CN111573668B - 利用废炭化料粉制备的活性炭及其制备方法和应用 - Google Patents

利用废炭化料粉制备的活性炭及其制备方法和应用 Download PDF

Info

Publication number
CN111573668B
CN111573668B CN202010442454.XA CN202010442454A CN111573668B CN 111573668 B CN111573668 B CN 111573668B CN 202010442454 A CN202010442454 A CN 202010442454A CN 111573668 B CN111573668 B CN 111573668B
Authority
CN
China
Prior art keywords
coal
activated carbon
carbonized material
waste
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010442454.XA
Other languages
English (en)
Other versions
CN111573668A (zh
Inventor
解强
蒋煜
翟笑迪
葛晓东
黄小晴
石兴堂
梁鼎成
刘泽
刘金昌
常晓华
侯沛
李永梅
高磊
许丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Jinneng Holding Coal Group Co Ltd
Original Assignee
China University of Mining and Technology Beijing CUMTB
Jinneng Holding Coal Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB, Jinneng Holding Coal Group Co Ltd filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN202010442454.XA priority Critical patent/CN111573668B/zh
Publication of CN111573668A publication Critical patent/CN111573668A/zh
Application granted granted Critical
Publication of CN111573668B publication Critical patent/CN111573668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及活性炭制备领域,具体涉及利用废炭化料粉制备的活性炭及其制备方法和应用;本发明活性炭由在低变质程度煤中掺混废炭化料粉,加入粘结剂和水,形成原料,均匀混合后经挤出成型制成柱状成型料,再经炭化和活化后得到;其中,废炭化料粉是来自压块活性炭生产过程炭化阶段产生的粒度≤1mm的粉状固体废弃物,废炭化料粉占低变质程度煤和废炭化料粉总量的质量分数>0%,且≤10%;本发明制备得到的活性炭机械强度高、吸附性能好,实现了废炭化料的再利用,减少了环境污染;合理利用了难以处置的炭化料粉,制备出的柱状活性炭机械强度高,微孔率增加,比表面积增大,吸附性能好,掺混一定量的废炭化料,能够提高活性炭的装填密度和强度。

Description

利用废炭化料粉制备的活性炭及其制备方法和应用
技术领域
本发明涉及活性炭制备领域,具体涉及利用废炭化料粉制备的活性炭及其制备方法和应用。
背景技术
活性炭具有孔隙结构发达、比表面积大、吸附能力强等优点,被广泛应用于防毒面具、烟气脱硫脱硝、超级电容器、医药载体、血液净化、空气净化、气体贮存等领域。由于我国煤资源储量丰富、品种齐全,现已成为世界上最大的煤炭生产国,为煤基活性炭的生产和发展提供了良好的物质基础。目前,国内外生产的活性炭广泛用于水处理领域。
为满足不断增长的活性炭需求,生产规模大、产品品质好的压块活性炭生产工艺在我国得到了越来越广泛的应用。然而,压块活性炭工艺中产生了大量的炭化料粉。除了都是粒度≤1mm的粒度相似的粉状固体物以外,炭化料粉与焦粉的性质差异很大。焦炭是由焦煤或气煤、肥煤、焦煤、瘦煤等组成的配煤在隔绝空气情况下加热到950-1050℃得到的固体产物,而炭化料粉是来自压块活性炭生产过程的炭化阶段,由压块料在缺氧或惰性气氛下在450-650℃加热产生的固体产物。焦粉可以用于高炉喷吹、制备电极材料而得到利用,但是,由于缺乏适宜的工业化活化设备,小粒径的炭化料粉难以进一步活化制成活性炭;作为炭化产物,挥发分低、燃点高、难以燃烧处理,也不能掺入原料煤中直接再去压块,会影响其成型性。因此,大量的炭化料粉只能废弃,既造成资源浪费,还引起环境污染。
我国低变质程度煤储量丰富,部分低变质程度煤,如山西大同煤具有灰分低、硫分低和挥发分适中等优点,是生产高比表面积中孔活性炭的理想原料,但原煤破碎炭生产工艺生产的水处理用活性炭堆重小、漂浮率高、机械强度不理想。
发明内容
本发明为解决低变质程度煤,如大同煤,石墨化程度低,以它为原料制备的活性炭堆重小,强度低,易漂浮在水面上、不利于形成稳定的过滤吸附床层。而压块成型制活性炭时会产生较多炭化料粉,因粒度达不到下一工序的要求常常被丢弃,造成资源浪费,而且破坏环境的技术问题,提供一种利用废炭化料粉制备的活性炭及其制备方法和应用。
废炭化料粉经过了一次炭化,具有固定碳含量高、强度较大、挥发分小等优点,基于柱状活性炭制备工艺,将废炭化料粉掺入低变质程度煤中,采用适宜的孔结构调节技术,制备出强度高、吸附性能好的活性炭,可有效利用废炭化料粉,对提高活性炭的应用价值也具有重要的意义。
将废炭化料粉与低变质程度煤和煤焦油按一定比例混合,制备出的活性炭具有机械强度高和吸附性优良等特点。
为解决上述技术问题,本发明所采用的技术方案为:一种利用废炭化料粉制备活性炭的方法,在低变质程度煤中掺混废炭化料粉,加入粘结剂和水,形成原料,均匀混合后经挤出成型制成柱状成型料,再经炭化和活化后得到活性炭;其中,所述废炭化料粉是来自压块活性炭生产过程炭化阶段产生的粒度≤1mm的粉状固体废弃物,其中,所述废炭化料粉占低变质程度煤和废炭化料粉总量的质量分数>0%,且≤10%。
进一步的,所述粘结剂占原料的质量分数为28-35%,所述水占原料的质量分数为1-10%。
进一步的,所述废炭化料粉占低变质程度煤和废炭化料总量的质量分数为2%-10%,优选为6%-10%。
优选的,上述活性炭中,所述废炭化料粉占低变质程度煤和废炭化料总量的质量分数为8-10%,更优选为8%。
本发明中,所述低变质程度煤指的是变质程度低的煤炭,例如褐煤、长焰煤、不黏煤、弱黏煤、黏煤和部分气煤,含水量和挥发分高,粘结性小。
进一步的,所述低变质程度煤选自褐煤、长焰煤、不黏煤或黏煤的一种,优选为长焰煤;所述粘结剂为煤焦油的沸点>280℃的重质馏分;废炭化料粉的挥发分为10%-25%,其中,所述挥发分为干燥无灰基挥发分;所述废炭化料粉的燃点在450℃以上。原料中低变质程度煤和废炭化料的粒度为90%以上通过200目筛。
进一步的,所述低变质程度煤选自褐煤、长焰煤、不黏煤或黏煤的一种;所述粘结剂为煤焦油的沸点>280℃的重质馏分;废炭化料粉的挥发分为10%-25%;原料中低变质程度煤和废炭化料的粒度为90%以上通过200目筛;所述低变质程度煤的干燥无灰基固定碳含量为50-70%,优选为60-70%,更优选为64-70%;低变质程度煤干燥无灰基挥发分为30-46%,优选为30-35%。
优选的,所述低变质程度煤选自大同长焰煤或新疆长焰煤;优选为大同长焰煤。
优选的,上述制备方法中,柱状成型料的直径为2-6mm。优选的,长度为4-10mm。
进一步的,所述柱状成型料的炭化过程包括以下步骤:将原料置于缺乏氧气或惰性气氛下,升温至440-650℃进行炭化,优选为500-650℃;得到炭化料;优选的,炭化过程的升温速率为5-15℃/min,炭化时间为0.5-3h;惰性气体的流量为2-6L/min·kg。
所述“缺氧”的条件指的是:所述氧气体积占反应器体积的比例小于10%,优选为小于7.5%。
进一步的,所述活化过程包括以下步骤:向炭化料中通入水蒸气,升温至600-1100℃进行活化,优选为860-980℃进行活化,得到活性炭;所述活化过程的升温速率为5-15℃/min,活化时间为2-30h;水蒸气通量为0.4-1.2L/kg炭·h,优选为0.5-1.0L/(kg炭·h)。
优选的,上述制备方法中,所述粘结剂在加入前,还包括下述预处理过程:
将粘结剂温度升高至75-95℃。
优选的,粘结剂的升温过程为:将粘结剂在75-95℃的水浴中加热25-60min;或用蒸汽加热储存粘结剂的容器,使其中的粘结剂温度达75-95℃。
优选的,上述制备方法中,所述混合过程包括下述步骤:
将低变质程度煤、废炭化料粉、粘结剂和水进行混合时,混合容器及其内部物料的温度为50-95℃,优选为50-75℃。
优选的,上述制备方法中,所述炭化和活性过程在反应器中进行,所述反应器选自管式炉、回转炉、直立炉、斯列普炉或多膛炉。
优选的,上述制备方法中,所述成型料还需干燥,所述干燥过程选自自然干燥、鼓风干燥、真空干燥或冷冻干燥。
另外,本发明还提供一种利用废炭化料粉制备的活性炭,通过采用上述的方法制备得到。
进一步的,采用上述制备方法制得的活性炭的填装密度为420-480g/l,优选为440-480g/l;球盘强度为80-99%,优选为90-99%;活性炭的碘值为500-1100mg/g,优选为800-1100mg/g;所述活性炭的亚甲蓝值为100-220mg/g,优选为130-220mg/g;焦糖脱色率为50-80%,优选为60-80%;所述活性炭的比表面积为500-1100m2/g,优选为740-1100m2/g;活性炭的平均孔径为1.8-4.2nm,优选为1.8-2.5nm;所述活性炭的微孔率为30-85%,优选为70-85%。
另外,本发明还提供上述方法所制备的活性炭在催化剂载体、烟气处理或水处理领域的应用。
与现有技术相比本发明具有以下有益效果:
本发明合理利用了难以处置的炭化料粉,制备出的柱状活性炭机械强度高,微孔率增加,比表面积增大,吸附性能好,掺混一定量的废炭化料,能够提高活性炭的装填密度和强度,实现了废炭化料的再利用,减少了环境污染。
附图说明
图1为实施例4所得炭化料的扫描电镜图,放大倍数为10000倍,标尺为1μm。
图2为实施例4所得活性炭的扫描电镜图,放大倍数为10000倍,标尺为1μm。
图3为对比例1所得炭化料的扫描电镜图,放大倍数为10000倍,标尺为1μm。
图4为对比例1所得活性炭的扫描电镜图,放大倍数为10000倍,标尺为1μm。
图5为对比例1、实施例1-实施例5所得活性炭微孔孔径分布图。
图6为对比例1、实施例1-实施例5所得活性炭中孔孔径分布图。
图7为对比例2-4、实施例6-8所得活性炭的微孔孔径分布图。
图8为对比例2-4、实施例6-8所得活性炭的中孔孔径分布图。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
鉴于目前废炭化料粉难以处置和利用,本发明基于柱状活性炭制备工艺,将废炭化料加入低变质程度煤中,采用适宜的孔结构调节技术,制备出强度高、吸附性能好的活性炭。
一种优选的实施方式中,本发明所述利用废炭化料粉制备的活性炭的制备方法如下:
步骤1、将低变质程度烟煤和废炭化料破碎粉磨至90%过200目标准筛(d=0.075mm),按照一定的比例进行称量,同时加入33%的煤焦油和5%的蒸馏水充分混合并搅拌均匀。将得到的混合物在液压机下挤成直径为4mm的生料条,经干燥后剪成约1cm的料条。
步骤2、称取质量为50.00±0.05g的料条,在高温烧管式炉中进行炭、活化,整个过程以速率为0.1L/min的N2作为保护气。设置炭化升温速率5℃/min、终温600℃,恒温时间45min,活化升温速率10℃/min,终温900℃,恒温3h,恒温过程中水蒸气通量为0.8mL/(g炭h)。
优选的,上述废炭化料粉为压块活性炭制备过程炭化阶段产生的粒度低于1mm的固体废弃物。
优选的,上述制备方法中,炭化料的制备方法为:在缺乏氧气或惰性气氛下,于500-650℃炭化后得到。
优选的,上述制备方法中,所用的煤焦油为高温煤焦油(高温炼焦产生的煤焦油)的重质馏分(沸点>280℃)。
优选的,上述制备方法中,低变质程度煤及废炭化料破碎磨粉时用颚式破碎机、高速万能粉碎机、球磨机。
优选的,上述制备方法中,加入的煤焦油要先在75-95℃的水浴中加热25-60min。
优选的,上述制备方法中,混匀过程要在50-95℃水浴中进行,手动混匀15-25min。
优选的,上述制备方法中,成型料干燥包括自然干燥、鼓风干燥、真空干燥或冷冻干燥。
优选的,上述制备方法中,炭化升温速率为5-15℃/min。
优选的,上述制备方法中,活化温度为860-980℃。
优选的,上述制备方法中,活化时间为2-30h。
优选的,上述制备方法中,水蒸气通量为0.4-1.2mL/(g炭·h)。
优选的,上述制备方法中,炭化过程以速率为0.1L/min的N2作为保护气。
另一种优选的实施方式中,本发明所述活性炭的制备方法如下:
步骤1、将大同煤破碎、磨粉,得到90%过200目筛粒度的煤粉,将废炭化料磨粉后,得到90%过200目标准筛(d=0.074mm)粒度的废炭化料粉,将煤粉和废炭化料粉按比例进行称量,混合形成煤粉原料,加入煤焦油,经捏合、挤条后得到直径为4mm的生料条,风干后制成长度约1cm的干料条。
步骤2、将料条用管式炉、回转式炉、多膛炉等设备在缺乏氧气或惰性气氛下以升温速率5℃/min、终温600℃,恒温时间45min,进行炭化得到炭化料。
步骤3、将炭化料在管式炉、斯列普炉、多膛炉、回转炉等设备中在900℃温度用水蒸汽活化3h-28h,制得活性炭。
活性炭在吸附物质时受吸附质分子直径限制,研究表明活性炭发生有效吸附时,孔径应该为吸附质分子直径的1.7倍。一般用碘值来表征直径为1.0-2.8nm的孔隙发育程度,用亚甲蓝值反映直径为1.5-10nm的孔隙发育程度,而焦糖脱色率主要与直径大于3.0nm中孔孔容积相关。
在下面的实施例中,所用的仪器的信息如下:
液压机:YM20T液压机,滕州市卡维机械设备有限公司。
管式炉:SK2-2-12,天津市中环实验电炉有限公司。
在下面的实施例中,所用原料信息如下:
活性炭原料煤:大同煤产地为山西大同;胜利煤产地为内蒙古锡林郭勒盟;新疆煤产地为新疆巴音郭楞蒙古自治州;府谷煤产地为陕西府谷。
所述废炭化料为大同煤业金鼎活性炭有限公司的大同煤制压块活性炭时产生的废炭化料粉,炭化料粉的粒度小于1mm。
所述煤焦油为太原钢铁集团高温煤焦油的重质馏分。
实施例中所用大同煤、胜利煤、新疆煤、府谷煤及废炭化料粉的工业分析和元素分析结果如下表所示:
其中,M、A、V、FC分别指的是水分、灰分、挥发分和固定碳含量,ad、d、daf分别指的是空气干燥基、干燥基、干燥无灰基。
表1煤样及废炭化粉料样的工业分析与元素分析
Figure BDA0002504466640000051
Figure BDA0002504466640000061
下面通过具体实施例来进一步说明本发明所述利用废炭化料粉制备的活性炭及其制法和应用。
实施例1
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=98:2的质量比,共500g混合后,在75℃水浴条件下,加入已在75℃水浴条件下加热60min的煤焦油和蒸馏水,混合均匀后形成原料。其中,煤焦油的添加量为原料质量的33%,蒸馏水的添加量为原料质量的5%。将原料用液压机在>200kg/cm2压力下挤压成直径为4mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)每次称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率5℃/min、终温600℃,恒温时间45min,完成生料条的炭化过程,得到炭化料。
(3)每次称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率10℃/min,终温900℃,恒温3h,恒温过程中水蒸气通量为0.8mL/(g炭·h),得到活性炭。
分别按照GB/T7702.7-2008、GB/T7702.6-2008和GB/T7702.18-2008测定活性炭样品的碘值、亚甲蓝值和焦糖脱色率。碘液浓度用硫代硫酸钠滴定法测量,亚甲蓝浓度和焦糖液浓度通过分光光度法测量,波长分别为665nm和426nm,使用的仪器为北京瑞利UV-9600紫外-可见分光光度计。
烧失率为活化时炭化料的烧失率,计算方法为:(炭化料质量-活性炭质量)/炭化料质量×100%。
填装密度的检测方法为:GB/T 7702.4-1997。强度为球盘强度,其检测方法为GB/T20451-2006。
本实施例所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表2所示。填装密度、强度的检测结果如表3所示。
采用气体吸附仪(Quantachrome,Autosorb-iQ)测定活性炭的氮气吸脱附等温线,先对样品进行573K脱气处理3h以上,然后测定77K下活性炭对氮气的吸附脱附等温线,测试相对压力为p/p0=10-6~1。采用多点BET法计算活性炭的比表面积,BJH法解析中孔孔容,HK法解析微孔孔容。所得结果如表4所示。
采用日立SU-8000场发射扫描电子显微镜观察样品的微观形貌,测试条件:加速电压3.0kV,真空系统10-8mbar,工作距离5~10mm。
实施例2
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=96:4的质量比,共500g混合后,在75℃水浴条件下,加入已在75℃水浴条件下加热60min的煤焦油和蒸馏水,混合均匀后形成原料。其中,煤焦油的添加量为原料质量的30%,蒸馏水的添加量为原料质量的1%。将原料用液压机在>200kg/cm2压力下挤压成直径为4mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)每次称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率10℃/min、终温500℃,恒温时间60min,完成生料条的炭化过程,得到炭化料。
(3)称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率5℃/min,终温860℃,恒温4h,恒温过程中水蒸气通量为0.5mL/(g炭·h),得到活性炭。
所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表2所示。填装密度、强度的检测结果如表3所示。孔结构表征结果如表4所示。
实施例3
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=94:6的质量比,共500g混合后,在95℃水浴条件下,加入已在95℃水浴条件下加热25min的煤焦油和蒸馏水,混合均匀后形成原料。其中,煤焦油的添加量为原料质量的35%,蒸馏水的添加量为原料质量的10%。将原料用液压机在>200kg/cm2压力下挤压成直径为6mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率15℃/min、终温600℃,恒温时间45min,完成生料条的炭化过程,得到炭化料。
(3)称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率10℃/min,终温980℃,恒温2h,恒温过程中水蒸气通量为1.0mL/(g炭·h),得到活性炭。
所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表2所示。填装密度、强度的检测结果如表3所示。孔结构表征结果如表4所示。
实施例4
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=92:8的质量比,共500g混合后,在80℃水浴条件下,加入已在80℃加热30min的煤焦油和蒸馏水,混合均匀后形成原料。其中,煤焦油的添加量为原料质量的33%,蒸馏水的添加量为原料质量的5%。将原料用液压机在>200kg/cm2压力下挤压成直径为4mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)每次称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率5℃/min、终温600℃,恒温时间45min,完成生料条的炭化过程,得到炭化料。
(3)每次称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率10℃/min,终温900℃,恒温3h,恒温过程中水蒸气通量为0.8mL/(g炭·h),得到活性炭。
所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表2所示。填装密度、强度的检测结果如表3所示。孔结构表征结果如表4所示。
实施例5
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=90:10的质量比,共500g混合后,在50℃水浴条件下,加入已在75℃水浴条件下加热60min的煤焦油和蒸馏水,混合均匀后形成原料。其中,煤焦油的添加量为原料质量的33%,蒸馏水的添加量为原料质量的5%。将原料用液压机在>200kg/cm2压力下挤压成直径为4mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)每次称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率5℃/min、终温600℃,恒温时间45min,完成生料条的炭化过程,得到炭化料。
(3)每次称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率10℃/min,终温900℃,恒温3h,恒温过程中水蒸气通量为0.8mL/(g炭·h),得到活性炭。
所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表2所示。填装密度、强度的检测结果如表3所示。孔结构表征结果如表4所示。
对比例1
活性炭的制备过程如下:
(1)将大同煤和废炭化料粉研磨至90%过200目标准筛,按照大同煤:废炭化料粉=100:0的质量比,共500g混合后,在75℃水浴条件下,加入已在75℃水浴条件下加热60min的煤焦油和蒸馏水,形成原料。其中,煤焦油的添加量为原料质量的33%,蒸馏水的添加量为原料质量的5%。将原料用液压机在>200kg/cm2压力下挤压成直径为4mm的生料条,经干燥后剪成长度为1cm的干料条。
(2)每次称取质量为50.00±0.05g的料条置入管式炉中部,通入氮气,流速为0.1L/min。设置升温速率5℃/min、终温600℃,恒温时间45min,完成生料条的炭化过程,得到炭化料。
(3)每次称取50.00±0.05g的炭化料置于管式炉中,通入水蒸气,进行活化,活化升温速率10℃/min,终温900℃,恒温3h,恒温过程中水蒸气通量为0.8mL/(g炭·h),得到活性炭。
实施例4所得炭化料的扫描电镜图如图1所示,实施例4所得活性炭的扫描电镜图如图2所示,对比例1所得炭化料的扫描电镜图如图3所示,对比例1所得活性炭的扫描电镜图如图4所示,放大倍数为10000倍,图中标尺为1μm。由图可知,除表面都有部分碎屑外,大同煤中掺入8%废炭化粉料制备的炭化料和活性炭表面更粗糙不平。
表2对比例1、实施例1-5所得活性炭的烧失率和吸附性能
Figure BDA0002504466640000091
表3对比例1、实施例1-5所得活性炭的填装密度和强度
Figure BDA0002504466640000092
表4对比例1、实施例1-5所得活性炭的孔结构表征参数
Figure BDA0002504466640000093
Figure BDA0002504466640000101
对比例1、实施例1-实施例5所得活性炭的孔径分布如图5和图6所示,图5为微孔孔径分布图,图6为中孔孔径分布图,其中,DT-AC-0为对比例1制得的活性炭,DT-AC-2为实施例1制得的活性炭,DT-AC-4为实施例2制得的活性炭,DT-AC-6为实施例3制得的活性炭,DT-AC-8为实施例4制得的活性炭,DT-AC-10为实施例5制得的活性炭。
从微孔分布图中可以看到在直径小于0.38nm范围内DT-AC-2孔径分布明显弱于DT-AC-0,但在直径为0.38-0.57nm范围内DT-AC-2的孔径分布有所增强。除DT-AC-4在直径小于0.38nm范围内略微低于DT-AC-0外,其他样品孔径分布均高于DT-AC-0,但在直径为0.38-1.0nm范围内掺废炭化粉料所制活性炭与DT-AC-0相比孔径分布都有所增强。在1.0-1.5nm范围内,随着废炭化粉料掺入比例的增加,孔径分布逐渐加强,到8%时达到最大,然后随着废炭化粉料掺入比例的继续增加,孔径分布减弱,与碘值结果相匹配。从中孔分布图可以看出在3-20nm范围内掺入废炭化粉料所制活性炭的孔径分布整体上高于DT-AC-0且DT-AC-8的最高,但孔径大于20nm后无明显规律。
实施例6
将大同煤换为胜利煤,用与实施例4相同的方法制备得到本实施例所得活性炭。
实施例7
将大同煤换为新疆煤,用与实施例4相同的方法制备得到本实施例所得活性炭。
实施例8
将大同煤换为府谷煤,用与实施例4相同的方法制备得到本实施例所得活性炭。
对比例2
将大同煤换为胜利煤,用对比例1相同的方法制备得到本实施例所得活性炭。
对比例3
将大同煤换为新疆煤,用对比例1相同的方法制备得到本实施例所得活性炭。
对比例4
将大同煤换为府谷煤,用对比例1相同的方法制备得到本实施例所得活性炭。
实施例6-实施例8,对比例2-对比例4所得活性炭的烧失率、碘值、亚甲蓝值和焦糖脱色率的检测结果如表5所示。填装密度、强度的检测结果如表6所示。孔结构表征结果如表7所示。
表5对比例2-4、实施例6-8所得活性炭的烧失率和吸附性能
Figure BDA0002504466640000111
由表可知,掺入8%废炭化粉料后,胜利煤所制活性炭的碘值、亚甲蓝值和焦糖脱色率均增高,这是由于胜利煤属于低变质程度褐煤,煤分子小,结构较为松散,掺入废炭化粉料能够提高活性炭的吸附性。新疆煤中掺入8%废炭化粉料后,活性炭的碘值和亚甲蓝值降低,焦糖脱色率增大,说明掺入废炭化粉料促进大孔的发育。新疆煤中的Na和K等碱金属对煤制活性炭的活化过程具有催化作用,促进孔隙的发育。掺入废炭化粉料,可能由于碱金属含量降低等原因导致微孔的发育减缓,使得碘值和亚甲蓝值降低。府谷煤中掺入8%废炭化粉料所制活性炭的碘值和亚甲蓝值升高,焦糖脱色率下降,表明掺入废炭化粉料能够促进活性炭中微孔的发育。
表6对比例2-4、实施例6-8所得活性炭的填装密度和强度
Figure BDA0002504466640000112
表7对比例2-4、实施例6-8所得活性炭的孔结构表征参数
Figure BDA0002504466640000113
对比例2-4、实施例6-8所得活性炭的孔径分布如图7和图8所示,图7为微孔孔径分布图,图8为中孔孔径分布图,其中,SL-AC-0为对比例2制得的活性炭,SL-AC-8为实施例6制得的活性炭,XJ-AC-0为对比例3制得的活性炭,XJ-AC-8为实施例7制得的活性炭,FG-AC-0为对比例4制得的活性炭,FG-AC-8为实施例8制得的活性炭。
结合表7和图7、图8可知,胜利煤中掺入8%废炭化粉料后,孔径小于0.7nm的微孔分布曲线近乎重合,然后在0.7-4.0nm范围内孔径分布均加强,表现为碘值和亚甲蓝值的增加。在4.0-50nm范围内孔径分布曲线几乎重合在一起;新疆煤中掺入8%废炭化粉料后,孔径小于0.7nm的微孔分布增多,然后在0.7-3nm的范围内孔径分布均减弱,表现为碘值和亚甲蓝值的减小,在3-50nm范围内曲线上下交织在一起,在孔结构大于50nm以后,XJ-0略微高于XJ-8。府谷煤中掺入8%废炭化粉料后,孔径小于0.7nm的微孔分布减少,然后在0.75-4.0的范围内孔径分布均增强,且在0.8nm处增强最为明显,孔径在4.0-50nm的范围内孔径分布减弱,当孔径大于50nm以后曲线几乎重合,与活性炭的吸附性结果相吻合。
实施例9
活性炭的制备过程如下:
(1)将大同煤和废炭化料研磨至90%过200目标准筛,按照大同煤:废炭化料粉=90:10的质量比,共5000kg混合后,加入煤焦油和蒸馏水,形成原料,其中,煤焦油的添加量为原料质量的33%,蒸馏水的添加量为原料质量的5%。将原料用液压机在>300kg/cm2压力下挤压成直径为4mm的生料条,经干燥后制成长度为1cm的干料条。
(2)将料条从回转炉(直径2560mm、长度21000mm,产品道长18000mm)的加料孔(回转炉炉头)加入回转炉内,由回转炉尾部燃煤装置中煤炭燃烧产生的缺氧热烟气加热炭化。炉头气体温度为245℃,炉中气体温度为445℃,炉尾温度为755℃,炭化2.5h,得到炭化料。
(3)将制得的炭化料置于多膛炉(16层,外径8000mm、高27499mm)中进行活化,通入水蒸气经23小时活化,得到活性炭。
表8实施例9所述多膛炉中温度设置
Figure BDA0002504466640000121
所得活性炭碘值为860mg/g,亚甲蓝值为161mg/g,焦糖脱色率为61%,填装密度为445g/L,强度为95.3%,比表面积为863m2/g,微孔率为74.36%。
综上所述,本发明合理利用了难以处置的炭化料粉,用不同设备制备出了机械强度高的活性炭,且所得活性炭微孔率大、比表面积较大、吸附性能好,可实现废炭化料的再利用,减少环境污染。

Claims (6)

1.一种利用废炭化料粉制备活性炭的方法,其特征在于,在低变质程度煤中掺混废炭化料粉,加入粘结剂和水,形成原料,均匀混合后经挤出成型制成柱状成型料,再经炭化和活化后得到活性炭;其中,所述废炭化料粉是来自压块活性炭生产过程炭化阶段产生的粒度≤1mm的粉状固体废弃物,其中,所述废炭化料粉占低变质程度煤和废炭化料粉总量的质量分数>0%,且≤10%;
所述低变质程度煤选自褐煤、长焰煤、不黏煤或黏煤的一种;废炭化料粉的挥发分为10%-25%;原料中低变质程度煤和废炭化料的粒度为90%以上通过200目筛;所述低变质程度煤的干燥无灰基固定碳含量为50-70%;低变质程度煤干燥无灰基挥发分为30-46%。
2.根据权利要求1所述的利用废炭化料粉制备活性炭的方法,其特征在于,所述粘结剂占原料的质量分数为28-35%,所述水占原料的质量分数为1-10%;所述废炭化料粉占低变质程度煤和废炭化料总量的质量分数为6%-10%。
3.根据权利要求1所述的利用废炭化料粉制备活性炭的方法,其特征在于,所述粘结剂为煤焦油的沸点>280℃的重质馏分。
4.根据权利要求1所述的利用废炭化料粉制备活性炭的方法,其特征在于,所述低变质程度煤选自大同长焰煤或新疆长焰煤。
5. 根据权利要求1所述的利用废炭化料粉制备活性炭的方法,其特征在于,所述柱状成型料的炭化过程包括以下步骤:将原料置于缺乏氧气或惰性气氛下,升温至440-650℃进行炭化,得到炭化料;炭化过程的升温速率为5-15℃/min,炭化时间为0.5-3h;惰性气体的流量为2-6 L/min·kg。
6. 根据权利要求3所述的利用废炭化料粉制备活性炭的方法,其特征在于,所述活化过程包括以下步骤:向炭化料中通入水蒸气,升温至600-1100℃进行活化,得到活性炭;所述活化过程的升温速率为5-15℃/min,活化时间为2-30h;水蒸气通量为0.4-1.2 L/kg炭·h。
CN202010442454.XA 2020-05-22 2020-05-22 利用废炭化料粉制备的活性炭及其制备方法和应用 Active CN111573668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010442454.XA CN111573668B (zh) 2020-05-22 2020-05-22 利用废炭化料粉制备的活性炭及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010442454.XA CN111573668B (zh) 2020-05-22 2020-05-22 利用废炭化料粉制备的活性炭及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111573668A CN111573668A (zh) 2020-08-25
CN111573668B true CN111573668B (zh) 2023-05-26

Family

ID=72115721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010442454.XA Active CN111573668B (zh) 2020-05-22 2020-05-22 利用废炭化料粉制备的活性炭及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111573668B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239206B (zh) * 2020-11-11 2021-05-28 江苏浦士达环保科技股份有限公司 一种低灰压块煤质活性炭制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147369A (ja) * 2001-07-26 2003-05-21 Kuraray Chem Corp 炭化物及び成型活性炭の製造方法、並びに炭化物及び成型活性炭
CN1560194A (zh) * 2004-03-10 2005-01-05 陈庆福 一种用传统焦炉生产型焦的方法
CN102583373A (zh) * 2012-02-13 2012-07-18 西安三瑞实业有限公司 一种用煤制备活性炭的方法
CN104843699A (zh) * 2015-06-04 2015-08-19 南京林业大学 一种利用废弃粉状活性炭制备糖液脱色用成型颗粒活性炭的方法
CN105289489A (zh) * 2015-11-02 2016-02-03 中国矿业大学 一种粉末活性炭物理法再生工艺
CN107235489A (zh) * 2017-06-27 2017-10-10 南京林业大学 一种高比表面积蜂窝状活性炭的制备方法
CN109987605A (zh) * 2019-04-08 2019-07-09 太原理工大学 气化渣分离炭制备脱硫脱硝成型活性焦的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147369A (ja) * 2001-07-26 2003-05-21 Kuraray Chem Corp 炭化物及び成型活性炭の製造方法、並びに炭化物及び成型活性炭
CN1560194A (zh) * 2004-03-10 2005-01-05 陈庆福 一种用传统焦炉生产型焦的方法
CN102583373A (zh) * 2012-02-13 2012-07-18 西安三瑞实业有限公司 一种用煤制备活性炭的方法
CN104843699A (zh) * 2015-06-04 2015-08-19 南京林业大学 一种利用废弃粉状活性炭制备糖液脱色用成型颗粒活性炭的方法
CN105289489A (zh) * 2015-11-02 2016-02-03 中国矿业大学 一种粉末活性炭物理法再生工艺
CN107235489A (zh) * 2017-06-27 2017-10-10 南京林业大学 一种高比表面积蜂窝状活性炭的制备方法
CN109987605A (zh) * 2019-04-08 2019-07-09 太原理工大学 气化渣分离炭制备脱硫脱硝成型活性焦的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
活性炭粉配煤再造粒强度及其脱硫性能分析;李小龙等;《中国冶金》;20200331;第30卷(第03期);69-73 *

Also Published As

Publication number Publication date
CN111573668A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
Zheng et al. Insight into the KOH/KMnO4 activation mechanism of oxygen-enriched hierarchical porous biochar derived from biomass waste by in-situ pyrolysis for methylene blue enhanced adsorption
Dizbay-Onat et al. Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
Vernersson et al. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation
Pendyal et al. Removal of sugar colorants by granular activated carbons made from binders and agricultural by-products
CN102188954B (zh) 用于吸附脱除汽油中硫化物的活性炭及其制备方法
JP6676821B2 (ja) バインダを含まない石炭系成形活性炭の製造方法
CN100560484C (zh) 吸附汽油蒸汽专用活性炭及其制备方法
Rahman et al. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration
CN112897525A (zh) 一种用于捕集co2的富氮炭材料的制备方法
Wu et al. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge
CN101708840A (zh) 一种由褐煤制备的烟气脱硫用活性焦及其制备方法
Kong et al. Physico-chemical characteristics and the adsorption of ammonium of biochar pyrolyzed from distilled spirit lees, tobacco fine and Chinese medicine residues
CN111573668B (zh) 利用废炭化料粉制备的活性炭及其制备方法和应用
Danish et al. Preparation and characterization of banana trunk activated carbon using H3PO4 activation: A rotatable central composite design approach
CN113213450B (zh) 一种制备烟秆基多级孔径结构碳材料的方法
Shao et al. Sustainable preparation of hierarchical porous carbon from discarded shells of crustaceans for efficient CO2 capture
Joshi et al. Synthesis and characterization of sugarcane bagasse based activated carbon: effect of impregnation ratio of zncl2
CS250203B2 (en) Method of granulated activated carbon production
Zanzi et al. Preparation of activated carbons from cherry stones, apricot stones and grape seeds for removal of metal ions from water
Nirmaladevi et al. Preparation and Adsorptive Properties of Activated Carbon from Acacia Leucophloea Wood Sawdust Hydrochar by Zinc Chloride Activation
Sumaila et al. Thermal degradation and particle size distribution studies of activated carbon obtained from coconut shells
Fu et al. Rapid pyrolysis of pulverized coal for the preparation of nanostructured powder activated coke
CN111533126A (zh) 一种高抗压强度、高孔隙率成型污泥活性炭的制备方法
Monika et al. Porous structure improvement of coal activated carbon using steam activation in pilot scale

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 037003 xinpingwang mining area, Datong City, Shanxi Province

Applicant after: Jinneng holding Coal Group Co.,Ltd.

Applicant after: CHINA University OF MINING AND TECHNOLOGY BEIJING

Address before: 037003 Wangxiao North Street, Xinping, Datong City, Shanxi Province

Applicant before: Datong Coal Mine Group Co.,Ltd.

Applicant before: CHINA University OF MINING AND TECHNOLOGY BEIJING

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant