相等;The ring voltage-controlled oscillator and the phase tracking loop circuit form a PLL loop; the ring voltage-controlled oscillator outputs clock signals of multiple phases under the control of the first control voltage output by the phase tracking loop circuit; The clock signal is fed back to the phase tracking loop circuit for phase identification with the input reference clock signal, and the amplitude of the first control voltage is adjusted so that the frequency of the clock signals of multiple phases output by the ring voltage controlled oscillator is the same as that of the reference clock. the frequency is equal;
校准脉冲产生电路与环形压控振荡器连接,用于输出时钟校准信号到环形压控振荡器中,调整环形压控振荡器内部时钟,消除时钟抖动对输出时钟信号的影响。The calibration pulse generating circuit is connected with the ring voltage-controlled oscillator, and is used for outputting a clock calibration signal to the ring voltage-controlled oscillator, adjusting the internal clock of the ring voltage-controlled oscillator, and eliminating the influence of clock jitter on the output clock signal.
进一步地,所述环形压控振荡器还根据输入的第二控制电压,调整多个相位的时钟信号之间的相位差。Further, the ring voltage controlled oscillator also adjusts the phase difference between the clock signals of multiple phases according to the input second control voltage.
进一步地,所述环形压控振荡器包括连接成环形的结构相同的第一、第二、第三和第四延迟单元,其中,第四延迟单元的输出端OP、ON分别与第一延迟单元的输入端IP、IN连接;其余顺序连接的延迟单元中前一个延迟单元的输出端OP、ON分别与下一个延迟单元的输入端IN、IP连接;Further, the ring voltage-controlled oscillator includes first, second, third and fourth delay units with the same structure connected in a ring, wherein the output terminals OP and ON of the fourth delay unit are respectively connected with the first delay unit. The input terminals IP and IN are connected; the output terminals OP and ON of the previous delay unit in the remaining sequentially connected delay units are respectively connected with the input terminals IN and IP of the next delay unit;
每个所述延迟单元的输入端IP、IN的信号的相位差为180°,输出端ON、OP的信号的相位差为180°;输出端OP的信号与输入端IN的信号的相位差为45°,输出端ON的信号与输入端IP的信号的相位差为45°。The phase difference between the signals at the input terminals IP and IN of each of the delay units is 180°, and the phase difference between the signals at the output terminals ON and OP is 180°; the phase difference between the signal at the output terminal OP and the signal at the input terminal IN is 45°, the phase difference between the signal at the output end ON and the signal at the input end IP is 45°.
进一步地,所述延迟单元包括第一反相器、第二反相器、第三反相器、第四反相器,第一常通传输门、第二常通传输门、第一可变电容器组和第二可变电容器组;Further, the delay unit includes a first inverter, a second inverter, a third inverter, a fourth inverter, a first normally-on transmission gate, a second normally-on transmission gate, a first variable a capacitor bank and a second variable capacitor bank;
第一反相器的输出端连接第二反相器的输入端;第三反相器的输出端连接第四反相器的输入端;第一反相器的输入端与第三反相器的输出端之间跨接第一常通传输门;第三反相器的输入端与第一反相器的输出端之间跨接第二常通传输门;第一反相器的输出端与第三反相器的输出端之间跨接并联的第一可变电容器组和第二可变电容器组;The output end of the first inverter is connected to the input end of the second inverter; the output end of the third inverter is connected to the input end of the fourth inverter; the input end of the first inverter is connected to the third inverter The first normally-on transmission gate is connected between the output terminals of the inverter; the second normally-on transmission gate is connected across the input terminal of the third inverter and the output terminal of the first inverter; the output terminal of the first inverter connecting the first variable capacitor bank and the second variable capacitor bank in parallel with the output end of the third inverter;
第一反相器的输入端为延迟单元的输入端IN,第三反相器的输入端为延迟单元的输入端IP;第二反相器的输出端为延迟单元的输出端OP,第四反相器的输出端为延迟单元的输出端ON;The input end of the first inverter is the input end IN of the delay unit, the input end of the third inverter is the input end IP of the delay unit; the output end of the second inverter is the output end OP of the delay unit, and the fourth The output terminal of the inverter is the output terminal of the delay unit ON;
第一可变电容器组为压控电容组,其控制端VC接入控制电压,通过控制第一可变电容器组的电容量来控制延迟单元输出时钟信号的频率;The first variable capacitor group is a voltage-controlled capacitor group, the control terminal VC of which is connected to a control voltage, and the frequency of the output clock signal of the delay unit is controlled by controlling the capacitance of the first variable capacitor group;
第二可变电容器组为压控电容组,其控制端VT接入控制电压,通过控制第二可变电容器组的电容量来控制延迟单元输出时钟信号的相位。The second variable capacitor group is a voltage-controlled capacitor group, the control terminal VT of which is connected to a control voltage, and the phase of the output clock signal from the delay unit is controlled by controlling the capacitance of the second variable capacitor group.
进一步地,每个所述延迟单元的控制端VC均与所述相位跟踪环电路输出的第一控制电压连接,使每个延迟单元的输出时钟信号频率都与参考时钟信号频率相同;Further, the control terminal VC of each delay unit is connected to the first control voltage output by the phase tracking loop circuit, so that the frequency of the output clock signal of each delay unit is the same as the frequency of the reference clock signal;
第一、第二、第三和第四延迟单元的控制端VT分别连接第二控制电压VTS1、VTS2、VTS3和VTS4,分别对各延迟单元输出的时钟信号的相位进行调节。The control terminals VT of the first, second, third and fourth delay units are respectively connected to the second control voltages VTS1 , VTS2 , VTS3 and VTS4 to adjust the phase of the clock signal output by each delay unit respectively.
进一步地,所述环形压控振荡器还包括一个NMOS管,所述NMOS管的源极和漏极跨接在任意一个延迟单元的输入端IN、IP之间,栅极连接校准脉冲产生电路的输出端。Further, the ring voltage controlled oscillator also includes an NMOS tube, the source and drain of the NMOS tube are connected between the input terminals IN and IP of any delay unit, and the gate is connected to the calibration pulse generating circuit. output.
进一步地,所述环形压控振荡器还包括四个NMOS管,分别与四个延迟单元对应,每一个NMOS管的源极和漏极跨接在与其对应的延迟单元的输入端IN、IP之间;在四个NMOS管中的任取一个NMOS管的栅极连接校准脉冲产生电路的输出端,其余三个NMOS管的栅极都接地。Further, the ring voltage controlled oscillator also includes four NMOS tubes, corresponding to the four delay units respectively, and the source and drain of each NMOS tube are connected across the input terminals IN and IP of the corresponding delay unit. The gate of any one of the four NMOS tubes is connected to the output end of the calibration pulse generating circuit, and the gates of the remaining three NMOS tubes are all grounded.
进一步地,所述校准脉冲产生电路接入参考时钟信号,在除抖使能信号的使能下,输出一个与参考时钟信号上升沿对齐的时钟校准信号,到所述NMOS管栅极;Further, the calibration pulse generation circuit is connected to the reference clock signal, and under the enable of the debounce enable signal, a clock calibration signal aligned with the rising edge of the reference clock signal is output to the gate of the NMOS transistor;
当环形压控振荡器发生时钟抖动时,NMOS管跨接的延迟单元输出端OP、ON的输出电位不相等,时钟校准脉冲信号使NMOS管导通,则有电流流过NMOS管,使输出端OP、ON之间的电压差减少到零,环形压控振荡器输出时钟信号过零点被重新定时在了注入的时钟校准脉冲信号的到来时刻。When the ring voltage controlled oscillator has clock jitter, the output potentials of the output terminals OP and ON of the delay unit connected by the NMOS tube are not equal, and the clock calibration pulse signal turns on the NMOS tube, and a current flows through the NMOS tube, making the output terminal The voltage difference between OP and ON is reduced to zero, and the zero-crossing point of the output clock signal of the ring voltage controlled oscillator is retimed at the arrival moment of the injected clock calibration pulse signal.
进一步地,所述校准脉冲产生电路包括三输入端与门和延迟反相模块;Further, the calibration pulse generating circuit includes a three-input AND gate and a delay inversion module;
所述延迟反相模块的输入端接入参考时钟信号,输出端输出延迟设定时间并且反相的参考时钟信号;The input end of the delay inversion module is connected to the reference clock signal, and the output end outputs the reference clock signal delayed by the set time and inverted;
所述三输入端与门的第一输入端接入除抖使能信号;第二输入端接入参考时钟信号,第三输入端接入延迟设定时间并且反相的参考时钟信号;The first input end of the three-input AND gate is connected to the debounce enable signal; the second input end is connected to the reference clock signal, and the third input end is connected to the reference clock signal delayed by the set time and inverted;
当除抖使能信号为高电平时,所述校准脉冲产生电路输出上升沿与参考时钟信号上升沿对齐的,脉冲宽度为设定延迟时间的时钟校准信号。When the debounce enable signal is at a high level, the calibration pulse generating circuit outputs a clock calibration signal whose rising edge is aligned with the rising edge of the reference clock signal and whose pulse width is the set delay time.
进一步地,延迟反相模块包括顺序连接的三个反相器;输入信号为参考时钟信号,输出为延迟时间为三个反相器延迟时间之和的,与参考时钟信号反相的时钟信号。Further, the delay inversion module includes three inverters connected in sequence; the input signal is a reference clock signal, and the output is a clock signal whose delay time is the sum of the delay times of the three inverters and is inverted from the reference clock signal.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明采用的外部输入时钟信号频率与多相位采样时钟频率相同,不需要使用CML分频电路,从而大幅度电路功耗。同时可以在PLL(锁相环)中直接产生低抖动、低时钟偏差的多相位时钟,不需要额外的延迟电路,降低了硬件开销,并且实现低时钟抖动,保证ADC的精度。The frequency of the external input clock signal adopted by the present invention is the same as that of the multi-phase sampling clock, and the CML frequency dividing circuit is not required, thereby greatly reducing the power consumption of the circuit. At the same time, a multi-phase clock with low jitter and low clock skew can be directly generated in the PLL (phase-locked loop), no additional delay circuit is required, hardware overhead is reduced, and low clock jitter is achieved to ensure the accuracy of the ADC.
附图说明Description of drawings
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。The drawings are for the purpose of illustrating specific embodiments only and are not to be considered limiting of the invention, and like reference numerals refer to like parts throughout the drawings.
图1为基于PLL的时钟产生电路组成连接示意图;Figure 1 is a schematic diagram of the composition and connection of a PLL-based clock generation circuit;
图2为传统时钟产生电路组成连接示意图;Fig. 2 is a schematic diagram of the composition and connection of a traditional clock generation circuit;
图3为发明实施例中的多相位时钟产生电路组成连接示意图;3 is a schematic diagram of the composition and connection of a multi-phase clock generation circuit in an embodiment of the invention;
图4为发明实施例中的环形压控振荡器组成连接示意图;4 is a schematic diagram of the composition and connection of a ring voltage-controlled oscillator in an embodiment of the invention;
图5为发明实施例中的延迟单元组成连接示意图;5 is a schematic diagram of the composition and connection of the delay unit in the embodiment of the invention;
图6为发明实施例中的校准脉冲产生电路组成连接示意图。FIG. 6 is a schematic diagram of the composition and connection of the calibration pulse generating circuit in the embodiment of the invention.
具体实施方式Detailed ways
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理。The preferred embodiments of the present invention are described below in detail with reference to the accompanying drawings, wherein the accompanying drawings constitute a part of the present application, and together with the embodiments of the present invention, serve to explain the principles of the present invention.
本实施例公开了一种用于时间交织采样ADC的多相位时钟产生电路,如图3所示,包括环形压控振荡器301(RVCO)、相位跟踪环电路302和校准脉冲产生电路303;This embodiment discloses a multi-phase clock generation circuit for a time-interleaved sampling ADC, as shown in FIG. 3 , including a ring voltage controlled oscillator 301 (RVCO), a phase
环形压控振荡器301与相位跟踪环电路302构成PLL环路;所述环形压控振荡器301,在所述相位跟踪环电路302输出的第一控制电压VCTRL的控制下输出多个相位的时钟信号;将其中任意一个相位的时钟信号反馈到所述相位跟踪环电路302中与输入的参考时钟信号进行鉴相,对第一控制电压VCTRL的幅度进行调整,使环形压控振荡器301输出的多个相位的时钟信号频率与参考时钟频率相等。The ring voltage controlled
所述环形压控振荡器301还根据外部输入的第二控制电压VTS,调整多个相位的时钟信号之间的相位差。The ring voltage controlled
校准脉冲产生电路303与环形压控振荡器301连接,用于输出时钟校准信号到环形压控振荡器301中,调整环形压控振荡器301内部时钟,消除时钟抖动对输出时钟信号的影响。The calibration
如图4所示,环形压控振荡器301包括结构相同的4个延迟单元和4个NMOS管,分别为第一延迟单元401、第二延迟单元402、第三延迟单元403和第四延迟单元404,以及第一NMOS管、第二NMOS管、第三NMOS管和第四NMOS管。As shown in FIG. 4 , the ring voltage controlled
每个延迟单元包括输入端IN、IP,输出端OP、ON,控制端VC、VT。Each delay unit includes input terminals IN and IP, output terminals OP and ON, and control terminals VC and VT.
其中,第一延迟单元401的输出端OP、ON分别与第二延迟单元402的输入端IN、IP连接;第二延迟单元402的输出端OP、ON分别与第三延迟单元403的输入端IN、IP连接;第三延迟单元403的输出端OP、ON分别与第四延迟单元404的输入端IN、IP连接;第四延迟单元404的输出端OP、ON分别与第一延迟单元401的输入端IP、IN连接。The output terminals OP and ON of the
第一延迟单元401的输入端IN、IP跨接第一NMOS管;第二延迟单元402的输入端IN、IP跨接第二NMOS管;第三延迟单元403的输入端IN、IP跨接第三NMOS管;第四延迟单元404的输入端IN、IP跨接第四NMOS管。The input terminals IN and IP of the
在四个NMOS管中其中一个栅端注入时钟校准信号,其他三个NMOS管的栅端都接地。例如第三NMOS管的栅端注入时钟校准信号INJ。在环形压控振荡器301中采用任意一个NMOS管的栅端注入时钟校准信号INJ的除抖效果是相同的,A clock calibration signal is injected into one of the gate terminals of the four NMOS transistors, and the gate terminals of the other three NMOS transistors are all grounded. For example, the clock calibration signal INJ is injected into the gate terminal of the third NMOS transistor. The debounce effect of injecting the clock calibration signal INJ into the gate terminal of any NMOS transistor in the
当然,在任意一个延迟单元的输入端IN、IP之间跨接一个NMOS管,在其栅极连接校准脉冲产生电路的输出端;而其他的三个NMOS管替换成其他替代元器件或电路实现寄生效应的匹配,也可以实现相应的侧除抖效果。Of course, an NMOS transistor is connected between the input terminals IN and IP of any delay unit, and the output terminal of the calibration pulse generating circuit is connected to its gate; and the other three NMOS transistors are replaced by other alternative components or circuits to achieve The matching of parasitic effects can also achieve the corresponding side debounce effect.
每个延迟单元的控制端VC都与所述相位跟踪环电路302输出的第一控制电压VCTRL连接,在第一控制电压VCTRL的控制下输出与参考时钟信号频率相同的时钟信号。并且输入端IN、IP的信号的相位差被控制为180°,输入端IN的信号与输出端OP的信号的相位差被控制45°,输入端IP的信号与输出端ON的信号的相位差被控制45°,输出端OP、ON的信号的相位差被控制180°。这样环形压控振荡器301最终可以得到8个相位差分别是45°的高性能时钟信号。由于8个相位的高性能时钟信号是由一个锁相环回路产生,因此多相位时钟之间的时间偏差低。The control terminal VC of each delay unit is connected to the first control voltage VCTRL output by the phase
第一、第二、第三、第四延迟单元404的控制端VT分别连接第二控制电压VTS1、VTS2、VTS3、VTS4,分别对各延迟单元输出的时钟信号的相位进行调节。The control terminals VT of the first, second, third and
例如,在进行多路时间交织ADC,要求接入各ADC模块的时钟信号的相位差严格要求为45°,可由于路径延迟或其他原因使到达各ADC模块的相位差出现了偏差,可分别通过调整第二控制电压VTS1、VTS2、VTS3、VTS4,改变各延迟单元输出的时钟信号的相位,使到达各ADC模块的相位差为45°。For example, when multi-channel time interleaving ADC is performed, the phase difference of the clock signals connected to each ADC module is strictly required to be 45°. Due to path delay or other reasons, the phase difference reaching each ADC module may be deviated. The second control voltages VTS1, VTS2, VTS3, and VTS4 are adjusted to change the phase of the clock signal output by each delay unit, so that the phase difference reaching each ADC module is 45°.
具体的,每个延迟单元的电路原理图如图5所示,包括第一反相器501、第二反相器502、第三反相器503、第四反相器504,第一常通传输门505、第二常通传输门506、第一可变电容器组507和第二可变电容器组508。Specifically, the circuit schematic diagram of each delay unit is shown in FIG. 5 , including a
第一反相器501的输出端连接第二反相器502的输入端;第三反相器503的输出端连接第四反相器504的输入端;第一反相器501的输入端与第三反相器503的输出端之间跨接第一常通传输门505;第三反相器503的输入端与第一反相器501的输出端之间跨接第二常通传输门506;第一反相器501的输出端与第三反相器503的输出端之间跨接并联的第一可变电容器组507和第二可变电容器组508;The output end of the
第一反相器501的输入端为延迟单元的输入端IN,第三反相器503的输入端为延迟单元的输入端IP;第二反相器502的输出端为延迟单元的输出端OP,第四反相器504的输出端为延迟单元的输出端ON;The input end of the
第一可变电容器组507的控制端VC连接第一控制电压VCTRL,在第一控制电压VCTRL的控制下,改变第一可变电容器组507的电容值,使环形压控振荡器301输出时钟信号频率与输入参考时钟频率相等。The control terminal VC of the first
每个延迟单元的第二可变电容器组508的控制端VT分别连接对应的第二控制电压VTS,在第二控制电压VTS的控制下,改变第二可变电容器组508的电容值,对每个延迟单元的相位进行精细控制,实现环形压控振荡器301中各相位时钟的相位偏差调整。The control terminal VT of the second
所述校准脉冲产生电路303接入参考时钟信号,在除抖使能信号的使能下,输出一个与参考时钟信号上升沿对齐的时钟校准信号注入到第三NMOS管的栅端,当由于输入参考时钟频率很高,时钟抖动(jitter)会引起的第二延迟单元402的输出端OP、ON的输出电位不相等。当时钟校准脉冲信号到来时,第三NMOS管导通,如果第二延迟单元402的输出端OP、ON的输出电位不相等,则有电流流过第三NMOS管,使输出端OP、ON之间的电压差减少到零,即环形压控振荡器301输出信号过零点被重新定时在了注入的时钟校准脉冲信号的到来时刻,达到了减小了信号抖动的效果。The calibration
如图6所示,校准脉冲产生电路303包括三输入端与门601和延迟反相模块602;As shown in FIG. 6 , the calibration
所述延迟反相模块602的输入端接入参考时钟信号,输出端输出延迟设定时间并且反相的参考时钟信号;The input end of the
所述三输入端与门601的第一输入端接入除抖使能信号;第二输入端接入参考时钟信号,第三输入端接入延迟设定时间并且反相的参考时钟信号;The first input terminal of the three-input AND
当除抖使能信号为高电平时,所述校准脉冲产生电路303输出上升沿与参考时钟信号上升沿对齐的,脉冲宽度为设定延迟时间的时钟校准信号。When the debounce enable signal is at a high level, the calibration
具体的,延迟反相模块602包括顺序连接的三个反相器;输入信号为参考时钟信号,输出为延迟时间为三个反相器延迟时间之和的,与参考时钟信号反相的时钟信号。Specifically, the
所述校准脉冲产生电路303的输入端接入参考时钟信号,监测参考时钟信号的时钟抖动,在除抖使能信号的使能下,输出时钟校准信号到环形压控振荡器301中,调整环形压控振荡器301内部时钟,消除参考时钟抖动对输出时钟信号的影响。The input terminal of the calibration
综上所述,本实施例采用的外部输入参考时钟信号频率与多相位采样时钟频率相同,不需要使用CML分频电路,从而大幅度电路功耗。同时可以在锁相环路中直接产生低抖动、低时钟偏差的多相位时钟,不需要额外的延迟电路,降低了硬件开销,并且实现低时钟抖动,保证ADC的精度。To sum up, the frequency of the external input reference clock signal used in this embodiment is the same as the frequency of the multi-phase sampling clock, and the CML frequency dividing circuit is not required, thereby greatly reducing the power consumption of the circuit. At the same time, a multi-phase clock with low jitter and low clock skew can be directly generated in the phase-locked loop, no additional delay circuit is required, hardware overhead is reduced, and low clock jitter is achieved to ensure the accuracy of the ADC.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010564041.9A CN111600606B (en) | 2020-06-18 | 2020-06-18 | A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010564041.9A CN111600606B (en) | 2020-06-18 | 2020-06-18 | A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111600606A true CN111600606A (en) | 2020-08-28 |
CN111600606B CN111600606B (en) | 2023-05-23 |
Family
ID=72190265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010564041.9A Active CN111600606B (en) | 2020-06-18 | 2020-06-18 | A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111600606B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112787634A (en) * | 2020-12-30 | 2021-05-11 | 西安紫光国芯半导体有限公司 | Circuit for correcting clock duty ratio and correction control method and device thereof |
CN114421760A (en) * | 2022-01-14 | 2022-04-29 | 中国电子科技集团公司第二十四研究所 | Power generation circuit in time-interleaved charge pump |
CN114650058A (en) * | 2022-04-08 | 2022-06-21 | 福州大学 | Self-calibration time-interleaved FLASH ADC circuit based on BBPD module |
CN115334264A (en) * | 2022-08-17 | 2022-11-11 | 中国电子科技集团公司第四十四研究所 | CMOS image sensor on-chip clock generation circuit, module and method |
CN115765772A (en) * | 2022-10-25 | 2023-03-07 | 天津大学 | Low-power-consumption frequency-mixing priority type broadband receiver front-end module |
WO2023087588A1 (en) * | 2021-11-16 | 2023-05-25 | 深圳市中兴微电子技术有限公司 | Sampling circuit, use method of sampling circuit, storage medium, and electronic device |
CN117478130A (en) * | 2023-12-28 | 2024-01-30 | 南京美辰微电子有限公司 | Multiphase sampling clock generation circuit of time interleaving ADC |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09326692A (en) * | 1996-06-04 | 1997-12-16 | Texas Instr Japan Ltd | Phase locked loop circuit |
US20020118072A1 (en) * | 2000-02-17 | 2002-08-29 | Broadcom Corporation | High noise rejection voltage-controlled ring oscillator architecture |
US20070013455A1 (en) * | 2005-07-18 | 2007-01-18 | Atmel Corporation | Voltage-controlled oscillator with multi-phase realignment of asymmetric stages |
CN106849942A (en) * | 2016-12-29 | 2017-06-13 | 北京时代民芯科技有限公司 | A kind of ultrahigh speed low jitter multiphase clock circuit |
CN207083071U (en) * | 2017-07-20 | 2018-03-09 | 深圳市汇春科技股份有限公司 | A kind of clock phase-locked loop loop circuit for microcontroller |
CN110855288A (en) * | 2019-11-27 | 2020-02-28 | 西安紫光国芯半导体有限公司 | Clock circuit and clock signal generation method |
-
2020
- 2020-06-18 CN CN202010564041.9A patent/CN111600606B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09326692A (en) * | 1996-06-04 | 1997-12-16 | Texas Instr Japan Ltd | Phase locked loop circuit |
US20020118072A1 (en) * | 2000-02-17 | 2002-08-29 | Broadcom Corporation | High noise rejection voltage-controlled ring oscillator architecture |
US20070013455A1 (en) * | 2005-07-18 | 2007-01-18 | Atmel Corporation | Voltage-controlled oscillator with multi-phase realignment of asymmetric stages |
CN106849942A (en) * | 2016-12-29 | 2017-06-13 | 北京时代民芯科技有限公司 | A kind of ultrahigh speed low jitter multiphase clock circuit |
CN207083071U (en) * | 2017-07-20 | 2018-03-09 | 深圳市汇春科技股份有限公司 | A kind of clock phase-locked loop loop circuit for microcontroller |
CN110855288A (en) * | 2019-11-27 | 2020-02-28 | 西安紫光国芯半导体有限公司 | Clock circuit and clock signal generation method |
Non-Patent Citations (1)
Title |
---|
XUQIANG ZHENG等: "Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators", 《 IEEE JOURNAL OF SOLID-STATE CIRCUITS》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112787634A (en) * | 2020-12-30 | 2021-05-11 | 西安紫光国芯半导体有限公司 | Circuit for correcting clock duty ratio and correction control method and device thereof |
CN112787634B (en) * | 2020-12-30 | 2023-09-29 | 西安紫光国芯半导体有限公司 | Circuit for correcting clock duty ratio and correction control method and device thereof |
WO2023087588A1 (en) * | 2021-11-16 | 2023-05-25 | 深圳市中兴微电子技术有限公司 | Sampling circuit, use method of sampling circuit, storage medium, and electronic device |
CN114421760A (en) * | 2022-01-14 | 2022-04-29 | 中国电子科技集团公司第二十四研究所 | Power generation circuit in time-interleaved charge pump |
CN114650058A (en) * | 2022-04-08 | 2022-06-21 | 福州大学 | Self-calibration time-interleaved FLASH ADC circuit based on BBPD module |
CN115334264A (en) * | 2022-08-17 | 2022-11-11 | 中国电子科技集团公司第四十四研究所 | CMOS image sensor on-chip clock generation circuit, module and method |
CN115334264B (en) * | 2022-08-17 | 2024-04-09 | 中国电子科技集团公司第四十四研究所 | CMOS image sensor on-chip clock generation circuit, module and method |
CN115765772A (en) * | 2022-10-25 | 2023-03-07 | 天津大学 | Low-power-consumption frequency-mixing priority type broadband receiver front-end module |
CN117478130A (en) * | 2023-12-28 | 2024-01-30 | 南京美辰微电子有限公司 | Multiphase sampling clock generation circuit of time interleaving ADC |
CN117478130B (en) * | 2023-12-28 | 2024-04-02 | 南京美辰微电子有限公司 | Multiphase sampling clock generation circuit of time interleaving ADC |
Also Published As
Publication number | Publication date |
---|---|
CN111600606B (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111600606B (en) | A Multiphase Clock Generation Circuit for Time Interleaved Sampling ADC | |
CN102347767B (en) | Digital-analog mixed mode clock duty ratio calibration circuit | |
CN106849942B (en) | Ultra-high-speed low-jitter multiphase clock circuit | |
JP4093961B2 (en) | Phase lock loop circuit, delay lock loop circuit, timing generator, semiconductor test apparatus, and semiconductor integrated circuit | |
US7609756B2 (en) | Rotary clock flash analog to digital converter system and method | |
US5945855A (en) | High speed phase lock loop having high precision charge pump with error cancellation | |
CN106154907B (en) | A kind of high speed high-accuracy data collection system based on time interleaving sampling | |
CN101557213B (en) | Delay unit, annular oscillator and PLL circuit | |
US8446198B2 (en) | Phase interpolator and a delay circuit for the phase interpolator | |
CN108199699B (en) | Clock circuit with stable duty ratio and low jitter | |
CN202103633U (en) | Analog-digital mixed clock duty cycle calibration circuit | |
TWI401888B (en) | Oscillator circuit and calibrating method of gated oscillator | |
Wang et al. | 11.4 A high-accuracy multi-phase injection-locked 8-phase 7GHz clock generator in 65nm with 7b phase interpolators for high-speed data links | |
CN105629061B (en) | A kind of precise frequency measuring device based on the wide reference pulse of high stability | |
US11777475B2 (en) | Multiple adjacent slicewise layout of voltage-controlled oscillator | |
KR102674652B1 (en) | Phase correction using half-rate clock for injection-locked oscillators | |
CN115622540A (en) | A duty cycle calibration circuit | |
JP3761858B2 (en) | Clock signal generation circuit | |
US10753966B2 (en) | Duty cycle estimation | |
CN115800927B (en) | A Crystal Oscillator Based on Duty Cycle Detection | |
CN103762945A (en) | Accurate quadrature voltage-controlled oscillator circuit with phase adjustable | |
TWI672906B (en) | Clock generating circuit and hybrid circuit | |
US10673443B1 (en) | Multi-ring cross-coupled voltage-controlled oscillator | |
CN112468144A (en) | Clock generator and generating method | |
Buhr et al. | A 10 bit phase-interpolator-based digital-to-phase converter for accurate time synchronization in ethernet applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |