CN111595922B - 根据石油组学判断稠油生物降解程度的方法 - Google Patents

根据石油组学判断稠油生物降解程度的方法 Download PDF

Info

Publication number
CN111595922B
CN111595922B CN202010353308.XA CN202010353308A CN111595922B CN 111595922 B CN111595922 B CN 111595922B CN 202010353308 A CN202010353308 A CN 202010353308A CN 111595922 B CN111595922 B CN 111595922B
Authority
CN
China
Prior art keywords
thick oil
basic nitrogen
biodegradation
degree
mass spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010353308.XA
Other languages
English (en)
Other versions
CN111595922A (zh
Inventor
王萌
朱光有
张志遥
陈志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202010353308.XA priority Critical patent/CN111595922B/zh
Publication of CN111595922A publication Critical patent/CN111595922A/zh
Application granted granted Critical
Publication of CN111595922B publication Critical patent/CN111595922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了一种根据石油组学判断稠油生物降解程度的方法,所述根据石油组学判断稠油生物降解程度的方法包括:(1)向稠油中加入内标物后,对稠油中的非碱性氮化合物进行电离;(2)对稠油中的非碱性氮化合物进行定量分析;(3)根据步骤(2)中所得非碱性氮化合物含量判断稠油生物降解程度。本发明所提供的该方法对个人经验依赖程度低,能够从石油组学角度较为精确地确定不同稠油的生物降解程度差异。

Description

根据石油组学判断稠油生物降解程度的方法
技术领域
本发明涉及一种根据石油组学判断稠油生物降解程度的方法,属于石油样品分析技术领域。
背景技术
石油组学技术是将原油及石油产品看作是分子的集合体,通过详细的组成分析技术及分子反应建模技术,从分子水平分析、预测其组成、物性及反应性的基础技术(参见:宋锦玉,成立;石油组学技术及其动向,当代化工,2014,43(8):1498-1501)。
大多数情况下,稠油组成的变化主要是由生物降解作用造成的。据Hunt统计,世界上约有1/5的稠油被细菌破坏,另外约有1/5的稠油曾经被细菌改造过(参见:Hunt JM.Petroleum geochemistry and geology[M].San Franciso,1979:617-618)。自Williams等(参见:Rubinstein J A,Winters J C.Microbial alteration of crude oil in thereservoir[A].158th National Meeting of the American Chemical Society[C],NewYork,1969,86:22-31)首先认识到自然条件下的稠油生物降解作用后,稠油生物降解机理的研究一直是被关注的热点。大多数研究者认为,稠油降解主要是好氧微生物起作用,厌氧微生物,如硫酸盐还原菌也能氧化烃类,但比好氧微生物作用慢的多(参见:陈传平、梅博文等,砂岩储层中稠油微生物降解的模拟实验研究[J],沉积学报,1997,15(1):135-140)。
因为确定稠油生物降解程度是油气勘探的基础之一,所以除了关于稠油生物降解机理的研究外,目前本领域技术人员对稠油生物降解程度的关注也越来越紧密,但是本领域现有的确定稠油生物降解程度的方法基本均是依靠不同专业技术人员的个人经验进行判断,由于稠油生物降解程度的复杂性和多变性,通过经验判断来确定稠油生物降解程度常常导致判断不准确,因此,目前本领域亟需建立一种对个人经验依赖程度低的确定稠油生物降解程度的方法。
发明内容
为了解决上述的缺点和不足,本发明的目的在于提供一种根据石油组学判断稠油生物降解程度的方法。该方法对个人经验依赖程度低,能够从石油组学角度较为精确地确定不同稠油的生物降解程度差异。
为了实现以上目的,本发明提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述根据石油组学判断稠油生物降解程度的方法包括:
(1)向稠油中加入内标物后,对稠油中的非碱性氮化合物进行电离;
(2)对稠油中的非碱性氮化合物进行定量分析;
(3)根据步骤(2)中所得非碱性氮化合物含量判断稠油生物降解程度。
在以上所述的方法中,优选地,所述稠油的用量小于100mg。
在以上所述的方法中,优选地,所述内标物包括d8-咔唑或d10-苯并[C]咔唑。
在以上所述的方法中,优选地,所述内标物与稠油的质量比为1:1000000-1:10000000。
在以上所述的方法中,优选地,步骤(1)中,利用负离子电喷雾电离源对稠油中的非碱性氮化合物进行电离。
在以上所述的方法中,优选地,负离子电喷雾电离源蒸发温度为200-250℃。其中,将负离子电喷雾电离源蒸发温度设置为200-250℃可以尽量避免非碱性氮化合物在超过250℃时发生缩合反应,影响分析结果。
在以上所述的方法中,优选地,步骤(2)中,利用傅里叶变换离子阱质谱对稠油中的非碱性氮化合物进行定量分析。
在以上所述的方法中,优选地,傅里叶变换离子阱质谱所检测的分子量范围为200-700。其中,将傅里叶变换离子阱质谱所检测的分子量范围为200-700可以避免分子量小于200的表面活性剂的干扰。
在以上所述的方法中,优选地,傅里叶变换离子阱质谱的离子传输管温度为200-250℃。其中,将傅里叶变换离子阱质谱的离子传输管温度设置为200-250℃可以尽量避免非碱性氮化合物在超过250℃时发生缩合反应,影响分析结果。
在以上所述的方法中,优选地,定量分析的时间小于30min。
在以上所述的方法中,优选地,定量分析过程中,非碱性氮化合物的检出下限为0.01ppm。
在以上所述的方法中,优选地,步骤(3)中,根据步骤(2)中所得非碱性氮化合物含量W判断稠油生物降解程度,包括:
当W<3.0ppm时,所述稠油未被生物降解,即其生物降解程度为无;
当3.0ppm≤W<9.0ppm时,所述稠油的生物降解程度为轻微;
当9.0ppm≤W<20.0ppm时,所述稠油的生物降解程度为中等;
当20.0ppm≤W≤30.0ppm时,所述稠油的生物降解程度为严重;
当W>30.0ppm时,所述稠油的生物降解程度为极其严重。
在以上所述的方法中,所用负离子电喷雾电离源及傅里叶变换离子阱质谱均为常规设备,并且除了以上所述的负离子电喷雾电离源蒸发温度、傅里叶变换离子阱质谱所检测的分子量范围以及傅里叶变换离子阱质谱的离子传输管温度外,本领域技术人员可以根据现场实际需要合理设置负离子电喷雾电离源及傅里叶变换离子阱质谱的其他参数进行电离及定量分析,只要保证可以实现本发明的目的即可。
本发明所提供的根据石油组学判断稠油生物降解程度的方法对个人经验依赖程度低,能够从石油组学角度较为精确地确定不同稠油的生物降解程度差异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例8中所得到的质谱图。
图2为本发明实施例8中DBE与非碱性氮化合物的碳原子数c之间的关系图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合以下具体实施例对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入56mg取自塔里木油田新垦7004井的稠油(记为稠油A)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量W按照以下标准判断稠油生物降解程度;
当W<3.0ppm时,所述稠油未被生物降解,即其生物降解程度为无;
当3.0ppm≤W<9.0ppm时,所述稠油的生物降解程度为轻微;
当9.0ppm≤W<20.0ppm时,所述稠油的生物降解程度为中等;
当20.0ppm≤W≤30.0ppm时,所述稠油的生物降解程度为严重;
当W>30.0ppm时,所述稠油的生物降解程度为极其严重。
本实施例中,稠油A中非碱性氮化合物的含量以及稠油A的生物降解程度判断结果如下表1所示。
实施例2
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入111mg取自塔里木油田新垦8-1X井的稠油(记为稠油B)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油B中非碱性氮化合物的含量以及稠油B的生物降解程度判断结果如下表1所示。
实施例3
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入156mg取自塔里木油田哈15-8井的稠油(记为稠油C)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油C中非碱性氮化合物的含量以及稠油C的生物降解程度判断结果如下表1所示。
实施例4
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d10-苯并[C]咔唑加入200mg取自塔里木油田新垦9-9井的稠油(记为稠油D)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油D中非碱性氮化合物的含量以及稠油D的生物降解程度判断结果如下表1所示。
实施例5
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入255mg取自塔里木油田哈16-1井的稠油(记为稠油E)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油E中非碱性氮化合物的含量以及稠油E的生物降解程度判断结果如下表1所示。
实施例6
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入321mg取自塔里木油田哈8-C井的稠油(记为稠油F)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油F中非碱性氮化合物的含量以及稠油F的生物降解程度判断结果如下表1所示。
实施例7
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d10-苯并[C]咔唑加入350mg取自塔里木油田哈701-15井的稠油(记为稠油G)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油G中非碱性氮化合物的含量以及稠油G的生物降解程度判断结果如下表1所示。
实施例8
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入450mg取自塔里木油田哈17C井的稠油(记为稠油H)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃,所得质谱图见图1所示;由于傅里叶变换离子阱质谱能够精确获取非碱性氮化合物的精确分子量,根据精确分子量可以准确获得非碱性氮化合物分子式CcHhNn(其中,c、h及n均为正整数),据此可以计算等效双键数DBE=c-(h/2)+(n/2)+1;再对DBE与非碱性氮化合物的碳原子数c作图,见图2;最后将图2中所有非碱性氮化合物与已知含量的内标物进行归一化处理即可得到本实施例中所有非碱性氮化合物的含量为6.39ppm;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油H中非碱性氮化合物的含量以及稠油H的生物降解程度判断结果如下表1所示。
实施例9
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入555mg取自塔里木油田哈9C井的稠油(记为稠油I)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油I中非碱性氮化合物的含量以及稠油I的生物降解程度判断结果如下表1所示。
实施例10
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入560mg取自塔里木油田哈19井的稠油(记为稠油J)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油J中非碱性氮化合物的含量以及稠油J的生物降解程度判断结果如下表1所示。
实施例11
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入560mg取自塔里木油田哈17H井的稠油(记为稠油K)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油K中非碱性氮化合物的含量以及稠油K的生物降解程度判断结果如下表1所示。
实施例12
本实施例提供了一种根据石油组学判断稠油生物降解程度的方法,其中,所述方法包括以下步骤:
将0.056μg的d8-咔唑加入560mg取自塔里木油田哈66井的稠油(记为稠油L)中,利用负离子电喷雾电离源将稠油中的非碱性氮化合物电离,其中负离子电喷雾电离源蒸发温度为200-250℃;
再利用傅里叶变换离子阱质谱定量分析稠油中非碱性氮化合物,获得稠油中非碱性氮化合物的分子组成特征与含量(含量数据可参考实施例8中的相应方法获得),其中傅里叶变换离子阱质谱所检测的分子量范围为200-700,定量分析中该质谱的离子传输管温度为200-250℃;
根据稠油中非碱性氮化合物的含量按照以上实施例1中的标准判断稠油生物降解程度。
本实施例中,稠油L中非碱性氮化合物的含量以及稠油L的生物降解程度判断结果如下表1所示。
表1稠油A-L中的非碱性氮化合物的含量及生物降解程度分类表
Figure BDA0002472605380000101
综上可见,本发明所提供的根据石油组学判断稠油生物降解程度的方法对个人经验依赖程度低,能够从石油组学角度较为精确地确定不同稠油的生物降解程度差异。
以上所述,仅为本发明的具体实施例,不能以其限定发明实施的范围,所以其等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本发明中的技术特征与技术特征之间、技术特征与技术发明之间、技术发明与技术发明之间均可以自由组合使用。

Claims (6)

1.一种根据石油组学判断稠油生物降解程度的方法,其特征在于,所述根据石油组学判断稠油生物降解程度的方法包括:
(1)向稠油中加入内标物后,利用负离子电喷雾电离源对稠油中的非碱性氮化合物进行电离,其中,负离子电喷雾电离源蒸发温度为200-250oC;
(2)利用傅里叶变换离子阱质谱对稠油中的非碱性氮化合物进行定量分析,其中,傅里叶变换离子阱质谱所检测的分子量范围为200-700,傅里叶变换离子阱质谱的离子传输管温度为200-250oC;所述定量分析具体包括:利用傅里叶变换离子阱质谱对稠油进行分析,得到质谱图,通过质谱图精确获取非碱性氮化合物的精确分子量,根据精确分子量准确获得非碱性氮化合物的分子式,其分子式为CcHhNn,其中,c、h及n均为正整数,再根据非碱性氮化合物的分子式计算等效双键数DBE,其中,DBE= c - (h/2) + (n/2) +1,再对DBE与非碱性氮化合物的碳原子数c作图,最后将DBE与非碱性氮化合物的碳原子数c关系图中的非碱性氮化合物与已知含量的内标物进行归一化处理,得到稠油中的非碱性氮化合物的含量;
(3)根据步骤(2)中所得非碱性氮化合物含量W判断稠油生物降解程度,包括:
当W<3.0ppm时,所述稠油未被生物降解,即其生物降解程度为无;
当3.0ppm≤W<9.0ppm时,所述稠油的生物降解程度为轻微;
当9.0ppm≤W<20.0ppm时,所述稠油的生物降解程度为中等;
当20.0ppm≤W≤30.0ppm时,所述稠油的生物降解程度为严重;
当W>30.0ppm时,所述稠油的生物降解程度为极其严重。
2.根据权利要求1所述的方法,其特征在于,所述稠油的用量小于100mg。
3.根据权利要求1或2所述的方法,其特征在于,所述内标物包括d8-咔唑或d10-苯并[C]咔唑。
4.根据权利要求3所述的方法,其特征在于,所述内标物与稠油的质量比为1:1000000-1:10000000。
5.根据权利要求1或2所述的方法,其特征在于,定量分析的时间小于30min。
6.根据权利要求1或2所述的方法,其特征在于,定量分析过程中,非碱性氮化合物的检出下限为0.01ppm。
CN202010353308.XA 2020-04-29 2020-04-29 根据石油组学判断稠油生物降解程度的方法 Active CN111595922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010353308.XA CN111595922B (zh) 2020-04-29 2020-04-29 根据石油组学判断稠油生物降解程度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010353308.XA CN111595922B (zh) 2020-04-29 2020-04-29 根据石油组学判断稠油生物降解程度的方法

Publications (2)

Publication Number Publication Date
CN111595922A CN111595922A (zh) 2020-08-28
CN111595922B true CN111595922B (zh) 2023-05-26

Family

ID=72182180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010353308.XA Active CN111595922B (zh) 2020-04-29 2020-04-29 根据石油组学判断稠油生物降解程度的方法

Country Status (1)

Country Link
CN (1) CN111595922B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083095A2 (en) * 2010-12-16 2012-06-21 Exoonmobil Research And Engineering Company Generation of model-of-composition of petroleum by high resolution mass spectrometry and associated analytics
CN104849365A (zh) * 2015-05-06 2015-08-19 中国石油大学(华东) 一种地下生物降解稠油物性的预测方法
CN110412143A (zh) * 2019-06-11 2019-11-05 中国石油天然气股份有限公司 一种确定原油生物降解程度的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943006B2 (en) * 2002-09-10 2005-09-13 Alps Electric Co., Ltd. Method for metabolizing carbazole in petroleum
CN100370020C (zh) * 2006-02-15 2008-02-20 山东大学 一株基因重组的红平红球菌及其在脱除原油有害物-硫和氮中的应用
US8087287B2 (en) * 2008-11-11 2012-01-03 GM Global Technology Operations LLC Method for analyzing engine oil degradation
US20160187315A1 (en) * 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
CN104745227B (zh) * 2015-04-01 2016-06-29 中国石油天然气集团公司 一种分离与分析石油组分中非碱性氮化合物的方法
CN106315868A (zh) * 2016-10-25 2017-01-11 山东大学 一株可代谢多种烃类的降解菌在石油污染物处理中的应用
CN108795483B (zh) * 2017-05-02 2020-07-14 中国石油天然气股份有限公司 一种分离和精制石油馏分中非碱性含氮化合物的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083095A2 (en) * 2010-12-16 2012-06-21 Exoonmobil Research And Engineering Company Generation of model-of-composition of petroleum by high resolution mass spectrometry and associated analytics
CN104849365A (zh) * 2015-05-06 2015-08-19 中国石油大学(华东) 一种地下生物降解稠油物性的预测方法
CN110412143A (zh) * 2019-06-11 2019-11-05 中国石油天然气股份有限公司 一种确定原油生物降解程度的方法

Also Published As

Publication number Publication date
CN111595922A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Smith et al. Crude oil polar chemical composition derived from FT− ICR mass spectrometry accounts for asphaltene inhibitor specificity
Rial-Otero et al. A review of synthetic polymer characterization by pyrolysis–GC–MS
Longnecker et al. Using network analysis to discern compositional patterns in ultrahigh‐resolution mass spectrometry data of dissolved organic matter
Kelemen et al. Thermal chemistry of nitrogen in kerogen and low-rank coal
Schmidt et al. Organic matter in particle‐size fractions from A and B horizons of a Haplic Alisol
Romano et al. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: An experimental workflow for the optimization of specificity, sensitivity, and accuracy
Williams et al. Charring and non-additive chemical reactions during ramped pyrolysis: Applications to the characterization of sedimentary and soil organic material
CN110412151B (zh) 一种确定油气藏相态的方法
Jenkins et al. Molecularly imprinted polymer sensors for detection in the gas, liquid, and vapor phase
CN111595922B (zh) 根据石油组学判断稠油生物降解程度的方法
Smith et al. Petroleomic characterization of bio-oil aging using Fourier-transform ion cyclotron resonance mass spectrometry
CN111595928B (zh) 原油热裂解程度的判断方法
Pötz et al. Using polar nitrogen-, sulphur-and oxygen-compound compositions from ultra-high resolution mass spectrometry for petroleum fluid assessment in the Eagle Ford Formation, Texas
CN111595929B (zh) 采用芳香烃化合物含量确定稠油生物降解程度的方法
Lis et al. D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity
CN112289386A (zh) 确定化合物分子量的方法及装置
CN111595923B (zh) 一种利用石油组学确定原油热裂解程度的方法
CN111595924B (zh) 凝析油气侵程度的确定方法
CN111595930B (zh) 根据芳香烃化合物确定原油tsr程度的方法
CN111595931B (zh) 利用芳香烃化合物判断凝析油气侵程度的方法
CN111595925B (zh) 一种根据石油组学判断凝析油tsr程度的方法
Narinesingh et al. A screening method for trace mercury analysis using flow injection with urease inhibition and fluorescence detection
Gryglewicz et al. Determination of elemental sulfur in coal by gas chromatography–mass spectrometry
Scharpen The dispersion of platinum on silica-correlation of esca and gas adsorption data
Javidi et al. The effect of temperature and acid gas loading on corrosion behavior of API 5L X52 carbon steel in amine unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant