CN111585449B - 双级式矩阵变换器的虚拟矢量调制型模型预测算法 - Google Patents

双级式矩阵变换器的虚拟矢量调制型模型预测算法 Download PDF

Info

Publication number
CN111585449B
CN111585449B CN202010483087.8A CN202010483087A CN111585449B CN 111585449 B CN111585449 B CN 111585449B CN 202010483087 A CN202010483087 A CN 202010483087A CN 111585449 B CN111585449 B CN 111585449B
Authority
CN
China
Prior art keywords
vectors
virtual
stage
vector
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010483087.8A
Other languages
English (en)
Other versions
CN111585449A (zh
Inventor
公铮
李景杰
苏大汇
赵纯
戴鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010483087.8A priority Critical patent/CN111585449B/zh
Publication of CN111585449A publication Critical patent/CN111585449A/zh
Application granted granted Critical
Publication of CN111585449B publication Critical patent/CN111585449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明公开了一种双级式矩阵变换器的虚拟矢量调制型模型预测算法,该策略在整流级采取传统调制型模型预测控制算法,在逆变级通过无差拍控制将电流模型转换成电压模型,确定期望矢量的扇区,然后计算其相邻有效矢量和零矢量的价值函数,以避免在所有开关状态下遍历优化,同时构造三个虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量参与调制,与整流级所选的有效矢量协调配合控制变换器开关。本发明的有益之处是与传统调制型模型预测控制策略相比,该策略在不影响计算负担的情况下减小了控制误差,提高了系统的控制性能,改善了输入输出电流质量。

Description

双级式矩阵变换器的虚拟矢量调制型模型预测算法
技术领域
本发明涉及电力电子变换器模型预测控制技术,具体涉及双级式矩阵变换器的虚拟矢量调制型模型预测算法。
背景技术
双级式矩阵变换器是一种新型交-交变换器,不仅具有传统矩阵变换器的输入输出电流正弦、能量可双向流动、无需直流储能元件、功率密度高、结构紧凑等优点,还具有整流级零电流换流,钳位电路控制简单等优点,非常具有发展潜力。在过去20多年间,引起了国内外众多学者的关注。
常规控制技术一般基于比例积分控制器,当需要同时实现多个控制目标时,就需要设计多个和级联的控制回路,使得控制方法非常复杂。与这些常规控制算法相比,1970年代末提出的模型预测控制(MPC)对矩阵变换器具有许多优势,例如易于实现多个控制目标,高动态性能,灵活的约束限制等。有限控制集模型预测控制(FCS-MPC)由于其直观的概念已成为电力转换器最有吸引力的预测控制方法。但是其控制性能受到以下两个缺点的限制:一是计算负担大,二是可变的开关频率特性导致电流纹波大。为了固定开关频率,学者为IMC提出了一种调制型模型预测控制(M2PC)算法,该算法保留了传统FCS-MPC的优点,通过成本函数最小化过程选择两个或多个开关状态,然后在固定的开关周期内连续应用。因此,可以改善有关IMC的输入和输出功率质量的稳态性能。
发明内容
本发明的目的是,保留传统调制型模型预测控制算法的固有特性,在不影响计算负担的前提下提高系统的控制性能,改善输入输出电流特性。
本发明所采用的技术方案为:
在整流级采取传统调制型模型预测控制算法,在逆变级通过无差拍控制将电流模型转换成电压模型,确定期望矢量的扇区,然后计算其相邻有效矢量和零矢量的价值函数,以避免在所有开关状态下遍历优化,同时构造三个虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量参与调制。
本发明与现有技术相比所产生的效果为:
相较于现有调制型模型预测控制算法,输入输出电流谐波含量更低,动态响应更快,且不增加计算负担;
附图说明
图1:双级式矩阵变换器的拓扑;
图2:逆变级空间矢量扇区分布;
图3:整流级和逆变级的开关模式;
图4:虚拟矢量扇区图;
具体实施方式
下面结合附图对本发明做进一步说明;
一种双级式矩阵变换器的拓扑如图1所示,主电路拓扑主要由整流级和逆变级两部分构成。整流级和逆变级。整流级是由六个双向开关组成的电流源型整流器,逆变级是传统的三相两电平电压源型逆变器。整流级和逆变级通过虚拟直流侧耦合在一起,因此整流级可采用零电流换流方式。
整流级预测控制算法同传统调制型模型预测控制中的一致,从整流级的有效矢量中选择直流侧输出电压为正值的三个,它们的价值函数的可以通过下式计算得到:
g=|iref-i(k+1)|
式中:iref为电流参考值,i(k+1)为电流k+1采样时刻的预测值;
根据上式可计算出三个有效矢量所对应的价值函数,然后利用排序算法选出价值函数最小的两个相邻有效矢量。
假设利用排序算法选出的矢量为Ia和Ib,其价值函数分别为gra和grb,则定义各矢量作用占空比为:
Figure GDA0003553483540000021
在逆变级预测控制算法中将电流预测模型转换成电压预测模型,确定期望矢量的扇区,然后计算其相邻有效矢量和零矢量的价值函数,以避免在所有开关状态下遍历优化,同时构造三个虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量,与整流级所选的有效矢量协调配合完成开关的控制。
(1)将参考输出电流转化为期望输出电压;
当双级式矩阵变换器带阻感负载时,利用前向欧拉法获得负载侧的离散模型:
Figure GDA0003553483540000022
式中:io(k+1)为输出电流k+1时刻的预测值,io(k)为实际的输出电流值,uo(k)为逆变级输出电压值,Ts是开关周期,RL是负载电阻值,LL是负载电感值;
为实现对输出电流的跟踪,则下一时刻的输出电流应与下一时刻输出电流参考值相等,即:io(k+1)=ioref;对上式进行变换可得:
Figure GDA0003553483540000023
式中:uoref(k)逆变级的期望输出电压,也就是图2中的Uref
获得逆变级的期望输出电压后,可以判断其所处扇区,扇区分布如图2所示,进而选出与其相邻的两个有效矢量。
(2)利用与逆变级期望输出电压矢量相邻的有效矢量,结合零矢量来构建虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量,具体如下:
选出有效矢量Um和Un后,根据下式计算所选矢量的价值函数gim和gin:
g=|iref-i(k+1)|
式中:ioref为电流参考值,i(k+1)为电流k+1采样时刻的预测值;
零矢量的价值函数gi0可以通过下式求得:
gi0=IorefRL|ioref-i(k+1)|
式中:Ioref为期望输出相电流的幅值;
进而通过下式构造虚拟矢量Uvx、Uv(x+1)、Uv(x+6),x均表示扇区值,x=1,…,6:
Figure GDA0003553483540000031
再通过下式分别求得所构造的虚拟矢量的价值函数:
gv=|uoref(k)-Uv|
式中:uoref(k)为期望输出电压,Uv是虚拟矢量;
最终从三个虚拟矢量中选择价值函数最小的两个矢量参与调制。
(3)由于双级式矩阵变换器直流侧不含储能元件,因此需要协调配合控制整流级和逆变级的开关状态;图4给出了整流级和逆变级的开关模式。为了改善输入和输出谐波特性,开关状态模式类似于通用SVPWM方案。从逆变器级的矢量分布来看,在每个采样周期中应用两个不同的零矢量,降低开关次数,实现最小的开关损耗。此外,当整流器级发生换向时,总是将零矢量应用于逆变器级,这种零电流换流不仅可以简化换流过程,而且可以确保双级式矩阵变换器的安全性。
下面介绍本发明公开的双级式矩阵变换器的虚拟矢量调制型模型预测算法的原理,以第一扇区为例,构建的虚拟矢量Uv1、Uv2、Uv7如图3所示,结合上式我们可以推导出:
Figure GDA0003553483540000032
假设AD表示线段AD的长度,其他类似,
Figure GDA0003553483540000033
由价值函数的求取公式可知,一个矢量的价值函数表示期望矢量与该矢量差的绝对值,所以gi1=AC,gi2=BC,因为AB<gi1+gi2,所以AD<gi1,BD<gi2。可以推断出∠BDC>∠BCD和∠ADC>∠ACD。因为∠CBD和∠CAD都小于π/3,所以∠BDC>∠CBD,∠ADC>∠CAD,然后我们可以得到CD<BC,CD<AC。因此,可以得出结论,根据等式(22)获得的虚拟矢量Uv7的控制误差小于矢量U1和U2
类似地,可以证明CE<OC,CE<AC和CF<OC,CF<BC,Uv1的控制误差小于U0/U7和U1,并且Uv2的控制误差小于U0/U7和U2。因此,从理论上证明了该方法可以减小控制误差。

Claims (2)

1.双级式矩阵变换器的虚拟矢量调制型模型预测算法,其特征在于:该算法在逆变级通过无差拍控制将电流预测模型转换成电压预测模型,确定期望矢量的扇区,然后计算其相邻有效矢量和零矢量的价值函数,以避免在所有开关状态下遍历优化,同时构造三个虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量,与整流级所选的有效矢量协调配合完成变换器开关的控制;其中逆变级通过无差拍控制来确定期望矢量的扇区,将参考输出电流转化为期望输出电压;当双级式矩阵变换器带阻感负载时,利用前向欧拉法获得负载侧的离散模型:
Figure FDA0003563096290000011
式中:io(k+1)为输出电流k+1时刻的预测值,io(k)为实际的输出电流值,uo(k)为逆变级输出电压值,Ts是开关周期,RL是负载电阻值,LL是负载电感值;
为实现对输出电流的跟踪,则下一时刻的输出电流应与下一时刻输出电流参考值相等,即:io(k+1)=ioref;对上式进行变换可得:
Figure FDA0003563096290000012
式中:uoref(k)逆变级的期望输出电压;
获得逆变级的期望输出电压后,可以判断其所处扇区,进而选出与其相邻的两个有效矢量而后进行构建虚拟矢量:利用与逆变级期望输出电压矢量相邻的有效矢量,结合零矢量来构建虚拟矢量,计算虚拟矢量的价值函数并进行排序,选择价值函数较小的两个虚拟矢量参与调制,具体如下:
选出有效矢量Um和Un后,根据下式计算所选矢量的价值函数gim和gin:
g=|iref-i(k+1)|
式中:ioref为电流参考值,i(k+1)为电流k+1采样时刻的预测值;
零矢量的价值函数gi0可以通过下式求得:
gi0=IorefRL|ioref-i(k+1)|
式中:Ioref为期望输出相电流的幅值;
进而通过下式构造虚拟矢量Uvx、Uv(x+1)、Uv(x+6),x均表示扇区值,x=1,…,6:
Figure FDA0003563096290000013
再通过下式分别求得所构造的三个虚拟矢量的价值函数:
gv=|uoref(k)-Uv|
式中:uoref(k)为期望输出电压;
最终从三个虚拟矢量中选择价值函数最小的两个矢量参与调制。
2.如权利要求1所述的双级式矩阵变换器的虚拟矢量调制型模型预测算法,其特征在于:整流级和逆变级开关的协调配合控制,具体如下:
为了改善输入和输出谐波特性,开关状态模式类似于通用SVPWM方案,在每个采样周期中应用两个不同的零矢量,降低开关次数,实现最小的开关损耗;此外,当整流器级发生换向时,总是将零矢量应用于逆变器级,这种零电流换流不仅可以简化换流过程,而且可以确保双级式矩阵变换器的安全性。
CN202010483087.8A 2020-06-01 2020-06-01 双级式矩阵变换器的虚拟矢量调制型模型预测算法 Active CN111585449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010483087.8A CN111585449B (zh) 2020-06-01 2020-06-01 双级式矩阵变换器的虚拟矢量调制型模型预测算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010483087.8A CN111585449B (zh) 2020-06-01 2020-06-01 双级式矩阵变换器的虚拟矢量调制型模型预测算法

Publications (2)

Publication Number Publication Date
CN111585449A CN111585449A (zh) 2020-08-25
CN111585449B true CN111585449B (zh) 2022-05-27

Family

ID=72119793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010483087.8A Active CN111585449B (zh) 2020-06-01 2020-06-01 双级式矩阵变换器的虚拟矢量调制型模型预测算法

Country Status (1)

Country Link
CN (1) CN111585449B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054656A (zh) * 2020-09-25 2020-12-08 安徽理工大学 一种固定开关频率的模型预测控制算法
CN112288235B (zh) * 2020-10-10 2022-07-29 国网江苏省电力有限公司泰州供电分公司 配电网用户接入方案的生成方法及存储介质
CN113726202B (zh) * 2021-09-07 2023-08-18 重庆理工大学 一种pwm整流器的模型预测控制方法
CN114157164B (zh) * 2021-12-07 2023-07-21 山东大学 高频高效功率变换直接功率快速精准控制方法及系统
CN114362548B (zh) * 2021-12-20 2023-10-13 中国矿业大学 一种双级式矩阵变换器最优开关序列模型预测控制算法
CN114509945B (zh) * 2022-02-15 2023-12-05 山东大学 一种双级式固态变压器的动态参考预测控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245116A (zh) * 2015-10-19 2016-01-13 东北电力大学 一种减少双级矩阵变换器换流次数的载波调制方法
CN108153150A (zh) * 2017-11-21 2018-06-12 中国矿业大学 基于空间矢量调制的双级式矩阵变换器模型预测控制策略

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245116A (zh) * 2015-10-19 2016-01-13 东北电力大学 一种减少双级矩阵变换器换流次数的载波调制方法
CN108153150A (zh) * 2017-11-21 2018-06-12 中国矿业大学 基于空间矢量调制的双级式矩阵变换器模型预测控制策略

Also Published As

Publication number Publication date
CN111585449A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN111585449B (zh) 双级式矩阵变换器的虚拟矢量调制型模型预测算法
CN105897030B (zh) 一种无差拍定频模型预测控制方法、装置及系统
CN110045610A (zh) 逆变器改进型多步模型预测控制方法、设备及存储设备
CN108153150A (zh) 基于空间矢量调制的双级式矩阵变换器模型预测控制策略
Wang et al. Minimum-current-stress scheme of three-level dual-active-bridge dc–dc converters with the particle swarm optimization
Kwon et al. Line current improvement of three-phase four-wire vienna rectifier using dead-beat control
CN103929073B (zh) 一种三电平pwm整流器的变开关组合直接功率控制方法
Grigoletto et al. Space vector modulation for packed-U-cell converters (PUC)
Izadinia et al. Optimized current control of vienna rectifier using finite control set model predictive control
Nguyen et al. An approach of sparse matrix converter using Z-source network
Wang et al. Research on split-source two-stage matrix converter and its modulation strategy
Mandal et al. Optimizing Transformer RMS Current Using Single Phase Shift Variable Frequency Modulation for Dual Active Bridge DC-DC Converter
Van Ngo et al. Model predictive power control based on virtual flux for grid connected three-level neutral-point clamped inverter
Ni et al. A new model predictive control formulation for chb inverters
CN113676065A (zh) 优化电压矢量的维也纳整流器的模型预测控制方法及系统
CN107181415B (zh) 一种固态变压器模型预测控制方法
CN114362548B (zh) 一种双级式矩阵变换器最优开关序列模型预测控制算法
Lin et al. Multilevel AC/DC/AC converter by using three-level boost rectifier and five-level diode clamped inverter
Bai et al. A Modular Designed Three-phase~ 98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs
KR20200079135A (ko) 모델 예측 제어를 통한 전력 변환 시스템의 구동 제어 장치 및 방법
Guler et al. An MPC-controlled Bidirectional Battery Charger with DC-DC and Three-level F-type Converters
Fedyczak et al. Study of the current source matrix converter using model predictive control in AC drive system
Soleimanifard et al. A Dual Active Bridge Converter with Full ZVS Range Using a Buck-Boost Converter
Chiu et al. Modelling of a two-stage bidirectional AC-DC converter using wavelet modulation
Liu et al. Output high order sliding mode control of unity power factor in three-phase AC/DC boost converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant