CN111575538B - 一种适用于激光熔覆用的高钨镍基合金粉末 - Google Patents

一种适用于激光熔覆用的高钨镍基合金粉末 Download PDF

Info

Publication number
CN111575538B
CN111575538B CN202010602384.XA CN202010602384A CN111575538B CN 111575538 B CN111575538 B CN 111575538B CN 202010602384 A CN202010602384 A CN 202010602384A CN 111575538 B CN111575538 B CN 111575538B
Authority
CN
China
Prior art keywords
nickel
tungsten
alloy powder
based alloy
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010602384.XA
Other languages
English (en)
Other versions
CN111575538A (zh
Inventor
郭韶山
顾孙望
卢林
吴文恒
刘伟兵
缪旭日
陈洋
张天原
杨华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongtian Shangcai Additive Manufacturing Co ltd
Original Assignee
Zhongtian Shangcai Additive Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongtian Shangcai Additive Manufacturing Co ltd filed Critical Zhongtian Shangcai Additive Manufacturing Co ltd
Priority to CN202010602384.XA priority Critical patent/CN111575538B/zh
Publication of CN111575538A publication Critical patent/CN111575538A/zh
Application granted granted Critical
Publication of CN111575538B publication Critical patent/CN111575538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种适用于激光熔覆用的高钨镍基合金粉末,包含以下质量百分比的各组分:Ni:余量、B:1.0~1.5%、Si:1.0~2.5%、Cr:12.5~18%、W:14.5~18%、Nb:0.2~1.4%、Fe:0.01~5%、C:0.2~1.0%、其他杂质≤0.5%。本发明的优点可有效提高熔覆效率低等缺陷的问题,降低了生产成本,从而提升熔覆层的耐磨性及使用寿命,取得了明显的经济效益。

Description

一种适用于激光熔覆用的高钨镍基合金粉末
技术领域
本发明涉及镍基合金粉末和激光熔覆技术领域,特别涉及一种适用于激光熔覆用的高钨镍基合金粉末。
背景技术
3D打印是一种利用激光或电子束等手段,依据三维建模,在计算机控制下逐层添加堆积材料直接快速精确形成零件的制造技术,也称“ 增材制造”。增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,相较于材料去除(或变形)的传统加工和常见的特种加工技术,增材制造技术有着极高的材料利用率。激光熔覆(Laser Cladding)作为一种新的表面改性技术,通过在基底合金表面上预置或同步送给所选择的金属熔覆材料,然后经激光处理使之与基底表层同时熔化,并快速凝固成与基底材料呈冶金结合的表面层,从而显著改变基底材料的耐磨、耐蚀、耐热等特性的工艺方法。在工业领域和民用的金属材料中,镍基合金的比例是较大的,是工业最重要的基础材料之一,它的附加价值也很大,尤其是高钨镍基合金。它具有以下特性:(1)外观质量干燥,无明显氧化色颗粒,无目视可见夹杂;(2)耐腐蚀性能好,特别是耐点蚀性能优秀;(3)高温强度优秀,加工硬化性、抗蠕变性能优秀;(4)所形成的熔覆层具有高强度,可塑性强,良好的耐高温,抗氧化性能,制备的熔覆层致密好,无气孔、无杂质、组织致密、晶粒细化等优点;(5)塑韧性好,成本低等优点。可有效提高熔覆效率;(6)固溶状态无磁性。高钨镍基合金集性能、外观与使用特性于一身,所以它未来仍将是最佳的工业和民用材料之一。采用铸造和锻造等传统工艺制造的镍基合金零件,分别存在宏观成分偏析和材料利用率低、氧化严重,且形状不规则,压制后综合性能并不理想 ,而采用3D打印技术,可有效克服上述缺点。用于3D打印技术的高钨镍基合金粉末具有不同于传统粉末冶金所需要的粉末特性,不仅要求粉末纯度高、氧含量低,还要求粉末球形度高、粒度分布均匀,以及良好的流动性和松装密度。高钨镍基合金粉末主要用途在涡轮增压器、微型燃气轮机喷嘴环、发动机气门座圈、工业电炉等方面。目前,金属粉末的主要制备方法是气雾化法,其基本原理是用高速气流将液态金属流破碎成小液滴并快速凝固成粉末的过程,由于气雾化法制备的粉末具有纯净度高、氧含量低、粉末粒度可控、生产成本低以及球形度高等优点,特别能够满足3D打印技术对于金属粉末性能的要求,已成为高性能及特种合金粉末制备技术的主要发展方向。
发明内容
本发明的目的是为了克服传统镍基合金粉末在激光熔覆技术上存在的耐磨性和耐蚀性不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题,开发出一种用于激光熔覆技术的高钨镍基合金粉末,从而提升熔覆层的耐磨性及使用寿命。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种适用于激光熔覆用的高钨镍基合金粉末,其特征在于,包含以下质量百分比的各组分:Ni:余量、B:1.0~1.5%、Si:1.0~2.5%、Cr:12.5~18%、W:14.5~18%、Nb:0.2~1.4%、Fe:0.01~5%、C:0.2~1.0%、其他杂质≤0.5%。
优选的,所述高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um。
优选的,所述高钨镍基合金粉末外貌球形或近球形,显微颗粒球形度ψ≥80%,松装密度≥4.50g/cm³ ,振实密度≥5.20g/cm³。
优选的,所述高钨镍基合金粉末流动性为≤20s/50g,氧含量≤200ppm。
优选的,所述高钨镍基合金粉末采用气雾化制备,主要为在真空气雾化炉中用高速气流将液态金属流破碎成小液滴并快速凝固成粉末。
优选的,采用半导体激光器,所述激光熔覆工艺参数为:激光功率3000W,光斑直径1.2mm,扫描线速度为60m/min,真空环境≤0.2pa,送粉速率为50g/min,工作气体为氩气。
综上所述,本发明具有以下有益效果:
1.本发明的高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um,流动性为≤20s/50g,外貌球形或近球形,显微颗粒球形度ψ ≥80%,氧含量≤200ppm,松装密度≥4.50g/cm³ ,振实密度≥5.20g/cm³,提高了粉末在激光熔覆的各项性能,通过3D打印得到的成形件组织均匀、致密,尺寸精度高,力学性能优良。
2.本发明的高钨镍基合金粉末硬度可达50HRC~60HRC,且熔覆层强度、硬度和耐磨性高,塑韧性好,成本低等优点,能够克服传统镍基合金金属粉末在激光熔覆技术上存在的耐磨性、耐蚀性、硬度不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题;从而提升熔覆层的耐磨性及使用寿命。
3.本发明的高钨镍基合金粉末主要是通过在真空气雾化炉中用高速气流将液态金属流破碎成小液滴并快速凝固成粉末,气雾化法制备的高钨镍基合金粉末具有纯净度高、氧含量低、粉末粒度可控、生产成本低以及球形度高等优点。
附图说明
图1是本发明的高钨镍基合金粉末颗粒形貌图;
图2是本发明中实施例1激光熔覆制备熔覆层表面宏观图;
图3是本发明中对比例1激光熔覆制备熔覆层表面宏观图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明,本实施例不构成对本发明的限制。
实施例1:
按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.2%、Si:1.5%、Cr:13.4%、W:15.8%、Nb:0.4%、Fe:2.2%、C:0.4%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在94um,流动性为≤18s/50g,显微颗粒球形度ψ ≥82%,氧含量157ppm,松装密度4.67g/cm³ ,振实密度5.2g/cm³。
实施例2;
按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.4%、Si:2.0%、Cr:17.7%、W:17.1%、Nb:1.1%、Fe:4.2%、C:0.8%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在94um,流动性为≤18s/50g,显微颗粒球形度ψ ≥83%,氧含量161ppm,松装密度4.61g/cm³ ,振实密度5.4g/cm³。
对比例1
按质量百分比计,配料成份(烧损后)为Ni:余量、B:0.8%、Si:0.8%、Cr:18.7%、W:19%、Nb:1.6%、Fe:6%、C:1.1%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在89um,流动性为≤19s/50g,显微颗粒球形度ψ≥83%,氧含量186ppm,松装密度4.58g/cm³,振实密度5.2g/cm³。
对比例2
按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.9%、Si:2.8%、Cr:10.1%、W:12.3%、Nb:0.1%、Fe:3.2%、C:0.4%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在93um,流动性为≤18.9s/50g,显微颗粒球形度ψ ≥82%,氧含量178ppm,松装密度4.65g/cm³ ,振实密度5.3g/cm³。
实施例1和实施例2粉末成分均在优选范围之内,对比例1和对比例2粉末成分未在优选范围之内,取得以上四种粉末后,分别做以下四个步骤:
(1)对上述四种高钨镍基合金粉末进行筛分、分级、干燥处理。(2)采用车床加工清除转轴类工件表面氧化层和其他杂质,转轴类工件尺寸为Φ13mm×72mm,其中工件熔覆面积为0.3125㎡。(3)在步骤(2)所述工件表面采用激光熔覆制备熔覆层,所用激光器为半导体激光,激光熔覆工艺参数为:激光功率3000W,光斑直径1.2mm,扫描线速度为60m/min,真空环境≤0.2pa,送粉速率为50g/min,工作气体为氩气。
(4)在机床上对步骤(3)所得的工件按设计尺寸进行最终精加工,得到高钨镍基合金粉末的激光熔覆层。
序号 熔覆层硬度HRC 熔覆层及送粉情况
实施例1 57.2 未开裂、未堵粉
实施例2 59.4 未开裂、未堵粉
对比例1 52.4 有未熔合现象、小裂缝、未堵粉
对比例2 46.7 小裂缝、未堵粉
表1具体实施例及对比例熔覆层性能及熔覆层质量对比
结果分析
由表1和图1可以看出,本发明的高钨镍基合金粉末送粉情况均良好,其中不存在大量形状不规则的粉末颗粒,可以表明,采用本发明真空气雾化制备的镍基合金粉末微观形貌主要为规则的球形,少量的棒状结构,外观质量干燥,无明显氧化色颗粒,无目视可见夹杂,表面光滑,具有粒度分布均匀,杂质含量低等性能特点,实施例1和实施例2粉末成分均在优选范围之内,在60m/min的扫描线速度下得到的熔覆层性能优异,具有良好的硬度和熔覆层的质量。
由表1和图2能看出,对比例1得到的熔覆层的耐磨性能较差,存在未熔化颗粒和熔覆层有小裂缝的现象,导致激光熔覆60m/min的扫描线速度下熔覆层出现气孔等未熔合缺陷。而对比例2得到的熔覆层硬度偏低,并且熔覆层有小裂缝现象,两者均未达到使用要求。
本发明的高钨镍基合金粉末粉末进行筛分、分级、干燥处理,高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um,流动性为≤20s/50g,外貌球形或近球形,显微颗粒球形度ψ≥80%,氧含量≤200ppm,松装密度≥4.50g/cm³,振实密度≥5.20g/cm³,提高了粉末在激光熔覆的各项性能,克服了传统镍基合金金属粉末在激光熔覆技术上存在的耐磨性和耐蚀性不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题,可有效提高熔覆效率低等缺陷的问题,降低了生产成本,从而提升熔覆层的耐磨性及使用寿命,取得了明显的经济效益。
以上所述,仅是本发明的较佳实施例而已,不用于限制本发明,本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明技术方案的保护范围内。

Claims (3)

1.一种适用于激光熔覆用的高钨镍基合金粉末,其特征在于,包含以下质量百分比的各组分:Ni:余量、B:1.0~1.5%、Si:1.0~2.5%、Cr:12.5~18%、W:14.5~18%、Nb:0.2~1.4%、Fe:0.01~5%、C:0.2~1.0%、其他杂质≤0.5%,所述高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um,所述高钨镍基合金粉末外貌球形或近球形,显微颗粒球形度ψ≥80%,松装密度≥4.50g/cm³ ,振实密度≥5.20g/cm³,所述高钨镍基合金粉末流动性为≤20s/50g,氧含量≤200ppm。
2.根据权利要求1所述的一种适用于激光熔覆用的高钨镍基合金粉末,其特征在于:所述高钨镍基合金粉末采用气雾化制备,在真空气雾化炉中用高速气流将液态金属流破碎成小液滴并快速凝固成粉末。
3.根据权利要求1所述的一种适用于激光熔覆用的高钨镍基合金粉末,其特征在于:采用半导体激光器,所述激光熔覆工艺参数为:激光功率3000W,光斑直径1.2mm,扫描线速度为60m/min,真空环境≤0.2pa,送粉速率为50g/min,工作气体为氩气。
CN202010602384.XA 2020-06-29 2020-06-29 一种适用于激光熔覆用的高钨镍基合金粉末 Active CN111575538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010602384.XA CN111575538B (zh) 2020-06-29 2020-06-29 一种适用于激光熔覆用的高钨镍基合金粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010602384.XA CN111575538B (zh) 2020-06-29 2020-06-29 一种适用于激光熔覆用的高钨镍基合金粉末

Publications (2)

Publication Number Publication Date
CN111575538A CN111575538A (zh) 2020-08-25
CN111575538B true CN111575538B (zh) 2021-06-15

Family

ID=72123946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010602384.XA Active CN111575538B (zh) 2020-06-29 2020-06-29 一种适用于激光熔覆用的高钨镍基合金粉末

Country Status (1)

Country Link
CN (1) CN111575538B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643901A (zh) * 2008-08-06 2010-02-10 沈阳新松机器人自动化股份有限公司 一种结晶器表面激光熔覆的合金涂层及其制备方法
CN101864531A (zh) * 2008-12-25 2010-10-20 住友金属工业株式会社 奥氏体类耐热合金
CN102912188A (zh) * 2012-11-15 2013-02-06 江苏新亚特钢锻造有限公司 一种激光熔覆镍基合金粉末及其制备方法
EP3278907A1 (en) * 2015-03-31 2018-02-07 Sanyo Special Steel Co., Ltd. Metal powder composed of spherical particles
CN110923696A (zh) * 2019-11-01 2020-03-27 江苏特维克科技有限公司 一种球阀表面激光熔覆镍基材料及其增材制造工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190091802A1 (en) * 2017-09-25 2019-03-28 General Electric Company Method for forming article, method for forming turbine bucket, and turbine bucket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643901A (zh) * 2008-08-06 2010-02-10 沈阳新松机器人自动化股份有限公司 一种结晶器表面激光熔覆的合金涂层及其制备方法
CN101864531A (zh) * 2008-12-25 2010-10-20 住友金属工业株式会社 奥氏体类耐热合金
CN102912188A (zh) * 2012-11-15 2013-02-06 江苏新亚特钢锻造有限公司 一种激光熔覆镍基合金粉末及其制备方法
EP3278907A1 (en) * 2015-03-31 2018-02-07 Sanyo Special Steel Co., Ltd. Metal powder composed of spherical particles
CN110923696A (zh) * 2019-11-01 2020-03-27 江苏特维克科技有限公司 一种球阀表面激光熔覆镍基材料及其增材制造工艺

Also Published As

Publication number Publication date
CN111575538A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
WO2016013497A1 (ja) 合金構造体及び合金構造体の製造方法
CN107747019A (zh) 一种Ni‑Co‑Cr‑Al‑W‑Ta‑Mo系高熵高温合金及其制备方法
WO2016013498A1 (ja) 合金構造体及び合金構造体の製造方法
US20240123502A1 (en) Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof
CN113319292B (zh) 基于激光选区熔化成形的钽钨合金制备工艺及钽钨合金
CN108559997A (zh) 一种基于平面分区空间分层的动态梯度熔覆工艺和装置
CN104032153A (zh) 一种高强韧微晶硬质合金的制造方法
CN109161858A (zh) 一种掺氮的铝钪合金靶材及其制造方法
CN114450426A (zh) 合金、合金粉末、合金构件和复合构件
CN114737184B (zh) 一种高硬度的纳米TiC颗粒增强磷酸反应槽搅拌桨叶片高熵合金复合涂层及其制备方法
CN110629100B (zh) 一种氧化物弥散强化镍基高温合金的制备方法
CN106756168B (zh) 一种基于碳热还原三氧化钼制备Ti(C,N)基金属陶瓷的方法
CN106884109B (zh) 一种镍基多组元激光熔覆粉末及激光熔覆该粉末的方法
CN111575538B (zh) 一种适用于激光熔覆用的高钨镍基合金粉末
CN105710380A (zh) 含铝金属打印粉末及其制备方法
CN106702248B (zh) 耐腐蚀抗edm加工开裂的混晶硬质合金及制造方法
CN114570941B (zh) 一种电子束制备17-4ph马氏体沉淀不锈钢的工艺
CN111549344A (zh) 一种用于激光熔覆的镍基合金粉末
CN110468304A (zh) 一种镍基合金及其制备方法
JP7103548B2 (ja) Ni-Cr-Mo系合金部材、Ni-Cr-Mo系合金粉末、および、複合部材
CN107287472A (zh) 钴基含铌含铜粉末冶金法化纤切断刀的制造
LU504880B1 (en) Preparation Method for and the Application of Anti-crack Nickel-based Superalloy Powder
CN114472904B (zh) 一种用于3D打印的CuCrZr球形粉末制备方法
Li et al. Analysis of microstructure and performance of laser cladding WC-Fe316L alloy on the surface of 27SiMn steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant