CN111573649B - 一种双通aao模板固态电解质中原子尺寸间隙的制备方法 - Google Patents

一种双通aao模板固态电解质中原子尺寸间隙的制备方法 Download PDF

Info

Publication number
CN111573649B
CN111573649B CN202010473028.2A CN202010473028A CN111573649B CN 111573649 B CN111573649 B CN 111573649B CN 202010473028 A CN202010473028 A CN 202010473028A CN 111573649 B CN111573649 B CN 111573649B
Authority
CN
China
Prior art keywords
aao template
latp
solid electrolyte
solution
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010473028.2A
Other languages
English (en)
Other versions
CN111573649A (zh
Inventor
赵慧玲
郜蒙蒙
白莹
郁彩艳
尹延锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202010473028.2A priority Critical patent/CN111573649B/zh
Publication of CN111573649A publication Critical patent/CN111573649A/zh
Application granted granted Critical
Publication of CN111573649B publication Critical patent/CN111573649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

一种双通AAO模板固态电解质中原子尺寸间隙的制备方法。本发明提供了一种连续传导LATP固态电解质和制备方法及其使用该固态电解质的锂离子电池,避免了LATP和锂金属负极之间直接接触会引发严重的副反应。本发明通过碳原子的氧化,获得了原子尺寸的间隙,通过设置一层或多层碳原子,不仅避免了LATP与锂金属负极的直接接触,更大大提高了锂离子的迁移率。

Description

一种双通AAO模板固态电解质中原子尺寸间隙的制备方法
技术领域
本发明涉及具一种双通AAO模板固态电解质中原子尺寸间隙的制备方法,具体涉及一种在双通AAO模板中制备具有原子尺寸间隙固态电解质的方法。
背景技术
近年来,固体电解质Li1.4Al0.4Ti1.6(PO4)3 (LATP)因其高的锂离子电导率备受关注,导致其高离子电导率的原因是(1)铝离子部分掺杂在LTP骨架内,可通过结构变化和随后的致密化有效降低晶界能垒;(2)Al的掺杂不仅增强锂离子的迁移率,促进了锂离子在不同界面上的扩散能力,同时降低了活化能。
但是LATP和锂金属负极之间直接接触会引发严重的副反应,锂金属将LATP中的Ti4+还原为Ti3+,不仅造成LATP结构不稳定,副反应的产物在界面聚集又导致了SSE晶界离子电导率降低。本课题组已经提出了一种具有空气间隙的连续传导LATP固态电解质。其空气间隙能够避免LATP与负极锂金属的接触引起的副反应又能够确保锂离子的跃迁传输。但是基于现有的制备方法空气间隙的尺寸一般在10-50nm,纳米级的尺寸宽度在一定程度上限制了锂离子的迁移率。
发明内容
为了解决上述技术问题,本发明提供了一种双通AAO模板固态电解质中原子尺寸间隙的制备方法。
本发明的技术解决方案是:
一种双通AAO模板固态电解质中原子尺寸间隙的,包含以下步骤:
步骤1,制备LATP(Li1.4Al0.4Ti1.6(PO4)3)前驱体溶液;
步骤2,双通AAO模板预处理:常压下,对AAO模板加热,去除双通AAO模板中的水蒸气和杂质后冷却;
步骤3,全浸后毛细作用充分吸附:将步骤2获得的双通AAO模板全浸入步骤1制备的LATP前驱体溶液中,确保双通AAO模板的孔中吸附满LATP前驱体溶液;
步骤4,将吸附满LATP前驱体溶液的双通AAO模板取出后,在双通AAO模板一侧的通孔开口处设置一层或多层碳原子。
步骤5,通氧退火;氮气保护下,对经过上述步骤4处理的双通AAO模板进行退火,退火过程中通入少量的氧气,双通AAO模板一侧的通孔开口处设置的一层或多层碳原子被氧化成二氧化碳,在双通AAO模板一侧形成具有原子尺寸间隙的连续传导LATP固态电解质。
优选地,空气间隙的长度为30-150个原子尺寸。
优选地,全浸时间为1-2小时。
优选地,所述一层或多层碳原子的设置方式为使用石墨棒在双通AAO模板一侧的通孔开口处进行均匀的划涂。
一种连续传导LATP固态电解质,其特征在于,LATP纳米颗粒从双通AAO模板一端,沿AAO模板的孔内壁朝另一端致密生长形成连续的锂离子快速传导路径,能够显著提升离子电导率,所述LATP纳米颗粒粒径均匀,直径为20 – 30nm;所述LATP纳米颗粒未完全将AAO模板的孔径填充满,形成原子尺寸的间隙;所述AAO模板的另一端与锂金属负极直接接触,原子尺寸的间隙能避免LATP与负极锂金属的接触引起的副反应又能够确保锂离子的跃迁传输。
一种使用连续传导LATP固态电解质的锂离子电池,其特征在于,正极和锂金属负极间为使用AAO模板作为骨架的LATP纳米线,其中AAO模板一端与正极,AAO模板的另一端与锂金属负极直接接触,AAO模板孔径中的LATP纳米线的一端与正极直接接触,另一端与锂金属负极直接存在原子尺寸的间隙。
本发明的有益效果是:
提供了一种连续传导LATP固态电解质和制备方法及其使用该固态电解质的锂离子电池,避免了LATP和锂金属负极之间直接接触引发的严重副反应。本发明通过设置一层或多层碳原子,通过碳原子的氧化,获得了原子尺寸的间隙,不仅避免了LATP与锂金属负极的直接接触,更大大提高了锂离子的迁移率。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,下面通过实施例进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,但本发明的内容并非局限于此。
[实施例]
一种具有空气间隙固态电解质制备方法,包含以下步骤:
步骤1,制备Li1.4Al0.4Ti1.6(PO4)3前驱体溶液;将硝酸锂,九水合硝酸铝,磷酸按照化学计量比分别溶于5ml无水乙醇中,为防止九水合硝酸铝水解,滴加少量滴硝酸,搅拌30min后,将硝酸锂滴加到九水合硝酸铝中,所得溶液记为溶液A。钛酸异丙酯按照化学计量比溶于5ml无水乙醇中,将溶液A缓慢滴加到钛酸异丙酯中,所得溶液记为溶液B,最后将磷酸滴入溶液B中,所得溶液即为制备的LATP前驱体溶液。
步骤2,预处理AAO模板:称取一定质量的AAO模板,在200°C加热状态下去除水蒸气和杂质,冷却。
步骤3,将步骤2获得的双通AAO模板全浸入步骤1制备的LATP前驱体溶液中,全浸时间为1-2小时,确保双通AAO模板的孔中吸附满LATP前驱体溶液;
步骤4,使用石墨棒在双通AAO模板一侧的通孔开口处进行均匀的划涂,在双通AAO模板一侧的通孔开口处设置一层或多层碳原子。
步骤5,氮气气氛下,通入适量氧气,500-600oC煅烧AAO模板4-6小时后冷却。
步骤6,再次在氮气气氛下750-800oC下煅烧15h,提高LATP纳米颗粒粒径均匀性,自然冷却后取出,即可得到在AAO模板孔道中距离顶部具有原子尺寸间隙的连续传导固态电解质。

Claims (2)

1.一种具有原子尺寸间隙的双通AAO模板固态电解质的制备方法,其特征在于:包含以下步骤:
步骤1,制备Li1.4Al0.4Ti1.6(PO4)3前驱体溶液;将硝酸锂,九水合硝酸铝,磷酸按照化学计量比分别溶于5ml无水乙醇中,为防止九水合硝酸铝水解,滴加少量滴硝酸,搅拌30min后,将硝酸锂滴加到九水合硝酸铝中,所得溶液记为溶液A,钛酸异丙酯按照化学计量比溶于5ml无水乙醇中,将溶液A缓慢滴加到钛酸异丙酯中,所得溶液记为溶液B,最后将磷酸滴入溶液B中,所得溶液即为制备的LATP前驱体溶液;
步骤2,预处理AAO模板:称取一定质量的AAO模板,在200°C加热状态下去除水蒸气和杂质,冷却;
步骤3,将步骤2获得的双通AAO模板全浸入步骤1制备的LATP前驱体溶液中,全浸时间为1-2小时,确保双通AAO模板的孔中吸附满LATP前驱体溶液;
步骤4,使用石墨棒在双通AAO模板一侧的通孔开口处进行均匀的划涂,在双通AAO模板一侧的通孔开口处设置一层或多层碳原子;
步骤5,氮气气氛下,通入适量氧气,500 -600 °C煅烧AAO模板4-6小时后冷却;
步骤6,再次在氮气气氛下750-800 °C下煅烧15h,提高LATP纳米颗粒粒径均匀性,自然冷却后取出,即得到在AAO模板孔道中距离顶部具有原子尺寸间隙的连续传导固态电解质。
2.一种连续传导LATP固态电解质,其特征在于,使用如权利要求1所述的方法制备的连续传导LATP固态电解质。
CN202010473028.2A 2020-05-29 2020-05-29 一种双通aao模板固态电解质中原子尺寸间隙的制备方法 Active CN111573649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010473028.2A CN111573649B (zh) 2020-05-29 2020-05-29 一种双通aao模板固态电解质中原子尺寸间隙的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010473028.2A CN111573649B (zh) 2020-05-29 2020-05-29 一种双通aao模板固态电解质中原子尺寸间隙的制备方法

Publications (2)

Publication Number Publication Date
CN111573649A CN111573649A (zh) 2020-08-25
CN111573649B true CN111573649B (zh) 2023-01-24

Family

ID=72114148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010473028.2A Active CN111573649B (zh) 2020-05-29 2020-05-29 一种双通aao模板固态电解质中原子尺寸间隙的制备方法

Country Status (1)

Country Link
CN (1) CN111573649B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201500562A (zh) * 2014-06-13 2015-01-01 Univ Nat United 奈米鋼鐵線結構及製程
CN104282930A (zh) * 2013-07-10 2015-01-14 中国科学院大连化学物理研究所 一种熔融碳酸盐燃料电池结构
US20180097228A1 (en) * 2015-03-10 2018-04-05 Institute Of Process Engineering, Chinese Academy Og Sciences Composite-coated lithium iron phosphate and preparation method therefor, and lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282930A (zh) * 2013-07-10 2015-01-14 中国科学院大连化学物理研究所 一种熔融碳酸盐燃料电池结构
TW201500562A (zh) * 2014-06-13 2015-01-01 Univ Nat United 奈米鋼鐵線結構及製程
US20180097228A1 (en) * 2015-03-10 2018-04-05 Institute Of Process Engineering, Chinese Academy Og Sciences Composite-coated lithium iron phosphate and preparation method therefor, and lithium ion battery

Also Published As

Publication number Publication date
CN111573649A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN110048106B (zh) 一种硫化钴与多级碳纳米结构复合材料及其制备方法和应用
CN111559740B (zh) 一种具有空气间隙固态电解质制备方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN112349876B (zh) 中空多孔二氧化锡-氧化亚铜-铜或中空多孔二氧化锡-铜一体化锂电池负极及其制备方法
CN113921762B (zh) 一种纳米铋复合材料及其制备方法与应用
CN114005974B (zh) 硅氧负极材料、硅氧负极材料的制备方法及锂离子电池
CN107946559B (zh) 一种溶剂热制备钠离子电池负极用Sb2Se3/C复合材料的方法
CN111573649B (zh) 一种双通aao模板固态电解质中原子尺寸间隙的制备方法
CN116177556B (zh) 钠电正极材料及其前驱体、以及制备方法和应用
CN116344772B (zh) 一种球形磷酸焦磷酸铁钠正极材料及制备方法
CN111994898A (zh) 一种碳材料及其制备方法和应用
CN115863660B (zh) 一种无负极锂电池负极集流体及其制备方法与应用
CN108892123B (zh) 一种多孔石墨烯的制备方法
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN116002654A (zh) 一种磷酸铁锂正极材料及其制备方法和应用
CN116169295A (zh) 一种双碳层修饰Na3.5Mn0.5V1.5(PO4)3正极材料的制备与应用
CN113526552A (zh) 一种锂离子电池复合正极活性材料及其制备方法
CN114988492B (zh) 一种富镍三元正极材料及其制备方法和应用
CN117720132B (zh) 一种硫酸铁钠及其制备方法与应用
CN117374261B (zh) 一种负极材料及其制备方法和应用
CN115000337B (zh) 缺陷丰富水合五氧化二钒纳米片核壳结构纤维电极及制法
CN115133044B (zh) 一种基于水系zif衍生的中空球型碳基催化剂及其制备方法和应用
CN115108536B (zh) 一种碳封装氮化钼表面修饰少层硒化钼纳米片储钠材料及其形成方法和应用
CN115417459B (zh) 一种碱金属离子掺杂的双金属氧化物改性的锰基钠电前驱体及制备方法及锰基钠电材料
CN113809308B (zh) 一种p3型锰钴镍酸钾材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant