CN111574061A - 在掺镨的常规玻璃和纤维中的高效发射 - Google Patents

在掺镨的常规玻璃和纤维中的高效发射 Download PDF

Info

Publication number
CN111574061A
CN111574061A CN202010101344.7A CN202010101344A CN111574061A CN 111574061 A CN111574061 A CN 111574061A CN 202010101344 A CN202010101344 A CN 202010101344A CN 111574061 A CN111574061 A CN 111574061A
Authority
CN
China
Prior art keywords
nanoclusters
optical material
praseodymium
fiber amplifier
encapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010101344.7A
Other languages
English (en)
Other versions
CN111574061B (zh
Inventor
M·P·罗伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonglei Co ltd
Original Assignee
Tonglei Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonglei Co ltd filed Critical Tonglei Co ltd
Publication of CN111574061A publication Critical patent/CN111574061A/zh
Application granted granted Critical
Publication of CN111574061B publication Critical patent/CN111574061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1695Solid materials characterised by additives / sensitisers / promoters as further dopants germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1696Solid materials characterised by additives / sensitisers / promoters as further dopants transition metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

在掺镨的常规玻璃和纤维中的高效发射。一种光学材料,包括:二氧化硅主体;以及,镨掺杂剂;其中镨原子被配置为在所述二氧化硅主体中形成纳米团簇。另外,所述光学材料可以含有镱共掺杂剂。纳米团簇包括Ge、Te、Ta、Lu和/或F、Cl,以使多声子猝灭最小化。此外,可以将所述纳米团簇封装在低声子能量壳中,以使向主体基质的能量转移最小化。

Description

在掺镨的常规玻璃和纤维中的高效发射
相关申请的交叉引用
本申请要求申请日为2019年2月19日、申请号为No.62/807,521的美 国临时专利申请的优先权。美国临时专利申请62/807,521的公开内容和全部 教导通过引用并入本申请。
技术领域
本发明主要涉及光学材料,更具体地,涉及掺镨光纤。
背景技术
由于与基质(matrix)的相互作用,镨(Pr)中的1.3μm跃迁发生多声 子猝灭,这从根本上完全消除了二氧化硅基主体(silica based hosts)中的辐 射发射。可以通过选择低声子能量主体(例如氟化物玻璃)使其最小化。尽 管在中红外(mid-IR)中氟化物光纤的光损耗低于二氧化硅,但在1.3μm处 二氧化硅光纤中的光损耗要低得多,这对光纤激光器和放大器是有利的。浓 度淬灭还显示出限制了中红外主体(例如氟化物玻璃)中的掺杂剂浓度。
发明内容
为了克服上述的缺点,本申请提出在二氧化硅中掺杂铒(Er)纳米团簇 显示出的高效率可以扩展到Pr,这可以允许更高的掺杂剂浓度和更优的性 能。
另外,有可能调整纳米团簇的形成,以将在1.3μm窗口中发生的激发态 吸收(ESA)转移到更长的波长。这将允许设备在此窗口中扩展操作范围, 这是非常需要的。
本公开的目的是探索在二氧化硅纤维中的掺Pr纳米团簇的优点,使得 针对二氧化硅纤维开发的技术可以用于该应用。
本发明的一种实施方式提供了一种光学材料,该光学材料含有:二氧化 硅主体;以及镨掺杂剂;其中镨原子被配置为在二氧化硅主体中形成富硅的 纳米团簇。
本发明的一种实施方式提供了一种光纤放大器,该光纤放大器包括由光 学材料制成的光纤,所述光学材料包括:二氧化硅主体;以及镨掺杂剂;其 中镨原子被配置为在二氧化硅主体中形成富硅的纳米团簇。
另外,光学材料可以含有镱共掺杂剂。纳米团簇可以含有Ge、Te、Ta、 Lu和/或F、Cl以及Pr,或者,纳米团簇可以完全由Ge、Te、Ta、Lu和/或 F、Cl以及Pr组成,以使多声子猝灭最小化。此外,可以将纳米团簇封装在 低声子能量壳中,以使得向主体基质(the hostmatrix)的能量转移最小化。
具体实施方式
在本文公开的本发明的实施方式的描述中,对方向或定向的任何引用仅 是为了方便描述,而不是以任何方式限制本发明的范围。相对术语,例如“下” (lower),“上”(upper),“水平”,“垂直”,“上”(above),“下”(below), “上”(up),“下”(down),“顶”(up)和“底”(bottom)以及它们的派生 词(例如,“水平地”(horizontally),“向下地”(downwardly),“向上地” (upwardly)等)应解释为指的是所描述的方向。这些相对术语仅是为了方 便描述,除非明确指出,否则不需要在特定方向上构造或操作该设备。除非 另有明确说明,诸如“附接”(attached),“使……附于”(affixed),“连接” (connected),“耦合”(coupled),“相互连接”(interconnected)等类似的术 语是指一种关系,其中结构通过中间结构、以及可移动的或刚性的附件或关 系直接或间接地彼此固定或彼此附接。而且,本发明的特征和优点通过参考 示例性实施方式来说明。因此,本发明明确地不应限于此种示例性实施方式, 这些示例性实施方式说明特征的一些可能的非限制性组合,这些非限制性组 合可以单独存在或者与其他特征相组合而存在;本发明的范围由所附的权利 要求书限定。
本发明描述了当前设想的实施本发明的最佳方式,该描述并非旨在以限 制性的意义来理解,而是提供了仅出于说明性目的给出的本发明的示例,以 向本领域的普通技术人员建议本发明的优点和构造。
本发明的实施方式提出将镨纳米团簇掺杂到二氧化硅预成型坯中,以拉 制适于制造1.3μm的放大器的低损耗光纤。纳米团簇被设计为最大程度地减 小来自聚集和多声子作用的猝灭的影响。该技术的优点是在感兴趣区域中 (the region of interest)的低损耗光纤、成本以及ESA光谱向更长波长的潜 在迁移。
本发明的一种实施方式在二氧化硅纤维中使用高效的Pr掺杂的纳米团 簇,以实现相对于氟化物纤维而言的优异性能。一个优选的实施方式包括与 Yb共掺杂以获得最佳性能。在本发明的一个实施方式中,纳米团簇包含但 不限于重金属和/或阴离子,以使得多声子猝灭最小化,重金属例如锗(Ge)、 碲(Te)、钽(Ta)、镥(Lu)等,阴离子例如氟(F-)和/或氯(Cl-)。
将Pr掺杂的纳米团簇封装在低声子能量壳中以使向主体基质的能量转 移最小化也可能是有利的。在一个实施方式中,通过耗尽纳米团簇的表面的 镨来封装所述纳米团簇。在另一个实施方式中,通过用未掺杂的组分或优化 的组分涂覆纳米团簇来封装纳米团簇,这种组分将活性离子与主体基质隔 离。
尽管已经就几个所述的实施方式较为详细地特别描述了本发明,但本发 明并不限于任何这样的细节或实施方式或任何具体实施方式,而应是参考所 附权利要求书来解释本发明,以便根据现有技术对此类权利要求提供最广泛 的解释,因此,从而有效地涵盖本发明的预期范围。此外,上文根据发明人 预见的实施方式描述了本发明,对于这些实施例可以使用使能描述,尽管本 发明的非实质性修改(目前尚未预见到)仍可以表示其等同形式。

Claims (18)

1.一种光学材料,含有:
二氧化硅主体;以及
镨掺杂剂;
其中镨原子被配置为在所述二氧化硅主体中形成纳米团簇。
2.根据权利要求1所述的光学材料,其中,所述光学材料还含有镱共掺杂剂。
3.根据权利要求1所述的光学材料,其中,所述纳米团簇还含有以下金属中的至少一种:Ge、Te、Ta、Lu,以使多声子猝灭最小化。
4.根据权利要求1所述的光学材料,其中,所述纳米团簇还含有以下阴离子中的至少一种:F-、Cl-,以使多声子猝灭最小化。
5.根据权利要求1所述的光学材料,其中,所述纳米团簇被配置为具有激发态吸收,所述激发态吸收使得在1.3微米波长区域内增益。
6.根据权利要求1所述的光学材料,其中,所述纳米团簇被配置为具有激发态吸收,所述激发态吸收使得增益谱在1.3微米区域内扩展到更长的波长。
7.根据权利要求1所述的光学材料,其中,所述纳米团簇是封装的。
8.根据权利要求7所述的光学材料,其中,通过耗尽所述纳米团簇表面的镨来封装所述纳米团簇。
9.根据权利要求7所述的光学材料,其中,通过用未掺杂的组分或优化的组分涂覆所述纳米团簇来封装所述纳米团簇,以使活性离子与主体基质隔离。
10.一种光纤放大器,所述光纤放大器包括由光学材料制成的光纤,所述光学材料含有:
二氧化硅主体;以及
镨掺杂剂;
其中镨原子被配置为在所述二氧化硅主体中形成纳米团簇。
11.根据权利要求10所述的光纤放大器,其中,所述光学材料还含有镱共掺杂剂。
12.根据权利要求10所述的光纤放大器,其中,所述纳米团簇还含有以下金属中的至少一种:Ge、Te、Ta、Lu,以使多声子猝灭最小化。
13.根据权利要求10所述的光纤放大器,其中,所述纳米团簇还含有以下阴离子中的至少一种:F-、Cl-,以使多声子猝灭最小化。
14.根据权利要求10所述的光纤放大器,其中,所述纳米团簇被配置为具有激发态吸收,所述激发态吸收使得所述光学材料在1.3微米波长区域内增益。
15.根据权利要求10所述的光纤放大器,其中,所述纳米团簇被配置为具有激发态吸收,所述激发态吸收使得增益谱在1.3微米区域内扩展到更长的波长。
16.根据权利要求10所述的光纤放大器,其中,所述纳米团簇是封装的。
17.根据权利要求16所述的光纤放大器,其中,通过耗尽所述纳米团簇表面的镨来封装所述纳米团簇。
18.根据权利要求16所述的光纤放大器,其中,通过用未掺杂的组分或优化的组分涂覆所述纳米团簇来封装所述纳米团簇,以使活性离子与主体基质隔离。
CN202010101344.7A 2019-02-19 2020-02-19 在掺镨的常规玻璃和纤维中的高效发射 Active CN111574061B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962807521P 2019-02-19 2019-02-19
US62/807,521 2019-02-19

Publications (2)

Publication Number Publication Date
CN111574061A true CN111574061A (zh) 2020-08-25
CN111574061B CN111574061B (zh) 2022-08-12

Family

ID=69784012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010101344.7A Active CN111574061B (zh) 2019-02-19 2020-02-19 在掺镨的常规玻璃和纤维中的高效发射

Country Status (4)

Country Link
US (1) US11502474B2 (zh)
EP (1) EP3706260B1 (zh)
CN (1) CN111574061B (zh)
CA (1) CA3072672A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119052A (zh) * 1993-03-05 1996-03-20 阿尔卡塔尔有限公司 用于波长范围约1300nm左右的光纤放大器的光波导
US5694500A (en) * 1995-10-23 1997-12-02 The Regents Of The University Of California Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials
WO2001031367A2 (en) * 1999-10-18 2001-05-03 Corning Incorporated Method for making nanocrystalline glass-ceramic fibers
US20020064366A1 (en) * 2000-10-02 2002-05-30 Cole Brian J. Novel heavy metal modified silica glass fibers doped with thulium, holmium,and thulium-sensitized-holmium high quantum efficiencies
EP1304774A1 (en) * 2001-10-02 2003-04-23 University Of Southampton Low phonon energy gain medium and its method of fabrication
CN101933200A (zh) * 2008-02-01 2010-12-29 阿尔卡特朗讯 掺杂稀土离子的光波导和包括光波导的光学器件
US20180109063A1 (en) * 2016-10-14 2018-04-19 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanoparticle doping for lasers and amplifiers operating at eye-safer wavelengths, and/or exhibiting reduced stimulated brillouin scattering

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003981B2 (en) * 2001-10-02 2006-02-28 University Of Southhampton Low phonon energy gain medium and related active devices
KR20050116364A (ko) * 2003-01-22 2005-12-12 그룹 Iv 세미콘덕터 아이엔씨. 도프트 반도체 나노결정층, 도프트 반도체 분말 및 이러한층 또는 분말을 이용한 광소자
US7407604B2 (en) * 2004-01-08 2008-08-05 Rutgers The State University Of New Jersey Nanostructured re-doped SiO2-base fluorescent materials and methods for production of same
US20060039433A1 (en) * 2004-08-20 2006-02-23 Simpson John T Silicon nanocrystal/erbium doped waveguide (SNEW) laser
US20060222592A1 (en) * 2005-04-05 2006-10-05 Clemens Burda Nanoparticles and methods of manufacturing nanoparticles for electronic and non-electronic applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119052A (zh) * 1993-03-05 1996-03-20 阿尔卡塔尔有限公司 用于波长范围约1300nm左右的光纤放大器的光波导
US5694500A (en) * 1995-10-23 1997-12-02 The Regents Of The University Of California Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials
WO2001031367A2 (en) * 1999-10-18 2001-05-03 Corning Incorporated Method for making nanocrystalline glass-ceramic fibers
US20020064366A1 (en) * 2000-10-02 2002-05-30 Cole Brian J. Novel heavy metal modified silica glass fibers doped with thulium, holmium,and thulium-sensitized-holmium high quantum efficiencies
EP1304774A1 (en) * 2001-10-02 2003-04-23 University Of Southampton Low phonon energy gain medium and its method of fabrication
CN101933200A (zh) * 2008-02-01 2010-12-29 阿尔卡特朗讯 掺杂稀土离子的光波导和包括光波导的光学器件
US20180109063A1 (en) * 2016-10-14 2018-04-19 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanoparticle doping for lasers and amplifiers operating at eye-safer wavelengths, and/or exhibiting reduced stimulated brillouin scattering

Also Published As

Publication number Publication date
CN111574061B (zh) 2022-08-12
US20200266600A1 (en) 2020-08-20
CA3072672A1 (en) 2020-08-19
EP3706260B1 (en) 2022-01-05
US11502474B2 (en) 2022-11-15
EP3706260A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
Dianov et al. CW bismuth fibre laser
JP5400587B2 (ja) 増幅光ファイバおよび生産方法
EP2338845B1 (en) A rare-earth-doped optical fiber having small numerical aperture
Bufetov et al. Bi-doped optical fibers and fiber lasers
JP4722939B2 (ja) 希土類添加コア光ファイバ及びその製造方法
EP2187486B1 (en) Amplifying optical fiber and method of manufacturing
EP2091115B1 (en) Amplifier optical fiber comprising nanoparticles and production method
WO1991011401A1 (fr) Verres quartzeux dopes avec un element de terre rare et production d'un tel verre
Manzani et al. 1.5 μm and visible up-conversion emissions in Er 3+/Yb 3+ co-doped tellurite glasses and optical fibers for photonic applications
Paul et al. Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber
CN111574061B (zh) 在掺镨的常规玻璃和纤维中的高效发射
KR100427446B1 (ko) 광증폭기용 광섬유 및 제조방법
Vivona et al. Influence of ${\rm Ce}^{3+} $ Codoping on the Photoluminescence Excitation Channels of Phosphosilicate Yb/Er-Doped Glasses
Shi-Qing et al. Spectral properties of erbium-doped oxyfluoride silicate glasses for broadband optical amplifiers
Kuwada et al. Ultrawideband light emission from bismuth and erbium doped silica
JP5932674B2 (ja) 希土類添加の光ファイバ及びその製造方法
Wu et al. Effect of silver nanoparticles on spectroscopic properties of Er 3+-doped bismuth glass
Damanhuri et al. Effects of Yb/Tm concentration and pump wavelength on the performance of ytterbium-sensitized thulium-doped fiber laser
Scheuner et al. Advances in optical fibers fabricated with granulated silica
Tao et al. Spectroscopic properties and thermal stability of Er3+/Yb3+-codoped fluorophosphate glasses
Harun et al. Development of CW and pulsed thulium ytterbium Co-doped fiber lasers using nano-engineered yttria-alimina-silica based gain medium in conjunction with cladding pumping technique
WO2010097872A1 (ja) 光増幅用光ファイバおよびファイバレーザ
Blanc et al. New challenges and directions toward nanoscale control of rare-earth properties in silica amplifying optical fibres
Balda et al. Color-Tunable Upconversion Luminescence in Er 3+-Yb 3+ Co-Doped Sodium Lutetium Fluoride Glass-Ceramics
Vargas Nanoparticle Doped Optical Fibers for High Energy Lasers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant