CN111600187B - 一种基于环境湿度调谐波长的薄膜随机激光器 - Google Patents

一种基于环境湿度调谐波长的薄膜随机激光器 Download PDF

Info

Publication number
CN111600187B
CN111600187B CN202010368914.9A CN202010368914A CN111600187B CN 111600187 B CN111600187 B CN 111600187B CN 202010368914 A CN202010368914 A CN 202010368914A CN 111600187 B CN111600187 B CN 111600187B
Authority
CN
China
Prior art keywords
random laser
film
humidity
laser
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010368914.9A
Other languages
English (en)
Other versions
CN111600187A (zh
Inventor
王兆娜
卞耀兴
胡梦楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN202010368914.9A priority Critical patent/CN111600187B/zh
Publication of CN111600187A publication Critical patent/CN111600187A/zh
Application granted granted Critical
Publication of CN111600187B publication Critical patent/CN111600187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种基于环境湿度调谐波长的薄膜随机激光器,该激光器包括罗丹明6g、银纳米花颗粒、固化后的壳聚糖‑甘油薄膜、玻璃基底;所述的银纳米花颗粒和罗丹明6g分散在固化后的壳聚糖‑甘油薄膜中,所述的固化后的壳聚糖‑甘油薄膜覆盖在玻璃基底上即为随机激光器。所述的壳聚糖‑甘油薄膜具有良好的吸水性,通过改变随机激光器周围环境的湿度,进而可以调谐随机激光器的输出波长,具有灵活、与环境主动交互的特点。

Description

一种基于环境湿度调谐波长的薄膜随机激光器
技术领域
本发明涉及光电技术领域,具体是设计了一种基于周围环境湿度调谐波长的薄膜随机激光器。
背景技术
作为一种新型的激光器,随机激光器由于其具有无谐振腔、低空间相干性和易于制造等特点,已经引起了研究人员的广泛关注,并证明了其在传感、照明、无散斑成像等领域的巨大应用潜力。为了更好地满足这些应用要求,随机激光器输出波长的调谐至关重要,是随机激光领域的一个研究热点。目前研究者已经提出了多种方法来调节其输出波长。例如,通过改变增益介质来调谐随机激光器的发射波长;通过使用具有宽带散射光谱的特殊散射体,可以获得不同的颜色甚至白色的随机激光。也有通过控制泵浦区域来巧妙地调谐输出波长。利用空间光调制器对泵浦光的形状进行改变,进而可以实现随机激光输出波长的改变。
为了进一步满足多功能需求,研究者已经报道了通过周围环境温度、机械外力、磁场和电场等因素来调控随机激光器的输出特性。作为另一个关键的环境物理参数,相对湿度也会影响材料的光学、电学和机械性能,进而影响随机激光的输出光学性能。因此,有必要通过周围环境湿度的改变设计一种输出波长可调节的随机激光器,进一步促进随机激光器在智能传感和环境监测中的应用。
发明内容
本发明的目的是基于上述考虑,提出了一种基于周围环境湿度改变来调谐随机激光器的输出波长的方法,其激光器具有高灵敏度、时间稳定性好、与环境主动交互、易于制造和可灵活调谐等优势。
为实现上述目的,本发明采用的技术方案为一种基于环境湿度调谐输出波长的随机激光器。该随机激光器包括罗丹明6g(1.1)增益染料、银纳米花颗粒(1.2)、固化后的吸湿聚合物(1.3)和玻璃基底(1.4);所述的罗丹明6g(1.1)和银纳米花颗粒(1.2)分散在固化后的吸湿聚合物薄膜(1.3)中,所述的固化后的吸湿聚合物薄膜(1.3)覆盖在玻璃基底上即为随机激光器薄膜样品(2.3)。
所述的银纳米花颗粒(1.2)的平均直径约为500nm。
所述的吸湿聚合物(1.3)为壳聚糖和甘油的混合物,其中壳聚糖为天然多糖甲壳素脱除部分乙酰基的产物,具有生物降解性、生物相容性、无毒性、抑菌、增强免疫等多种生理功能,其在酸性条件下很容易溶解,固化后的壳聚糖薄膜有较好的柔韧性和高透明度;甘油为无色无臭的黏稠状液体,其很容易吸收空气中的潮气,将甘油混合进壳聚糖薄膜后,能够改善壳聚糖薄膜的柔韧性,同时使壳聚糖薄膜具有良好的吸水率;壳聚糖-甘油薄膜无色透明、表面光洁、无气泡。
与现有技术相比,本发明具有如下优势:
(1)采用银纳米花颗粒作为散射颗粒的同时,每个银纳米花都有大量的纳米间隙或纳米尖端,为来自罗丹明6g的发射光子提供了丰富的热点效应,大幅度增强局域电磁场,从而降低了随机激光器的阈值;
(2)基于周围环境湿度的改变来调谐随机激光器的输出波长,具有快速、灵活的优势;
(3)该随机激光器有良好的时间稳定性;
(4)该随机激光器具有与环境主动交互的优势。
通过结合下面附图的详细说明,将会使本发明的上述目的、内容和优点变得更加清楚。
附图说明
图1是本发明设备的结构示意图;
图2是本发明设备的实验光路示意图;
图3是本发明在不同湿度下的输出表征;
图4是本发明的输出波长和湿度变化的关系;
图5是本发明设备的时间稳定性。
附图标记说明:
图中,1.1是罗丹明6g分子,1.2是银纳米花颗粒,1.3是壳聚糖-甘油薄膜,1.4是玻璃基底,1.5是水分子,1.6是出射的随机激光,2.1是泵浦光源,2.2是焦距为100mm的柱透镜,2.3是随机激光器样品,2.4是光纤光谱仪探头,2.5是湿度传感器,2.6是湿空气的入气孔,2.7是湿空气的出气孔,2.8是光学透明板盒。
具体实施方式:
一、本发明设备的制备过程(参见图1)
(1)将208mg的壳聚糖溶解在10mL 2%的乙酸水溶液中为溶液A,再以30%的体积分数向溶液A中添加甘油,并用磁力搅拌器充分搅拌均匀为壳聚糖-甘油混合溶液;
(2)将1.2mg的罗丹明6g溶解在0.2mL浓度为5mg/mL的银纳米花乙醇分散液中,得到罗丹明6g的银纳米花分散液;
(3)将上述0.2mL的罗丹明6g的银纳米花分散液添加到2mL的壳聚糖-甘油混合溶液中,充分搅拌混合均匀后放置在真空炉中抽真空1.5小时以除去气泡,得到混合溶液B;
(4)将200μL的混合溶液B以500r/min的第一转速旋转6s,以1000r/min的第二转速旋转30s的步骤旋涂到洁净的玻璃基底上,然后将旋涂好的薄膜放入60℃的干燥箱中完成固化过程,通过多次旋涂得到厚度为668nm的薄膜样品。
二、本发明设备的实现过程(参见图2)
如图2所示,将制成的随机激光薄膜样品放置在装有入气孔(2.6)和出气孔(2.7)的光学透明板盒中(2.8),通过控制流经板盒中湿空气的流量进而可以精细调整样品周围环境的湿度,并利用盒中内部放置的湿度传感器(2.5)读取周围环境湿度;利用柱透镜(焦距为100mm)将532nm脉冲激光(持续时间为8ns,重复频率为10Hz)聚焦在薄膜样品表面上,然后使用光纤光谱仪(2.4)(Ocean Optics,型号Maya Pro 2000)从薄膜的侧面测量光致发光光谱,光谱分辨率为0.4nm。
三、本发明设备在不同湿度下的输出表征(参见图3-4)
随机激光器薄膜样品周围环境的湿度改变时,吸湿聚合物通过吸附水分子而改变随机激光薄膜的折射率和厚度,随机激光薄膜内形成的等效光学腔长和随机激光的峰位也因环境湿度变化而发生改变,从而实现对随机激光的输出波长进行调谐。图3给出了在0.294MW/cm2的泵浦功率密度下,本发明设备在不同的湿度环境下的输出光谱,可以看到随机激光的峰值波长和强度都有明显的变化。当周围空气的相对湿度从18.0%变为71.4%时,随机激光的峰值波长从575.18nm蓝移到568.43nm(图4)。
四、本发明设备的时间稳定性(参见图5)
测试后的随机激光器薄膜样品放置在干燥箱中保存,三个月后测试该薄膜样品的辐射特性随环境湿度的变化,得到不同湿度下随机激光的峰值波长,这些数据点很好地分布在最初测得的波长-湿度线附近,测试结果和三个月前的测试结果高度一致(图5)。

Claims (5)

1.一种基于环境湿度调谐波长的薄膜随机激光器,其特征在于:该随机激光器包括罗丹明6g(1.1)增益染料、银纳米花颗粒(1.2)、固化后的吸湿聚合物薄膜(1.3)和玻璃基底(1.4);所述的罗丹明6g(1.1)和银纳米花颗粒(1.2)分散在固化后的吸湿聚合物薄膜(1.3)中,所述的固化后的吸湿聚合物薄膜(1.3)覆盖在玻璃基底(1.4)上即为制作的随机激光器薄膜样品(2.3);在脉冲激光器(2.1)的泵浦作用下,通过改变随机激光器样品周围环境的湿度,进而可以调谐随机激光的输出波长。
2.根据权利要求1所述的随机激光器,其特征在于:所述的银纳米花颗粒(1.2)的平均直径约为500nm,每个银纳米花颗粒都有大量的纳米间隙或纳米尖端,在提供散射的同时,这些纳米间隙或纳米尖端的热点效应能大幅度增强随机激光;所述的吸湿聚合物薄膜(1.3)为壳聚糖和甘油的混合物薄膜,所述的吸湿聚合物薄膜无色透明、表面光洁、无气泡、具有良好的吸水率。
3.根据权利要求1所述的随机激光器,其特征在于:所述的制作的随机激光器薄膜样品(2.3)放置在装有入气孔(2.6)和出气孔(2.7)的光学透明板盒中(2.8),通过控制流经板盒中湿空气的流量进而可以精细调整样品周围环境的湿度,并利用盒中内部放置的湿度传感器(2.5)读取周围环境湿度;用光纤光谱仪(2.4)从随机激光器薄膜样品侧面测试辐射的光谱。
4.根据权利要求1所述的随机激光器,其特征在于:所述的随机激光器薄膜样品(2.3)周围环境的湿度改变时,吸湿聚合物通过吸附水分子(1.5)而改变随机激光薄膜的折射率和厚度,薄膜内形成的等效光学腔长和随机激光的峰位也因环境湿度变化而发生改变,从而实现对输出随机激光波长的调谐作用。
5.一种用于实现根据权利要求1所述随机激光器的方法,其特征在于:所述方法包括以下步骤:
(1)将208mg的壳聚糖溶解在10mL 2%的乙酸水溶液中,再以30%的体积分数向壳聚糖溶液中添加甘油,并用磁力搅拌器充分搅拌均匀为壳聚糖-甘油混合溶液;
(2)将1.2mg的罗丹明6g溶解在0.2mL浓度为5mg/mL的银纳米花乙醇分散液中,得到罗丹明6g的银纳米花分散液;
(3)将上述0.2mL的罗丹明6g的银纳米花分散液和2mL的上述的壳聚糖-甘油混合溶液进行混合,充分搅拌,混合均匀后放置在真空炉中抽真空1.5小时以除去气泡,得到混合溶液A;
(4)将200μL的混合溶液A以500r/min的第一转速旋转6s,以1000r/min的第二转速旋转30s的步骤旋涂到洁净的玻璃基底上,然后将旋涂好的薄膜放入60℃的干燥箱中完成固化过程,形成薄膜样品;通过多次旋涂得到厚度为668nm的薄膜样品;
(5)将薄膜样品放置在湿度可调控的环境中,并用532nm的纳秒激光泵浦薄膜样品,用光纤光谱仪从随机激光器薄膜样品侧面收集辐射光谱;
(6)通过控制湿空气的流量精细调整样品周围环境的湿度,实现波长可灵活调控的随机激光器。
CN202010368914.9A 2020-05-03 2020-05-03 一种基于环境湿度调谐波长的薄膜随机激光器 Active CN111600187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010368914.9A CN111600187B (zh) 2020-05-03 2020-05-03 一种基于环境湿度调谐波长的薄膜随机激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010368914.9A CN111600187B (zh) 2020-05-03 2020-05-03 一种基于环境湿度调谐波长的薄膜随机激光器

Publications (2)

Publication Number Publication Date
CN111600187A CN111600187A (zh) 2020-08-28
CN111600187B true CN111600187B (zh) 2021-03-02

Family

ID=72192110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010368914.9A Active CN111600187B (zh) 2020-05-03 2020-05-03 一种基于环境湿度调谐波长的薄膜随机激光器

Country Status (1)

Country Link
CN (1) CN111600187B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103296A (zh) * 2010-11-29 2011-06-22 沈阳理工大学 一种基于染料和液晶共掺光源器件的可调谐方法
CN104538828A (zh) * 2014-12-29 2015-04-22 北京工业大学 一种拉伸法调谐波长的固体随机激光器
CN106998030A (zh) * 2017-05-17 2017-08-01 河北大学 一种半开腔式线偏振及超窄线宽多波长随机光纤激光器
CN107069417A (zh) * 2017-05-08 2017-08-18 东南大学 一种基于二维材料的等离激元随机激光阵列器件
CN109873289A (zh) * 2019-04-04 2019-06-11 北京师范大学 一种输出可在激光和随机激光之间切换的光纤光源

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887811B (zh) * 2019-12-03 2023-01-13 南方科技大学 一种用于激光湿度传感器的钙钛矿基复合材料、其制备方法及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103296A (zh) * 2010-11-29 2011-06-22 沈阳理工大学 一种基于染料和液晶共掺光源器件的可调谐方法
CN104538828A (zh) * 2014-12-29 2015-04-22 北京工业大学 一种拉伸法调谐波长的固体随机激光器
CN107069417A (zh) * 2017-05-08 2017-08-18 东南大学 一种基于二维材料的等离激元随机激光阵列器件
CN106998030A (zh) * 2017-05-17 2017-08-01 河北大学 一种半开腔式线偏振及超窄线宽多波长随机光纤激光器
CN109873289A (zh) * 2019-04-04 2019-06-11 北京师范大学 一种输出可在激光和随机激光之间切换的光纤光源

Also Published As

Publication number Publication date
CN111600187A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN106896277B (zh) 一种基于微纳光纤倏逝场及电光聚合物的电场传感器
Choi et al. A fully biocompatible single-mode distributed feedback laser
Sreeja et al. Organic dye impregnated poly (vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties
CN105006729B (zh) 随机激光器、随机谐振腔制造及探测微小颗粒浓度的方法
CN106124478A (zh) 拉锥光纤和微小圆球透镜的光纤拉曼增强探针及制作方法
Huang et al. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness
CN112778465B (zh) 一种可逆变色的光子晶体水凝胶膜的制备方法
Žukauskas et al. Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique
CN110183703B (zh) 一种光子晶体复合型压力传感器及其制备方法和光学检测方法
Pierini et al. Thermoplasmonic‐Activated Hydrogel Based Dynamic Light Attenuator
CN103885119A (zh) 可调谐光子晶体的制造方法和可调谐光子晶体
Umar et al. Random lasing and amplified spontaneous emission from silk inverse opals: Optical gain enhancement via protein scatterers
CN104538828A (zh) 一种拉伸法调谐波长的固体随机激光器
CN111600187B (zh) 一种基于环境湿度调谐波长的薄膜随机激光器
WO2022033599A1 (zh) 一种聚合物分散液晶和制备方法以及应用
KR20160061482A (ko) 표면 증강 라만 산란 표지용 하이드로젤 미세입자의 제조방법 및 이에 의한 하이드로젤 미세입자
CN107142100A (zh) 一种梯度折射率包裹量子点膜片及其制备方法
CN109873289B (zh) 一种输出可在激光和随机激光之间切换的光纤光源
Saad et al. Tapered plastic optical fiber sensor for detection of ethanol concentration in H2O
Rusen et al. Fluorescence enhancement of rhodamine B in the presence of photonic crystal heterostructures
Li et al. Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization
CN113984095B (zh) 基于偶氮苯集成的光控回音壁模式微腔奇异点调控系统
CN107505735B (zh) 一种基于消逝场耦合光力实现的全光光功率控制系统
Azad et al. Tapered optical fiber coated with ZnO nanorods for detection of ethanol concentration in water
Whittaker et al. Light-generating CdSe/CdS colloidal quantum dot-doped plastic optical fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant