CN111563575B - 一种模仿人类智能的机器智能实现方法 - Google Patents

一种模仿人类智能的机器智能实现方法 Download PDF

Info

Publication number
CN111563575B
CN111563575B CN202010379539.8A CN202010379539A CN111563575B CN 111563575 B CN111563575 B CN 111563575B CN 202010379539 A CN202010379539 A CN 202010379539A CN 111563575 B CN111563575 B CN 111563575B
Authority
CN
China
Prior art keywords
machine
memory
information
data
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010379539.8A
Other languages
English (en)
Other versions
CN111563575A (zh
Inventor
陈永聪
曾婷
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010379539.8A priority Critical patent/CN111563575B/zh
Priority to PCT/CN2020/000107 priority patent/WO2021223042A1/zh
Publication of CN111563575A publication Critical patent/CN111563575A/zh
Priority to PCT/CN2021/086573 priority patent/WO2021218614A1/zh
Application granted granted Critical
Publication of CN111563575B publication Critical patent/CN111563575B/zh
Priority to US17/565,449 priority patent/US11715291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Robotics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明申请提出的学习方法,是模仿人类学习过程,通过总结信息、重组信息、通过动机来寻找各种重组方案、并通过把一个过程分成多个中间环节来寻找可模仿的经验等手段,机器逐步获得从简单到复杂的从输入到输出的响应,并拥有和人类相似的情绪表达,这些都展现了本发明申请提出的机器学习方法和目前业界已有的机器学习方法存在巨大差异,目前在业界还没有与之类似的方法。

Description

一种模仿人类智能的机器智能实现方法
技术领域
本发明申请涉及人工智能领域,尤其涉及建立类似于人类智能的通用机器智能领域。
背景技术
当前机器智能通常是为特定任务设计的,还没有能够完成多种不确定性任务的通用机器。比如深度学习中,多层神经网络通过反向误差传递来寻找误差函数最小的多层映射。机器并不理解输入信息的意义,也不能预测这些信息可能的后续发展过程。卷积神经网络,是通过对多层神经网络的数据做预处理而得到,它也有同样的问题。目前的知识图谱工程,通过在大数据中提取文本或者概念之间的关联,来帮助机器搜索时联系不同事物。但这些关系缺乏量化,缺乏一种方法来帮助机器利用这些关系来推测信息发生的原因,来预测信息发生之后可能的结果。而人类通过学习,能够对输入的信息推测原因、预测结果并作出选择和响应。所以,目前的机器智能和人类的学习方法差异很大,无法产生类似于人类的通用智能。
而本发明申请认为机器的智能应该基于信息提取,基于经验,而不应该基于数据处理方法,数据处理方法是为方便信息复用服务的。所以本发明申请提出的学习方法,是模仿人类学习过程,通过总结信息、重组信息、通过动机来寻找各种重组方案、并通过模仿来实施响应等手段,机器逐步获得和人类类似的通用智能。这些都展现了本发明申请提出的机器学习方法和目前业界已有的机器学习方法存在巨大差异。本发明申请提出的方法,是针对实现一个类似人类、甚至超越人类智力,并在情绪和动机等方面和人类类似的机器智能,目前在业界还没有与之类似的方法。
发明内容
人类的智力是一种进化的结果。我们的祖先,在没有语言符号产生之前,他们探索世界时,一定是使用图像、声音、气味等基础传感器获得的信息来认知这个世界,并通过这些信息来总结经验。在本发明申请中,我们采用同样的方法,把所有输入的信息,重新还原到我们祖先的思维方法上去,进行信息处理。然后使用语言来作为输入和输出。
人类是因为理解事物之间的关系,所以才能根据这些关系做出符合自己利益的选择,并实施这些选择。这就是人类的智力表现形式。在本发明申请中,机器也是一样,它对输入信息处理,利用关系网络来重组信息响应,利用评估系统来选择最优信息响应,利用逐步模仿来实现最优信息响应输出。下面我们来分别说明。
1,相似性的建立。
在本发明申请中,第一个基本假设是:“如果两个信息的部分属性相似,那么这两个信息包含的其他属性可能也相似”。这是机器学习的起点。很幸运的是,我们所处的世界正是这样一个世界。比如,两个苹果的纹理、颜色和形状都很相似,那么他们拥有的其他属性有可能也相似。比如味道、重量、价格或者硬度,也包括和发现这个信息之前的关联信息,比如都长在苹果树上,都在秋天成熟等;也包括预测这个信息之后的信息,比如它们在自然情况下会逐渐渐腐烂掉,在冷冻中可以长期保存。相似性还表现在动态过程中,比如对两段“一个人去买东西”的信息,我们可以合理推测它们之前的信息可能都是“她(他)需要这个商品,并且目前缺乏”,或者之后可能的信息都是“她(他)需要付钱,并把商品拿回去”。这种通过局部相似性来推测更大范围的相似性,就是我们学习的起点。本质上,“相似性”隐含了我们使用同样分辨率来对比这个前提。比如,我们不断增加分辨率,可以认为这个世界上没有两个苹果是同样的。但我们不断降低分辨率,可以认为这个世界上所有苹果都是相同的,它们都是“苹果”。甚至进一步扩展到,世界上所以物体都是相同的,因为它们都是“物体”类。所以,我们可以借助不同的分辨率下,寻找事物、场景和过程的相似性,并依据相似性,合理地推测它们在这个分辨率下的其他属性(比如产生的原因和带来的结果)也相似。这就是经验总结。
1.1 寻找静态相似性。
相似性的比较,首先需要确定比较的分辨率。比如,两栋房子,从粗略的比较上看,它们的形状是相似的,所以他们存在相似性。而从细节看,他们的窗户不同,颜色也有差异,所以它们之间没有相似性。
要解决这个问题,本发明申请提出了局部相似性对比方法。具体就是,采用不同大小的窗口来取数据,然后对窗口里面的数据做处理(比如卷积,轮廓提取,各种坐标基变换再滤波等,不同窗口可以采用不同的数据预处理算法。这些算法是目前图像处理非常成熟的算法,也不在本发明申请的权利要求中,所以这里不再赘述)。然后对处理后的图形做相似度对比。机器有可能需要对同一数据反复使用不同的窗口,来按照不同的分辨率比较相似性。
在数据处理中,机器每发现一个相似的局部数据,机器就把这个数据放入临时记忆库,作为特征图的候选者,并给这个特征图候选者赋予一个记忆值。机器使用大小不同的窗口,对数据迭代使用上述过程,这样机器就能在临时记忆库中得到大量的特征图候选者。
在临时记忆库中,我们采用记忆和遗忘机制来维护这些特征图。具体就是:每发现一个相似的特征图候选者,那么这个特征图候选者的记忆值就按照记忆曲线增加其记忆值。同时,临时记忆库中的所有记忆值都按照遗忘曲线,随时间而逐渐递减。如果记忆值递减到零,那么这个特征图候选者就从临时记忆库中删除。如果某个特征图的记忆值增加到预设标准,那么这个特征图就被移入到长期记忆库,成为长期记忆。在这里,记忆值代表对应的特征图能在数据库中存在的时间。记忆值越大,存在的时间越长。记忆值为零时,对应的特征图就被从记忆库中删除。记忆值的增减按照记忆曲线和遗忘曲线来进行。而且不同的数据库可以有不同的记忆和遗忘曲线。
机器在训练过程中,在日常生活中,不断使用上述过程,最终获得大量的特征图。
同理,我们可以对图像之外的其他传感器信息做一样的处理。比如对于语音,我们可以分辨不同语音的频率组成、相对强度作为静态特征,从中寻找局部相似性。对于触觉、感觉等数据,也可以采用类似的方法,我们只需要在这些数据的不同维度上,按照不同的分辨尺度来寻找相似性就可以建立在不同分辨率下的相似性对比结果,从而建立其静态特征图。需要指出,静态特征图是基于分辨率而建立的,它代表机器根据相似性而对事物的自建
分类。比如两张桌子,在粗略的分辨率下它们可能属于同一个分类,而在细致的分辨率下,它们可能有多个分类。我们的祖先,对部分分类建立了语言符号来代表它们,用于在信息交
流中方便地表达这些分类。
1.2 寻找动态相似性。
在动态图像中,存在两种相似性。一种是其包含的图像和其他过程中的图像的相似性。机器只需要把过程中的特征图和其他过程中的特征图,按照静态特征图提取方法进行就可以了。它们本质上还是静态特征图。但在动态过程中,存在另外一类相似性,那就是运动模式的相似性。运动模式是指机器忽略运动物体本身的构成细节,而重点对比它们的运动模式。同样,这也存在比较的分辨率问题,比如一个人向我们走过来,或者滑动着过来,或者跑过来,我们在粗略的层面上,甚至不会注意到这些运动模式的差异,所以这个时候,我们认为他们的运动模式是一样的。但当我们增加了分辨率,我们发现滑动过来的人是平稳的运动过来的,而走过来的人和跑过来的人,有各种的运动特征,这些特征包括人体的各个部分的相对运动和人体作为一个整体的整体运动,也包括变化的快慢,所以我们会发现他们的运动模式是不一样的。
要解决这个问题,本发明申请提出了动态局部相似性对比方法。具体就是,采用不同大小的窗口跟踪事物的不同部分。比如一个人跑过来、走过来还是滑动过来,我们可以采用不同窗口代表不同的分辨率。比如,当我们采用一个大窗口,把整个人作为一个整体时,我们跟踪这个窗口的运动模式,我们就发现这三种情况下,运动模式是一样的。但当我们采用更小的窗口,把人的双手、双腿、头、腰、屁股等部分分别做运动模式提取时,我们就区别出了这三种运动模式的差异。进一步,如果我们对手部采用更多的窗口去关注手部的运动模式,我们就能得到更加精细分辨率的运动模式。
除了空间的分辨率,机器还需要确立不同的时间分辨率。比如我们形容大街上人群川流不息,这是一种人群的运动模式。但从更加细微的时间分辨率,我们就能发现早晚上班时间的人群流动高峰。我们对比不同时间分辨率下的运动轨迹变化,就能得到变化速率。而变化速率是运动在时间上的一个重要动态特征。
所以,对运动模式的提取,就是建立在一定时间分辨率和一定空间分辨率基础上,机器通过对大量的动态数据做处理,来寻找常见的动态特征。
机器每发现一个相似的运动模式,机器就把表示这个运动模式的数据放入临时记忆库中,作为动态特征图的候选者,并给这个动态特征图候选者赋予一个记忆值。机器使用大小不同的窗口,对数据迭代使用上述过程,这样机器就能在临时记忆库中得到大量的动态特征图候选者。
同静态特征图一样,机器也是使用记忆和遗忘机制来对提取到的动态特征图做优胜劣汰。那些广泛存在于各种运动物体中的运动模式,会一次次被发现,从而一次次增加记忆值,最终进入长期记忆库中,成为我们长期记忆。
同理,我们可以对图像之外的其他传感器信息做一样的处理。比如对于语音,我们可以采用大小不同的时间窗口作为分辨率,把某些特定的语言属性(某种特征)作为对象,然后对比这个观察对象的变化模式(运动模式),从中寻找局部变化模式的相似性(比如升调、降调、颤音、爆破音等)。同理,对于触觉、感觉等数据,也可以采用类似的方法,我们只需要在这些数据的不同维度上,按照不同的分辨尺度,来把某种特征作为观察对象,来寻找观察对象的变化模式之间的相似性,就可以建立起这些对象的动态特征图。
需要指出,动态特征图是基于空间和时间双重分辨率而建立的,它代表机器根据动态的相似性而对动态过程的自建分类。它们和被观察对象的静态特征没有关系。
在生活中,由于动态特征和实施这些动态特征的对象无关,所以动态特征在我们生活中使用的重复性非常高。在记忆中,它们因为重复性高而获得很高的记忆值。我们在搜索和使用这些动态特征图时,甚至不会察觉到。而且,正是因为动态特征图和实施对象无关,所以机器才能很方便地使用类比的方法(同概念内替换),把这些动态特征的应用范围泛化。所以动态特征本身是我们泛化经验的关键工具。
2,关系网络的建立。
人类通过后天的学习,给这些按照不同分辨率下建立的分类赋予了语言符号,用于更好的表达这些分类,这就是基础概念。也通过学习,调整分辨率,对这些分类进行合并,或者展开,来建立更多的分类,并用更多的语言符号来代表这些新分类。这个过程可以迭代进行,于是人类就建立了概括性概念和抽象概念(它们是把概念作为操作对象而建立起来的概念)。并建立了所有分类之间的关系网络,这就是知识。我们的祖先通过语言把这些知识传承给我们,我们在这些知识的基础上,继续发现新的分类,发现新的关系,从而扩展人类的知识,并同样通过语言符号传承给我们的后代。
我们的祖先通过观察和总结发现事物之间存在两类关系。第一类就是相似性,它是建立在不同分辨率对比基础上的。第二类是连接关系。这种关系所连接的事物并不相似,但我们的祖先在生活中,发现不相似的事物之间,也存在连接关系,这些关系和他们的生活密切相关。于是他们把这些关系总结为经验。并使用语言把这些经验传承给后代。假设一只野兽冲向我们的祖先,这时不仅仅有野兽静态特征图,还可能有野兽的运动模式(动态特征图),还可能有特定的声音,还可能有特定的声音变化(动态特征图),还可能有特定的场景(静态特征图,比如水塘边),还可能有特定的场景变化模式(动态特征图,比如其他动物四散奔逃)。这些信息同时进入我们的祖先的信息处理系统,经过多次类似的处理后,我们的祖先就会把这些能够重复的信息连接起来,作为经验,来更好的适应环境。在本发明申请中,我们把这些关系称之为环境关系。由环境关系和相似性关系共同建立起来的网络,称之为关系网络。
在本发明申请中,第二个基本假设就是“同一环境之中的事物彼此存在连接关系”。我们的祖先,在第一次碰到野兽时,会把野兽和整个环境联系起来。在第二次碰到野兽时,那些相同的信息会进一步增加记忆。随着类似的过程逐步增加,能重复出现的信息会进一步增加记忆,而那些不能重复的,偶发的信息会逐渐被忘记。比如,野兽运动模式有可能每一次都会出现,而某一次野兽出现时,旁边有一朵花这样的信息就可能被忘记。比如“鱼”总是出现在水里,所以鱼和水之间的联系就会一步步增强。而完成这样的选择就是记忆和遗忘机制。记忆和遗忘机制是进化带给我们的礼物,因为它适合在神经细胞上实现,而且是一种高效的经验总结方式。在机器学习中,我们也引入这种机制。但其他能实现类似规律总结的机制,也可以作为机器智能的规律总结机制。
对每一次的输入信息中,机器选取感兴趣的区域和使用机器感兴趣的分辨率来进行数据特征图提取。并对提取的特征图(静态特征图和动态特征图)在记忆中搜索。如果在一个记忆中找到相似的特征图,那么就说明这段记忆中,这个特征图是重复出现了。机器就按照记忆曲线增加记忆中这个特征图的记忆值。同时,机器按照遗忘曲线,对所有记忆中的记忆值,使其随时间而递减。这样,只有那些重复出现的特征图,其记忆值在相关记忆中才能长期存在。
如果从一段输入信息提取的特征图中,有多个特征图都在同一段记忆中找到了,就说明这些特征图之间的关系是能重复的。那么,按照记忆和遗忘机制,我们会直接增加每个特征图的记忆值。在本发明申请中,机器并不需要去处理这些重复出现的关系。事实上,这些关系也非常复杂,难以处理。所以,在本发明申请中,我们提出第三个基本假设“同一段记忆中的特征图,任意两个特征图之间连接关系强度和这两个特征图在这个记忆中的记忆值正相关(不一定是线性关系)”。所以,那些重复出现的特征图组合,因为这些组合同步在同一段记忆中的记忆值被增加了,从而它们之间的连接关系强度也增加了。每个记忆中的特征图(静态或者动态特征图)都构成了一个局域网络。而这些局域网络彼此之间,又通过特征图的相似性连接起来了。这样,就构成了一个按照时间关系组合而成的立体记忆网络,它们就是关系网络。
3,概念的建立。
我们的祖先,发明了语言,并使用这些语言来代表那些通过对比相似性而建立的分类,比如石头、树、无花果、兔子和狮子等和生活密切相关的事物。也使用语言来代表那些通过对比相似性而建立的动态分类,比如跑、跳、敲、磨、刨、投掷和流动等和生活密切相关的动态模式。在有了这些语言后,就能通过一定的组织方式来组织这些语言,表达思想,这是一个约定成俗的过程。
机器建立概念的具体方法,采用和人类一样的方式。比如,当某一个图像特征图输入到机器中时,我们同步赋予其代表这个图像特征图的语言,那么机器在通过多次重复后,就能在关系网络中,把这个图像特征图和对应的语言特征图建立起更加紧密的联系。由于那些存在于不同记忆中的相似图像特征图,它们在不同记忆中的相似度,可能没有语言在不同记忆中的相似度高。当我们通过图像和语言把不同的记忆串接起来后,那些语言符号(比如语音或者文字)由于使用频繁(导致记忆值高),彼此间相似度高(导致记忆间传递系数大),那么同一个概念包含的信息中(比如各种苹果图像、各种苹果语音和各种苹果文字),语言符号很可能拥有最高的记忆值(因为使用频繁和相似度高)。在记忆中搜索概念时,我们常常会首先找到语言符号,并使用语言符号来代表概念。
4,静态概念的扩展。
静态概念的扩展,就是把寻找相似性的对象扩展到概念上。
在语言的运用中,如果只是使用这些表达实体(图像、动作或者人类可感知的特征)的概念来表达一些信息则可能非常繁琐,甚至难以表达。比如,我们开了一家餐厅,我们需要描述我们可以售卖披萨,想想我们只用小麦、肉、磨、切、加热等词汇来描述整个过程,是多么繁琐的一件事。所以我们必须把那些经常使用的信息组合,使用一个符号来代表,并在群体中形成共识。这样,我们在信息交流时,就可以使用这个符号来简洁地代表这一串信息组合。这就是在概念的基础上创造新的概念。
而创造新概念的方法,就是把寻找相似性的对象扩展到概念上。我们能够把不同的概念归属于一个概念下,一定是因为这些不同概念中包含有某种共有属性。这些共有属性就是概念之间的相似性。我们通过这个相似性,认为这些概念之间彼此相似,所以我们用一个概念来代表这个概念群。
比如我们把来就餐的人统称为顾客,把顾客额外给我们的各种数目不等的钱统称为小费,这是降低事物的分辨率,只保留它们的共有属性,所以它们彼此相似,被归纳为一个概念。同理,我们也把苹果分为红富士苹果、美国蛇果和烟台苹果。这是增加事物的分辨率,来区分差异。这些扩展了的分类,人类既可以创建一个新的语言符号来代表它们,也可以组合原有的语言来表示它们。比如我们可以把来就餐的人称为“顾客”,也可以称之为“来吃饭的人”。比如我们可以说“甜蜜的爱情”和“苦涩的人生”,这就是把分类对象从食物扩展到对整个概念上,把味觉属性扩展到味觉带来的感觉上,基于这种“类似于品尝食物后得到的感觉”属性来分类。只有当机器把对比对象和使用属性都扩展后,机器才能理解“甜蜜的爱情”和“苦涩的人生”。
我们可以把扩展概念看做是由原有概念来创建新概念。这个过程可以迭代进行,也就是说,这些扩展了的概念,可以进一步改变分辨率来组成更加抽象或者更加具体的概念。所以,概念之间,并非只有并列关系,它们还可能是包含与被包含,部分包含,重叠或者部分重叠等关系。
5,动态概念的扩展。
动态概念的扩展,就是把识别动态模式的对象扩展到概念上。
动态特征的提取是机器智能至关重要的一个环节。因为动态特征是一种动态运动方式,和这种运动方式的主体没有必然联系。所以运动特征的主体是一种泛化的主体。机器可以采用质点或者立体图形来代表抽象的运动主体。正是因为运动主体是泛化的主体,所以机器才可以把任何实体和概念作带入运动特征中,从而实现经验的泛化能力。比如我们说“经过把所有信息分流过滤,然后汇总处理,我们得到一个有坚实基础的产品”这样一段信息时,显然,我们是把信息,作为一个对象,带入我们建立的动态模式“过滤”、“汇总”、“处理”中,并把信息处理后的结果也作为一个对象,使用“坚实基础”和“产品”来形容。也正是因为可以把抽象的概念作为主体带入运动特征中,所以机器才能理解和使用诸如“最近情绪高涨”、“开弓没有回头箭”、“他一步步滑向深渊”等信息的真实含义。
表示事物之间关系的概念也是一种动态特征。它把关系两端的对象作为一个虚拟整体来考虑。所以,在本发明申请中,通过给表示关系的概念赋予一个动态特征,机器就能通过这个动态特征正确的运用这个表示关系的概念。比如语言“虽然...但是...”、“可是...”、“尽管...”、“然而...”等代表的关系,可以使用一个转折的动态特征来表示。“一边...一边...”、“既...又...”这样的并行概念,可以使用并行进行的动态特征来表示。“包含于...之中”这样的关系概念,可以使用包含的动态特征来表示。
这种关系动态特征的具体建立方法是:1,机器通过对大量的语言采用记忆和遗忘机制,寻找它们的共同点,这些共同点通常就是表示动态模式或者关系的概念,因为它们和具体对象的无关性,导致它们可以被广泛使用。这些词语的组织方式,逐渐变成常用语、常用句型和语法等形式。这种方法类似于目前人工智能中语言的组织方法,是一种机械模仿的方法。2,在本发明申请中,机器需要进一步去理解这些概念的含义。机器理解的方法就是把每次使用这些概念所联系的具体静态特征图和动态特征图记忆下来,然后通过记忆和遗忘机制来保存这些概念。因为在描述关系的过程中,具体对象总是变化的,而不变的是代表关系的动态特征。比如“一边...一边...”这样的关系应用时,常常使用在两个对象并列活动的动态特征中。所以经过积累,机器就能把“一边...一边...”这样的表述关系的词语,表示成两个具体的对象和一个代表“两个对象并列活动”的动态特征。机器在下一次收到“一边...一边...”这样的信息时,它调用的动态特征还是“两个对象并列活动”的动态特征,但两个具体的对象可能就变化了。通过一次次这样的重复,机器最终把“一边...一边...”这样的表述关系的词语和“两个对象并列活动”的动态特征建立了紧密的连接,而并没有和特定的具体对象建立紧密关系。当机器需要使用“一边...一边...”这样的词语时,机器可以参考过去的经验。即使机器面对的是新事物,也可以通过相同属性替换的方式,把新事物合理地带入关系中。只有这样,机器才能正确的理解和运用“一边...一边...”这样的关系概念所包含的意义。同理,“虽然...但是...”、“可是...”、“尽管...”、“然而...”等代表的关系,可以是一个“转折”的动态特征。“既...又...”是一个叠加的动态特征。所以,从语言理解和组织角度看,本发明申请提出的语言处理方法和目前已知的语言处理方法有本质区别。我们既无需去人为建立语义库,又能让机器真正的理解语言的含义。
动态扩展的另外一个方面是:我们的生活中,有很多过程是由多个实体概念或者扩展后的抽象概念,构成的一种广义的运动模式,我们称之为过程特征。过程特征是一种扩展了的动态特征,它的特征是:1,多个观察对象,它们不一定是一个整体。2,整个运动方式
没有明确重复的轨迹线。比如回家、出差、洗手、做饭等过程,它们是多个实体概念或者扩展后的抽象概念,构成的一种广义的运动模式。之所以称之为模式,是因为这些概念在我们生活中是能够不断重复的。既然能重复,就说明这些概念代表的过程中,存在共有特征,否者,我们就不可能用一个概念来代表它们。
比如我们把出差分解成“出发”、“路上”和“到达”,也可以分解成“出发”、“开车去机场”、“到达机场”、“买票”、“过安检”、“登机”、“路上”、“到达目标机场”、“出目标机场”、“打的去目标酒店”的更加细致的环节。这取决于机器使用的时间和空间的分辨率。而一个过程的中间环节,可以认为是在类似过程中,能够重复出现的中间状态。通过这些中间状
态,我们可以把大量的类似过程,分成同样的多个环节。每个环节里面,又可能包含多个共有的中间状态,这些下一级的共有中间状态,又把单个环节分成多个下一级环节。这样,我们就通过层层递进,把一类过程,细分成很多类似环节串联起来的。分解后的结果,是一个塔形结构,最底层的共有环节,是最细微的时间分辨率和空间分辨率,最顶层的环节,是最粗略的时间分辨率和空间分辨率。最底层的环节,通常是和具体的细节联系在一起的,它们操作的对象通常是具体的事物,模仿这些环节时,常常涉及到具体事物。而更高的环节,它们操作的对象通常是概念和抽象概念。它们被模仿的机会更广泛。机器在模仿时,通常是从一个大的时间分辨率和空间分辨率开始,先使用概念模仿,然后再把概念一层层展开。在理解信息时,可能只需要把这个塔形结构展开到具体图像(机器能够使用相似性来做对比的层面,这是机器处理信息的底层语言)就可以了。而在模仿执行时,可能需要把这个塔形结构展开到机器的底层经验(底层经验是机器通过预置程序,调用经验参数,来模仿发出单个音节或者做出单个动作的经验)。
过程特征通常是涉及空间大、时间长的动态过程。实现它的具体细节和环境密切相关,所以很难从中找到相似性。但这些环节,通常都有语言符号来代表。所以,我们寻找一个过程特征时,可以先寻找每次去机场的过程中,涉及到的每个环节的语言符号的重复性。机器通过记忆每次去机场,每个环节所对应的语言符号,构成一个逐步展开的塔形概念关系。举例说明:这个概念的顶层是“去机场”,下一层是“准备去”、“途中”、“到达”,再下一层是“准备行李”、“找车”、“告别朋友”、“坐车”、“途中”、“到达机场车库”、“出车库”、“到达机场入口”。再下一层是“准备衣物”、“准备洗漱用品”、“准备钱”、“准备工作相关材料”....。这个过程可以不断细分下去。一开始,每个环节的区分可以是带有随意性的。但在每一次去机场后,我们都得到一个塔形的概念组织。这个塔形的概念组织经过记忆和遗忘机制,最终在每个分辨率层次上,只有少量的,必不可少的,频繁出现的概念才能在记忆中保留下来。它们就是在对应分辨率上的过程特征。这些过程特征是一连串概念,带有时间和空间次序组织起来的。尤其是在底层,通常只能留下每一次去机场都可能有的静态特征图和动态特征图。这些特征图数量很少,但它们缺一不可。这些就是代表关键环节的静态特征图或者动态特征图,比如“安检”或者“登机”。和关键环节相连的上层概念,也是缺一不可的(它们可能数量上更少)。依次向上推,最后就只有“去机场”这样一个顶层概念。所以,建立过程特征是从正向选择(自己借鉴他人经验而刻意记住的环节)和逆向选择(每次都有的事情对应的上层环节),通过记忆和遗忘机制来实现的。
这些保留下来的塔形概念和底层特征图,就是我们每次去机场的模仿对象。我们只需要把现实环境中的具体事物,按照类比的方法放入这个过程特征中,我们就能建立起从任何地方去机场的各个阶段目标规划能力。而在具体实施时,需要使用分段模仿来把这些抽象的概念逐层展开,加入符合现实情况的更多环节。这样我们就建立了机器在各种不同环境下去机场的能力。
分段模仿的本质是一个使用记忆和输入信息重组的过程,是一个创造的过程。它利用记忆中的一些动态特征和过程特征,和输入信息一起组织成一个或者多个合理的过程。记忆中能长期存在的内容通常是经常使用的内容,比如动态特征和过程特征。因为它们和具体对象无关,所以被广泛使用。它们就是常用语、常用动作或者常用表达组织方式等。这些经常使用的组合相当于事物、场景和过程的过程框架,它们是通过记忆和遗忘机制优胜劣汰而形成的。机器借用这些过程框架,增加上自己的细节,就构成了形形色色的新过程。机器通过把找到的最相关记忆,采用去掉低记忆值,去掉和现实无关的静态特征图,剩下的就是需要的框架过程。然后在框架中填入现实信息。这个过程就叫分段模仿。分段模仿是一个迭代过程,每一个上层环节,通过分段模仿展开成符合现实条件的多个下层环节。然后在模仿过程中,继续采用一样的方法,把每一个下层环节,再次展开成符合现实条件的多个更下层环节。这个过程不断迭代,知道机器能真正地采取行动为止。
6,关系网络的扩展。
关系网络的扩展,就是把概念也作为操作对象,来建立关系网络。
在本发明申请中,第三个基本假设是“同一段记忆中的特征图,两个特征图之间连接关系强度和这两个特征图在这个记忆中的记忆值正相关”。在这里,我们认为这个假设对概念也是同样成立的。这样做的目的:1,把语言符号作为实体。同一段记忆中的语言符号(语音或者文字),它们的关系和这两个符号在这个记忆中的的记忆值正相关(不一定是线性关系)。2,把概念作为实体。引入对概念操作的动态特征图(包括关系概念)和过程特征。这些被操作概念包含了机器的动机、机器的需求类型和状态数据,还包含有机器的情绪类型和状态数据。它们都和同一个记忆中的其他信息存在连接关系。
由于人类积累了大量的概念之间的关系(知识),所以概念之间的关系,很大程度是通过学习直接获得的。具体方法是:机器首先学习那些具体事物的概念,把这些概念的语言符号和机器能够用于运算的信息形式(语言符号之外的形式,比如图像、声音、气味、触觉等其他传感器形式)连接起来。连接的方法就是:1,在这些信息发生时,同时赋予其语言符号。2,直接学习这些概念的解释。概念的解释就是概念包含的内容。这样,这些概念就通过间接的方法和机器能够用于运算的信息形式连接起来。
机器学习的具体方法中,一种方法是模仿人类学习,通过重复来帮助记忆。就是让语言和语言对应的内容出现在一个记忆中,并使用重复来提高记忆值。为了提高效率,人类可以直接赋予机器相关记忆。比如把“小麦”这个概念下的各种语言(包括不同语言、方言、语音语调)和各种“小麦”的图像直接放入到机器的记忆中,并赋予它们高的记忆值,从而让机器直接拥有识别“小麦”的能力。进一步,还可以把关于“小麦”的各种知识放入同一个记忆中。也可以放入不同记忆中,这些不同记忆都可以通过“小麦”相关的共有信息连接起来,从而构成一个大的网络。有了这样的记忆植入形式,机器的学习效率会远超人类。由于本发明申请中,所有的知识都存在于记忆之中,所以不同机器可以直接共享记忆,并且按照一样的方法来使用这些记忆。所以,本发明申请提出的方法,是可以创造出拥有远远超越人类个体所拥有知识的智能的。
关系概念的扩展是指使用语言符号来代表概念之间的关系,这些关系包括但不限于“包含或者部分包含”、“并列”、“对立”、“重叠或者部分重叠”、“转折”、“重复”、“排列”、“对称”、“增加”、“减少”、“渐变”、“突变”等等表示事物之间关系的方法。人类学习这些关系的方式是采用动态特征来表示对象之间的关系。举例说明:我们在学习“增加”这个关系时,我们是记忆了很多关于“增加”这个关系的过程。在这些过程中,“增加”这个语言符号都出现了,增加这个动态特征也出现了,但动态特征操作的对象可能并不相同。比如一开始是“水”,“奶”、“食物”,后来是“考试分数”、“钞票”,再后来我们还发现操作对象还可以是“爱情”、“时间”和“生命”这样的没有实体的东西,所以我们通过对这些关系的记忆和遗忘,在这些关系中,我们发现记忆值最高的共有特征图是一个动态特征图(一个数量不断增加的动态模式),而其他部分的共有特征就只能是它们都是“某种对象”,这样我们就把“增加”这个语言符号和一种机器可以理解的形式(动态特征图)连接起来了,并且可以泛化到任意概念上。这样,机器就能正确理解和运用“增加”这个语言符号。正是有了泛化的关系,我们才能感受到文学中的对称、排比和韵律带给我们的美感。这是因为它们和实物采用的动态关系是一样的。进化带给了我们欣赏这些动态模式之美的能力,引发了我们相应的情绪。而在本发明申请中,我们把情绪和所有相关信息记录在同一个记忆中。当机器面对同样美的文学形式时,通过关系网络,这些形式里包含的动态特征,同样会给相应的需求类型(比如对称美)传递激活值,而需求的满足也会影响情绪。通过这样的方式,机器同样可以感受到文学之美。
为了提高搜索效率,我们可以把关系网络从记忆中分离出来,建立一个单独的网络。一种可能的方法就是:把每个记忆帧中的特征图先建立连接线,它们的连接值是每个连接线两端的特征图的记忆值的函数。然后对每个特征图发出的连接值归一化。这样就会导致两个特征图彼此之间的连接值不是对称的。然后把记忆帧之间的相似特征图按照相似度的程度连接起来,连接值就是相似度。通过上述步骤后,获得的网络就是从记忆库中提取出来的认知网络。我们可以把认知网络单独放到一个快速搜索库(记忆库的一种),用于一些需要快速的本能反应中,比如自动驾驶应用中,或者一些只需要简单的智能应用中(比如生产线)。认知网络中的记忆和遗忘采用对连接值作记忆和遗忘机制:关系每使用一次,连接值就按照记忆曲线增加。而所有连接值都按照遗忘曲线随时间而递减。需要指出,按照任何方式建立单独的关系网络,只要这种关系网络是基于本发明申请提出的基础假设之上的,它们都是本发明申请中关系网络的一种变形方式,和本发明申请中所提出的关系网络并没有本质区别,所以它们依然处于本发明申请的权利要求中。
7,对输入信息的理解和响应。
机器对输入信息的处理,是通过模仿他们或者自己的经验来进行的。模仿是人类存在于基因里的能力。比如对一个呀呀学语的孩子,如果每次他(她)回家后,我们和他(她)打招呼,说“你回来了”。经过几次后,当他(她)再次回家时,他(她)会主动说“你回来了”。这表明他(她)在并不理解信息含义的情况下,就已经开始模仿他人进行学习。
同理,我们让机器学习也采用同样的方法。机器也是模仿他人或者自己的经验来对输入信息理解并做出响应的。具体的方法就是:
在信息输入时,机器首先在记忆中找到一段或者多段最相关记忆,这些记忆是过去对类似输入信息的响应,或者是过去对局部类似于输入信息的多个信息的响应。这些响应的发出者既可以是机器本身,也可以是其他事物。机器把自己和信息源之间发生次数最多的、和输入信息相关的响应作为信息源的目的。如果机器和信息源之间没有频繁的互动,那么机器就把他人使用最多的响应,认为是信息源发出信息的目的。这是合理的,因为信息源发出信息的目的是为了得到响应。信息源根据自己的经验,已经预设了可能的响应。而这些预设响应正是基于信息源与机器的互动或者信息源于他人的互动经验来建立的。当机器理解了信息源的目的,也就理解了输入信息。
机器在理解了信息源的目的后,机器需要建立对应的响应。机器建立响应的方法是:机器在一段或者多段最相关响应记忆中,找出这些响应中的过程特征。过程特征是动态过程,它们和动态过程操作的具体对象无关。所以通过动态过程机器可以把过去的经验进行泛化。如果机器利用自己经验中的动态过程时,机器通过采用同概念下属性相同就可以替代的原则,并参考记忆中常用的动作和对象的连接关系,把记忆中的动态过程对象替换成输入信息中的对象。如果机器利用他人经验中的动态过程时,机器需要首先按照同概念下属性相同就可以替代的原则,把他人替换成自己,然后再参考记忆中常用的动作和对象的连接关系,把记忆中的动态过程对象替换成输入信息中的对象。实现上述目的的一个更简洁的方法是:把找到的最相关记忆,去掉记忆值低的特征图,去掉和输入信息无关的静态特征图,然后剩下的部分作为一种过程框架。这种过程框架是过程特征加上记忆中和现实匹配的动作对象构成的。机器通过同样的方法,通过动态特征的泛化能力,把合适的对象带入后,就可以建立合理的信息响应。上述方法建立的基础假设是:动态过程通常是和对象无关的,它们在生活中重复次数更高,所以通常记忆值比较高。删除那些记忆值低的内容,通常就是删除重复次数很少的细节,保留下来的就是正确的过程框架。
机器需要对自己建立的响应做“趋利避害”评估。评估通过后才会真正输出。评估的方法就是假设输出已经发生,机器在记忆中,寻找和假设的输出发生后,得到的反馈记忆。机器可能找到完全类似情况下的反馈记忆,也可能没有完全类似情况的反馈,但机器总是可以找到局部相似情况下的反馈记忆。这些记忆可能是关于自己的,也可能是关于他人的。机器把这些记忆的对象替换成自己,使用关系网络来判断:如果这些响应真的发生,那么自己可能得到什么样的需求状态改变。从而按照“趋利避害”的原则来确定是不是把计划响应真正地输出。如果评估不能通过,机器会寻找排除带来负面结果的静态事物或者动态过程,把它们排除后,再次按照同样的方法组建自己的输出响应。这个过程会反复进行,直到能找到通过“趋利避害”评估的响应。如果还是找不到,机器进入“无处处理信息”的流程。
在本发明申请中,我们提出了如图1所示意的信息处理过程:S1是机器按照不同分辨率来选择信息特征,并建立从输入数据中提取信息特征的算法。S2是机器使用S1中的算法,提取输入信息中的特征,并建立环境空间。S3是概念和关系网络建立过程的说明。S4是机器通过关系网络来寻找和输入信息序列相关的记忆。机器根据这些记忆,来推测信息源的目的。S5是机器根据自己的经验来组合自己的响应计划,并通过评估系统来评估不同的响应计划,确定最终选择。S6是机器模仿自己的经验(可以是自己的过去记忆的提取;也可以是他人的,比如他人告知,知识学习等方式获得的),采用分段模仿的方法,把概念层层展开,直到静态特征图和动态特征图。然后机器模仿经验,把这些静态特征图和动态特征图组合成自己的一连串语言或者动作响应。这就完成了一次信息处理过程。S7是贯穿于整个信息处理流程中的数据库更新过程。
需要指出,在本发明申请公开中,机器的学习材料也可以从自身记忆之外的材料获得,包括但不限于专家系统、知识图谱、字典、网络大数据等。这些材料可以通过机器的传感器输入、也可以采用人工方法直接植入。但它们在机器学习中都是作为记忆来处理的。需要指出,在本发明申请中所提出的所有学习步骤并不存在时间分割线,它们是相互交织进行的,每个步骤没有先后之分。机器对信息处理过程的反馈,是按照新的输入信息来处理的。所以这个过程不断迭代进行,就构成了机器和外界的互动过程。机器在这个过程中所表现出来的智力,和现有的机器智能最本质的区别是:1,本发明申请提出的机器智力,对信息的响应过程,是建立在其真正理解了信息的基础上的,而不是机械模仿。2,本发明申请提出的机器智力,每一个步骤对于人而言,都是可以看到、理解的、并可介入的,所以本发明申请提出的机器智能对人类而言,是可控的和可以理解的。而目前的人工智能对机器的信息处理过程,更多的是黑箱理论。3,本发明申请提出的机器智力,可以拥有和人类类似的情绪反应。
还需要指出,机器对输入信息的识别和响应,除了和关系网络有关,还和“性格”有关。这里的“性格”是指机器的各项预设参数。比如激活阈值低的机器就喜欢产生联想,思考时间长,考虑的比较全面,也有可能比较幽默。临时记忆库大的机器容易记住很多“细节”。比如在做出决定时,激活值比激活值噪声底高多少就算“凸显”,这是一个阈值。这个阈值高的机器可能优柔寡断,而这个阈值低的机器可能更容易跟着直觉走。再比如两个节点特征图(可以是具体事物、发音、文字或者动态过程)有多少相似就算相似,确定了机器的类比思维的能力,这决定了机器是属于一本正经的个性,还是一个幽默风趣的机器。不同的记忆和遗忘曲线,不同的激活值传递曲线这些都带来机器不同的学习效果。
还需要指出的是,通过本发明申请所述方法,机器学到的认知和机器的学习经历密切相关。即使学习材料相同和学习参数设置相同,但学习的经历不同,机器最终形成的认知可能有很大差异。举例说明:我们的母语可能和特征图之间是直接连接。而第二语言,可能是先和母语连接,然后间接连接到特征图。在没有熟练掌握第二语言时,甚至可能是从第二语言到第二文字,再到母语文字,再转到特征图这样一个流程。当使用这样的流程时,需要的时间大大增加,导致机器无法熟练的应用第二语言。所以,机器也存在母语学习问题(当然,也可以通过人工植入的方法,直接让机器获得使用多种语言的能力)。所以,本发明申请所述的机器学习方法,除了和机器的学习材料相关外,还和机器的对这些材料的学习次序密切相关。
在本发明申请的基础上,是否采用不同的记忆和遗忘曲线,是否采用链式激活作为搜索方法,是否采用不同的激活值传递函数,是否采用不同的激活值累计方式,是否也采用记忆和遗忘机制之外的方法的其他关系提取机制,是否在链式激活中采用不同的激活阈值,是否采用不同的“凸显”阈值,是否采用不同的激活值噪声底计算方法,是否在多次链式激活时对节点采用不同的时间次序,是否在单次链式激活时对节点采用不同的时间次序,不同的初始激活值赋予方式,甚至是采用不同的硬件配置(比如计算能力,记忆容量等),具体采用哪种母语进行学习,是否采用人工干预来获得的认知等,上述这些差异都是本发明申请中,提出的实现通用人工智能框架下的具体优选方法,都是可以通过本行业公知知识来实现的,这些都不影响本发明申请提出的权利要求。
附图说明
图1为本发明申请中提出的信息处理过程示意图。
图2是不同分辨率下信息特征提取方法的示意图。
图3是机器处理输入信息,并使用这些信息建立环境空间的过程。
图4是信息在关系网络中的处理过程。
图5是机器建立响应的过程。
图6是一种实现通用机器智能的模块组成示意图。
具体实施方式
下面结合附图和具体的实施例对本发明申请作进一步的阐述。应该理解,本申请文本主要是提出了实现通用人工智能的主要步骤。这些主要步骤中,每一个步骤都可以采用目前公知结构和技术来实现。所以本申请文本的重点在于这些步骤以及其组成,而不是局限于采用已知技术来实现每个步骤的细节上。所以这些实施例描述只是示例性的,而并非要限制本申请文本的范围。在以下说明中,为了避免不必要地混淆本申请文本的重点,我们省略了对公知结构和技术的描述。本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请文本保护的范围。
1,机器信息处理的前期准备。
1.1 信息特征的选取。
我们认为,在我们的世界,不可能有两个完全一样的东西。当我们说两个物体是同类物体时,是指在我们使用的信息分辨率下,它们是相同的。所以,在本发明申请中,我们需要从细节到抽象,逐步使用不同的分辨率来识别信息。
同时我们认为,在进化史上,生物在识别信息时,是沿最节省能量消耗的方向进化。因为对生物而言,节省能量消耗意味着更高的生存机会。所以,我们把这个思路也引入到机器学习中。
综合上述两个方面,我们提出信息特征的选取标准是:1,这些特征广泛存在于我们的世界中。这样我们才能在信息处理过程中复用这些特征,这样最节省能量。2,同一数据,在不同的分辨率下,有不同的数据特征。这样我们才能在不同的分辨率下来对比两者的相似性。
1.2 信息特征的建立。
我们提出了如图2所示的信息特征的建立方法。S201是通过滤波器把输入数据分成多个通道。对于图像,这些通道包括针对图形的轮廓、纹理、色调、动态模式等方面做特定的滤波。对于语音,这些通道包括对音频组成、音调变化(一种动态模式)等语音识别方面做滤波。这些预处理方式可以和目前行业内已有的图像、语音预处理方法一样,这里不再赘述。
S202是对每个通道内数据,使用特定的分辨率窗口,来寻找局部相似性。这一步是对每一个通道的数据,在数据窗口中寻找共有的局部特征,而忽略整体信息。在S202步骤中,机器首先是使用一个局部窗口W1,通过移动W1来寻找窗口内的数据中普遍存在的局部特征。对图像而言,局部特征就是指那些普遍存在于图形中的局部相似图形,包括但不限于点、线、面、梯度和曲率等最底层特征,然后是这些最底层特征组合而成的局部边缘、局部曲率、纹理、色调、脊、顶点、角度、平行、相交、大小、动态模式等普遍存在于图形中的局部特征。对语音就是相似的音频、音色、音调和它们的动态模式。其他传感器数据也一样,判断的标准就是相似性。
这里需要指出,不同分辨率的窗口可以是时间窗口或者空间窗口,或者两者混合使用。在对比窗口内的数据相似性时,是使用相似性对比算法。而相似性对比算法中,可能涉及到再次对数据预处理,可能涉及到对数据再次使用分割对比,不同的窗口对应不同的分辨率,每个分辨率下的相似性对比算法,需要通过实践来优选。这一步相当于我们试图实现人类先天就有的特征提取能力。而人类的特征提取能力是在进化过程中,通过不断试错而建立起来的。同理,在本发明申请中,机器也需要通过人类辅助,通过不断试错来建立不同分辨率下的相似度对比算法。尽管这些算法需要通过实践来优选,但这些算法本身是非常成熟的算法,本行业专业人员基于公知知识就可以实现,所以这里不再赘述。
机器把找到的局部相似特征放入临时记忆库中。每新放入一个局部特征,就赋予其初始记忆值。每发现一个已有的局部特征,就对临时记忆库中的底层特征的记忆值按照记忆曲线增加。临时记忆库中的信息都遵守临时记忆库的记忆和遗忘机制。那些在临时记忆库中存活下来的底层特征,达到进入长期记忆库阈值后,就可以放入特征图库中,作为长期记忆的特征。长期记忆库可以有多个,它们也遵从自己的记忆和遗忘机制。S203是逐次使用局部窗口W2,W3,…,Wn,其中W1<W2<W3<…<Wn(n为自然数),重复S202的步骤,来获取底层特征。
在S1中,机器不仅仅需要建立底层特征图数据库,还需要建立能够提取这些底层特征的模型。在S204中,是机器建立的一种底层特征提取算法模型A。这种算法模型就是寻找局部相似性中的算法:对比相似性算法。在S205中,是另外一种提取底层特征的算法模型B。它是基于多层神经网络的算法模型。这种模型训练好后,比相似度算法的计算效率要高。
在S205中,机器采用选出的信息特征,作为可能的输出来训练多层神经网络。由于最底层的信息特征并不是很多,比如图像中,主要就是点、线、面、梯度、曲率等最本质特征,然后才是这些特征组合而成的图像特征。所以我们可以采用逐层训练方法。在S205中,机器首先使用局部窗口W1来选取数据区间,使用区间内的数据来训练神经网络。神经网络的输出选用和W1窗口分辨率相近分辨率下选出的信息特征。
在S206中,机器再逐次使用局部窗口W2,W3,…,Wn,其中W1<W2<W3<…<Wn(n为自然数),来训练算法模型。在优化时,一种是每次增加窗口大小后,就在对应的前一个网络模型上增加零到L(L为自然数)层神经网络层。对这个增加了层的神经网络优化时,有两个选择:1,每次只优化增加的零到L(L为自然数)层神经网络层;这样,机器就可以把所有网络模型叠加起来,构成一个有中间输出的整体网络。这样计算效率最高。2,每次都把目前网络复制到新网络,然后优化增加了零到L层的新网络。这样机器最终得到n个神经网络。每个神经网络模型对应一个分辨率。在提取信息中的特征时,机器需要根据本次提取信息的目的,来选用一到多个神经网络。所以,在S207中,机器可能得到两种提取信息特征的神经网络。一种是多输出层的单个算法网络,其优点是运算资源需求小,但对特征的抽取能力不如后者。另外一种是多个单输出神经网络。这种方式需要的运算量大,但特征提取更优。
需要指出,上述方法可以对图像、语音处理,也可以对任何其他传感器的信息采用类似的方法处理。还需要指出,选用不同的分辨率就是选用不同的窗口,选用不同的特征提取算法。所以提取的特征大小也是不一样的。有些底层特征可能和整个图像一样大。这样的底层特征通常是一些图像的背景特征图或者特定的场景特征图。
动态特征的提取,是把空间分辨率窗口中的事物作为一个整体,可以认为是一个质点,来提取其运动轨迹的相似性。当确定了运动轨迹后,可以把这些轨迹作为静态数据来看。所以对运动特征的选取和对运动特征的提取算法,和静态数据是类似的。而变化速率是一个通过时间分辨率(时间窗口)来提取的运动特征,它是按照时间来对整个过程取样,通过对比不同取样之间的运动轨迹的相似性差异来确定变化率的。所以运动特征有两个分辨率,一个是空间,我们使用空间取样窗口,把窗口内数据作为一个质点来实现。一个是时间,我们通过时间窗口取样,通过这些取样中的运动轨迹的变化情况来确定运动的变化速率。
2,机器对输入信息的处理和建立环境空间。
图3是机器处理输入信息,并使用这些信息建立环境空间的过程。S301是机器确定自己需要的分辨率和需要识别的信息区间。
当机器需要处理输入信息时,机器首先需要根据继承目标来确定自己需要的分辨率和需要识别的区间。继承目标来自于机器在之前的信息处理过程中产生的、还没有完成的目标。机器通常对这些继承目标有常用的时间和空间分辨率,这些信息都存在于记忆中。同样,需要识别的区间也是来自于机器之前的信息处理过程的结果。这是机器有意识去识别特定区间的行为。比如在上一个信息处理周期内,机器产生的响应是“进一步识别某个特定区间的信息”。如果机器没有继承目标和计划去识别的区间,那么机器可能在“安全需求”的底层动机下,随机选择较粗略的分辨率来识别周边环境。
S302是机器提取信息特征的过程。当信息输入到机器时,信息通过多路信息预处理后,机器按照自己选择的分辨率对每一路信息做特征提取。这里提取的方法就是走S201到S207的流程,只不过这里机器不需要再次重复使用不同的分辨率对同一数据做提取,也只需要使用特征提取算法模型A或者算法模型B中任意一种就可以。
S303是机器建立环境空间的过程。正是因为我们需要保留事物之间的相似性和环境关系,所以我们采用一种称之为环境空间的方法来存储数据。当机器从输入中提取了信息特征后,机器需要使用这些特征建立环境空间。机器首先把提取的特征,通过缩放和旋转,按照和原始数据相似度最高的位置、角度和大小,来调整底层特征的位置、角度和大小,把它们和原始数据重叠放置,这样就能保留这些底层特征在时间和空间上的相对位置,并建立环境空间。机器在记忆调用时,可以通过不同角度传感器的输入,比如视频和音频,利用视差或者听觉差,来重建立体环境空间。同时,机器也采用对输入特征图和记忆中特征图的大小对比,来辅助建立立体景深。
因为重力感应是持续输入的信息,它存在于所有记忆之中。它和记忆中的所有事物都有连接关系,并且这些关系由记忆和遗忘机制来优化。这些图像和重力感应之间的方向关系是广泛的存在于这些记忆中,所以我们会对上下颠倒非常敏感,而对左右颠倒却没有那么敏感。这是因为上下颠倒导致我们脱离了熟悉的特征图和重力方向之间的组合关系。而我们在使用提取的特征图叠放到输入数据中并建立环境空间时,一个默认的参考坐标系就是重力方向。而上下颠倒时,脱离了记忆中的叠放方式,使得物体的局域坐标系和整个大的坐标系在借用过去经验来放置时,出现了不匹配的问题。这使得我们不得不提高注意力进行第二次识别,在第二次时,我们可能通过扩大记忆搜索范围,或者通过角度旋转来找到对应的特征图,这要求我们付出更多的注意力,这就是我们对上下颠倒如此敏感的原因。
S304是机器在记忆中存入其他相关信息的过程。机器存储的记忆中,有三类数据,每一类都有自己的记忆值。第一类是外部输入的信息特征,包括所有外部传感器输入信息的特征,它们包括视觉、听觉、嗅觉、触觉、味觉、温度、湿度、气压等信息,这些信息和具体环境密切相关,它们按照原始数据的组织方法存储,可以重建立体环境空间;它们按照记忆和遗忘机制来维护其记忆值。第二类是内部自身信息,包括电量、重力方向、肢体的姿态、各个功能模块运转情况等,这些信息和环境无关,它们的记忆值按照预设程序来设置。第三类是机器需求和需求所处状态的数据,包括安全值、危险值、收益值、损失值、目标达成值、支配值、自身身体状态评估值等数据;也包括由这些需求和需求的状态数据。同时,机器也根据自身需求被满足的情况来产生各种情绪。这些情绪和自身需求被满足的情况之间的关系是通过预置程序来设置的。同时机器也可以反向利用内部情况、外部情况和自身需求被满足的状态之间的关系,来调整情绪产生的预置程序参数,从而利用自己的情绪来影响外界。为了达到在这个目的,我们采用的方法就是:把机器的自身需求类型和情绪类型建立不同的符号代表。在机器的环境空间发生一个事件时,机器需要把目前的环境空间存入记忆库中。机器给所有特征图(包括特征图、需求符号和情绪符号),以及其初始记忆值(和存储发生时的激活值成正相关,但不一定是线性关系)一起存入记忆中。我们把需求符号获得的记忆值,和需求符号一起称为需求状态。
机器的需求可以多种多样,每类需求可以使用一个符号来代表。比如安全和危险、收益和损失、支配权和被支配、尊重和被忽视等。需求类型的差异和多少,不影响本发明申请的权利要求。因为在本发明申请中,所有的需求都是同样的处理方法。
机器的情绪可以多种多样,每类情绪可以使用一个符号来代表。比如比如兴奋、生气、伤心、紧张、焦虑、尴尬、厌倦、冷静、困惑、厌恶、痛苦、嫉妒、恐惧、快乐、浪漫、悲伤、同情和满足等。情绪类型的差异和多少,不影响本发明申请的权利要求。因为在本发明申请中,
所有的情绪都是同样的处理方法。
S305是机器对环境空间的存储采用记忆筛选机制:事件驱动机制和临时记忆库机制。在环境空间中,每发生一次事件,机器就把这个环境空间做一个快照,保存下来。保存下来的内容包括环境空间中的特征(包括信息、机器状态、需求和情绪)和它们的记忆值。它们的记忆值和存储发生时的激活值成正相关,但不一定是线性关系。一次环境空间的快照存储数据,我们称之为一个记忆帧。它们像电影帧一样,通过多个帧连续回放,我们就能重现记忆发生时的动态场景。所不同的是,记忆帧中的信息可能会随时间而被遗忘。环境空间中发生一次事件,是指环境空间中特征组合和前一个环境空间相比较,发生了超过预设值的相似度的改变,或者环境空间中的记忆值发生了超过预设值的改变。记忆库就是指存放这些记忆帧的数据库。而临时记忆库是记忆库的一种,其目的是对记忆帧存储的信息做筛选。在临时记忆库中,如果某一个记忆帧里面包含有记忆值达到预设标准的特征,那么这个记忆帧就可以被移到长期记忆库汇中保存。本发明申请中,我们采用有限容量的堆栈来限制临时记忆库容量的大小,并在临时记忆库中采用快速记忆和快速遗忘的方式,来对准备放入长期记忆库中的材料进行筛选。机器在面对大量的输入信息时,那些已经习以为常的事物、场景和过程,或者远离关注点的事物、场景和过程,机器对它们缺乏深入分析的动机,所以机器可能不去识别这些数据,或者赋予给它们的激活值很低。机器在按照事件驱动的方式把信息存入临时记忆库时,机器对每个信息特征赋予的记忆值和其存储发生时的激活值正相关。那些记忆值低的记忆有可能很快就从临时记忆库中被忘记,而不会进入长期记忆库。这样我们只需要把那些我们关注的信息放入长期记忆库,而不用把每天琐碎的、不需要再提取连接关系的事物都记忆下来。另外,因为临时记忆库容量有限制,所以临时记忆库也会因为堆栈容量接近饱和而被动加快遗忘速度。
3,关系网络的建立。
尽管事物之间的关系看上去纷繁复杂,难以分类和描述。但在本发明申请中,我们提出一种描述事物之间关系的方法:1,提取事物之间相似性关系;2,提取事物之间的环境关系。在本发明申请中,我们只需要提取这两种关系,而不需要去分析其他关系。
相似性关系就是指本发明申请提出的第一条假设“如果两个信息的部分属性相似,那么这个信息包含的其他属性可能也相似”。机器按照这个基本假设,通过不同分辨率下的特征相似性而建立分类。这些分类包括静态属性分类和动态属性分类。
而环境关系,是指本发明申请中提出的另外两条基本假设:“同一环境之中的事物彼此存在连接关系”,“同一记忆中的特征图,任意两个特征图之间连接关系强度和这两个特征图在这个记忆中的记忆值正相关(不一定是线性关系)”。需要指出,记忆中也包含了需求信息和情绪信息。这样,在同一个记忆帧中的信息就构成了一个局域网络。而这些局域网络中的信息,通过相似性和其他局域网络(其他记忆帧)连接起来,它们的连接强度和相似性正相关(不一定是线性关系)。
同一局部网络中的两个高记忆值之间的关系紧密,但处于两个不同的记忆局域网中的两个高记忆值特征图A和特征图B,它们之间的连接关系是通过局域网络1里面的特征图A连接到局域网络1里面的特征图B,然后通过局域网络1里面的特征图B连接到局域网络2中的特征图B。尽管A在局域网络1中有高记忆值,而B在局域网络2中有高记忆值,但它们之间并没有紧密的连接关系。这反应了特征图A和特征图B虽然经常重复出现,但它们很少一起出现,这就反映了它们之间的连接关系并不紧密,这也能反映生活中的实际情况。比如洗澡是我们生活中不断重复的事,开车也是我们生活中不断重复的事,但两者很少在同一个记忆中出现,所以他们之间的连接关系并不紧密。当输入洗澡的信息到我们的大脑时,我们很难直接联想到开车上去。而洗澡和水、洗发露、香皂和浴巾频繁地一起出现在一段记忆中,所以它们在同一段记忆中的关系更加紧密。当洗澡的信息输入大脑时,通过多段记忆的传播,水、洗发露、香皂和浴巾都会被激活。我们只需要把这些激活关系做累计,就能清楚的反映出事物之间的连接关系的紧密程度。需要指出,不同记忆中相同特征图的激活值做累计时,具体的累计算法需要通过实践来优选,比如相加或者按照记忆曲线来累计,或者其他累计函数。这样,我们就通过存储的记忆建立了一个立体的关系网络。这个网络的存储是按照时间顺序的,但使用是涉及全局的。
在本发明申请中,机器只需要维护记忆帧中的记忆值就自动建立起了关系网络,而不需要做特别处理。下面分别说明如何维护记忆帧中三类数据的记忆值。
在关系网络中,概念就是紧密连接的特征图构成的局部网络。概念的属性就是概念包含的所有特征图及其组合,这些特征图可能包含记忆中很多类似的图像特征及其组合。除了图像,它们还可能是语音、气味和触觉等等。这些特征图从关系网络的各个支路获得激活值,并都向语音或者文字传送(因为使用最频繁,记忆值最高),所以通常在概念的局部网络中,我们使用语音或者文字来代表概念。所以,机器可以通过设定一个连接值紧密程度的要求来确定一个语言符号或者一个特征图所代表的概念的范围。
在比较输入特征图和关系网络中的特征图的相似性过程中,机器可能需要处理大小缩放和角度匹配的问题。一种处理方法包括:(1)机器把各种角度的特征图都记忆下来。记忆中的特征图,是通过对每一次输入信息提取底层特征后建立的简图。它们是在关系提取机制下保留下来相似事物的共有特征。虽然它们彼此相似,但它们可能存在不同的观察角度。机器把生活中同一个事物,但不同角度的特征图都记忆下来,构成不同的特征图,但它们可以通过学习来归属于同一个概念。(2)机器用所有角度的视图,重叠这些特征图的共有部分,模仿它们的原始数据,把它们组合起来,构成一个立体特征图。(3)在机器内部嵌入对立体图像做大小缩放和空间旋转后的视图变化程序。这一步是业内已经非常成熟的技术,这里不再赘述。(4)机器在记忆中寻找相似的底层特征时,包括了在记忆中寻找经过空间旋转后能匹配的特征图。同时机器把目前角度的特征图存入记忆,保留原始视角。后续再次有类似视角的底层特征输入时,就能快速的搜索到。所以这种方法下,机器是采用了不同视角记忆和进行空间角度旋转相结合的方法来寻找相似特征图,这会带来我们对熟悉视角识别更快的现象。当然,机器也可以只使用空间角度旋转后进行相似度对比的方法。
通过相似度对比在记忆帧中寻找特征图,每找到一个就对其做标记。为了提高效率,机器可以只搜索那些包含有记忆值大于预设值的记忆帧。当记忆中某一个概念包含的标记达到预设阈值,于是就认为它可能是对应的概念候选者。机器参照这个概念内包含的特征组合来对输入特征做分割,并进一步比较两者之间的特征组合方式的相似性。这个过程不断进行下去,就能找到所有的概念候选者。然后根据这些特征图候选者彼此间的连接紧密程度,在多个候选者对应一个输入的情况,选用和其他信息连接最紧密的概念作为最可能概念,它们就是关注点,这就是输入信息的识别结果。这里,我们把关注点定义为和输入信息最相关的概念。
上述过程既可以在所有输入特征处理完后再根据标记和连接关系来确定概念,也可以在任何特征图达到预设标准时优先识别。在这个过程中,每当在记忆中找到一个和输入相似特征图,就对其记忆值按照记忆曲线增加。这样就更新了记忆中的关系网络。
除了相似性对比,本发明申请中提出另外一种寻找和输入相关概念的方法:链式激活方法。这是本发明申请中提出的一种基于关系网络搜索特征图、概念和相关记忆的方法。在关系网络中,当特征图i被赋予初始激活值,如果这个值大于自己的预设激活阈值Va(i),那么特征图i将被激活,它会把激活值传递到和它有连接关系的其他特征图节点上;如果某个特征图收到传过来的激活值,并累计上自己的初始激活值后,总激活值大于自己节点的预设激活阈值,那么自己也被激活,也会向和自己有连接关系的其他特征图传递激活值,这个激活过程链式传递下去,直到没有新的激活发生,整个激活值传递过程停止,这个过程称为一次链式激活过程;在单次链式激活过程中,但特征图i到特征图j发生激活值传递后,特征图j到特征图i的反向传递就被禁止。
需要进行链式激活时,机器通过给提取到的输入信息特征图,按照自己的动机给输入信息特征图赋予一个初始激活值。这些初始激活值可以是相同的,这样可以简化初始值赋值系统。这些节点在得到初始激活值后,会启动链式激活过程。在所有输入信息的链式激活过程完成后,机器选取激活最高,并且凸显的1到N(自然数)个特征图,把它们代表的概念作为关注点。这个方法充分利用了关系网络中的关系,是一种高效率的搜索方法。
凸显的意思是:当采用链式激活作为搜索方法时,如果某些特征图的激活值比整个关系网络的激活值噪声底高出预设阈值,那么我们就认为这些特征图被“凸显”出来。关系网络的激活值噪声底可以有不同的计算方法。比如机器可以依据场景中大量的背景特征图节点的激活值作为激活值噪声底。机器也可以采用目前被激活的节点的激活值平均值作为噪声底。机器也可以采用自己预设一个数字作为激活值噪声底。具体的计算方法需要在实践中优选。这些计算方法只是涉及到基本的数学统计方法,对本领域的从业人员而言是公知的知识。这些具体实现方法不影响本发明申请对方法和步骤的框架权利要求。
这里需要特别指出,由于存在激活阈值,所以即使特征图之间传递系数是线性的,特征图的累计函数也是线性的,但由于激活阈值的存在,无论是在单次链式激活过程中,还是在多次链式激活过程中,相同特征图和相同初始激活值,但因为激活次序选择不一样,最终的激活值分布是不一样的。这是因为激活阈值的存在带来的非线性。不同的传递路径,带来的信息损失是不一样的。激活次序选择的偏好,这相当于机器个性的差异,所以在相同输入信息下,产生不同的思考结果,这个现象和人类是一致的。
另外,关系网络中的关系强度和最新的记忆值(或者连接值)是相关的。所以机器会有先入为主的现象。比如拥有同样的关系网络的两个机器,面对同样一个特征图和同样的初始激活值,其中一个机器突然处理了一条关于这个特征图的输入信息,那么这个机器在处理了额外的这条信息后,它会更新关系网络中的相关部分。其中某一个关系线可能会按照记忆曲线增加。这个增加的记忆值在短时间内不会消退。所以在面临同样的特征图和同样的初始激活值时,处理了额外信息的机器,将会把更多的激活值沿刚刚增强了的关系线传播,从而出现先入为主的现象。
另外,为了合理地处理信息输入的先后次序,确保后面输入的信息带来的激活值,不会被前面的信息所屏蔽,在本发明申请中,链式激活中的激活值,会随时间而递减。因为如果关系网络中的激活值不随时间消退,后面信息带来的激活值变化就不够明显,这会带来信息间干扰。如果激活值不消退,后面的信息输入后,会受到前面信息的强烈干扰,导致无法正确的寻找自己的关注点。但如果我们完全清空前面信息的记忆值,那么我们又丢失了前后两段信息可能存在的连接关系。所以,在本发明中,我们提出采用渐进消退的方法来实现前后段信息的隔离和连接之间的平衡。这个消退参数需要在实践中优选。但这带来了维护一个信息的激活状态的问题。如果我们在S3中找好了关注点,但在S4步骤中,迟迟无法完成信息理解,或者在S5中,迟迟无法找出满足机器评估系统的响应方案,随时间流逝,这些激活值就会消退,导致机器遗忘了这些关注点,忘了自己要干什么。这时机器需要把这些关注点的激活值再次刷新。一种刷新方法是:把这些关注点转变成虚拟输出,再把这个虚拟输出作为信息输入,走一遍流程,来强调这些关注点,这就是我们在思考时,为什么有时候,不理解时或者找不到思路时,喜欢喃喃自语,或者自己在心中默念。这种虚拟的输入,和真实的输入流程一样,同样可以搜寻记忆和更新记忆值。所以,这种方法可以用于机器有意去增加某些信息的记忆。这就是使用朗读或者默念的方法来增加记忆。另外,在这种情况下,如果出现新的输入信息,机器不得不打断思考过程,去处理新的信息。所以,从节省能量的角度看,机器是倾向于完成思维,避免浪费的。这时机器可能会主动发出“嗯…啊…”等缓冲辅助词来发出输出信息,表示自己正在思维,请勿打扰。还有一种可能是给予机器的思考时间有限,或者信息过多,机器需要尽快完成信息响应,这时机器也可以采用输出再转输入的方式。通过一次这样的方式,机器就强调了有用信息,抑制干扰信息。这些方式在人类普遍使用,在本发明申请中,我们也把它也引入机器的思维。机器可以根据内置的程序,或者自己的经验,或者两者混合,来确定是不是目前的思考时间超过了正常时间,需要刷新关注信息,或者告诉别人自己正在思考,或者强调重点,排除干扰信息。
另外,在链式激活中,为了正确的确定特征图和特征图之间的激活值传递系数,一种方法是:尽管同一个特征图发出的连接值强度彼此之间没有限制,但在激活过程中,为了正确的处理特征图和它的属性之间的关系,特征图的激活值传递函数可以考虑归一化传递:假设特征图X的激活值为A,它所有发出方向的连接值之和为H,它向特征图Y的传递值是Txy,那么一种简单的激活值传递就是Yxy=A*Txy/H。其中Yxy为X特征图向Y特征图传递的激活值。
由于人类交流最频繁的是语音和文字,所以一个概念的局部网络中,当其他特征图从关系网络的各个支路获得激活值,并都向语音或者文字传送,所以通常的关注点就是概念的语音和文字。所以,机器的自我信息过滤或者强调的方法,虚拟输出通常是语音,因为这是最常见的输出方式。机器输出它们耗能最少。当然,这和一个人的成长过程密切相关。比如,从书本中学习生活的人,有可能是把信息转变成文字,再重新输入。
使用链式激活的搜索方法,利用了语言、文字、图像、环境、记忆和其他传感器的输入信息之中的隐含的连接关系,来相互传递激活值,从而让相关的特征图、概念和记忆彼此支持而凸显出来。它和传统的“上下文”来识别信息的差异在于,传统的识别方法需要预先人工去建立“上下文”关系库。而本发明申请中,我们提出了“相似性、同环境中信息彼此存在隐含的连接”这个基础假设。在这个基础假设上,简化了形形色色的关系,从而让机器自己去建立关系网络。它不仅仅包含语义,更包含常识。这里需要指出,链式激活是一种搜索方法,它本身不是本发明申请中的必要步骤,可以被其他能达到类似目的的搜索方法所代替。在使用链式激活时,机器可以把每个记忆中,激活值超过预设值的特征图,认为是使用了一次,按照记忆所属记忆库中的记忆和遗忘机制来维护它们的记忆值。
由于在记忆帧中,机器不仅仅存储了外部输入信息,还存储了另外两类信息。它们分别是机器的内部状态数据、机器的需求和情绪数据。在S402中,机器对输入信息赋予的初始激活值,也会通过关系网络传播到机器的需求和情绪数据上,产生了机器对这些信息的本能反应。机器的需求和情绪数据,是一类非常重要的“拟人化”数据。它和外部输入信息和自己内部自身信息密切相关。它们的关系如下:
当外部数据或者内部数据输入时,机器会产生响应,这些响应又会得到外部反馈和改变内部状态(比如电量变少)。在本发明申请中,我们给机器赋予了类似于人类的需求类型和表示需求被满足的情况的需求获得值。同时,为了更好的和人类交流,我们通过预置程序,把机器需求的满足情况和机器的情绪连接起来。机器只需要在存储外部信息或者内部状态信息时,把自己的需求状态、情绪状态一起存入到记忆中。这些需求状态和情绪状态就会通过关系网络的建立的机制把它们和外输入信息、内部状态信息连接起来。其连接强度由记忆和遗忘机制来优化,机器就能自然地学习到需求状态和情绪状态与内外信息之间的连接关系,这是关系网络的一个非常重要的组成部分。
具体实现方法可以是:人类在训练机器的过程中,通过预置的符号(比如语言、动作或者眼神),在训练中,告诉机器那些环境是安全的,那些环境是危险的,或者可以进一步告诉机器不同的等级。和训练一个孩子一样,告诉它“非常危险”、“比较危险”和“有一点危险”等就可以了。这样,机器就能通过训练,通过记忆和遗忘,逐渐把那些带来危险的环境或者过程中的共有特征,和危险这个内置需求符号的连接强度逐渐增加(因为出现的重复次数增多)。那么当下一次机器处理输入信息时,给予输入信息同样的初始激活值后,有些特征的激活值由于和危险这个符号连接关系紧密,它传递了一个大的激活值给危险这个符号。机器立即意识到危险,会立即根据自己的经验(可以是预置经验或者自己总结的经验)来处理这个危险信息。当然,由于人类已经有大量的经验可以传承,所以在训练中,我们也可以直接告诉机器那些具体的事物或者过程有多大的危险,这是一种给机器预置经验的方法。预置经验可以通过语言来让机器建立记忆帧把危险因素和危险连接起来,也可以通过直接修改机器已有的关系网络来实现(修改对应记忆帧中的危险符号的记忆值)。安全和危险两个值是告诉机器如何识别安全和危险因素,从而学习如果保护自己。益值和损失值则是告诉机器哪些行为是我们鼓励的,而哪些行为会被惩罚的,这是一个奖励和惩罚系统。和训练孩子一样,我们只需要在它做出特定行为后,给予奖励或者惩罚就可以了。或者奖励和惩罚发生时,告诉它原因就可以了。当然我们也可以预置经验(比如事先告诉它那些行为会
有奖励,那些会有惩罚,或者直接修改它的大脑神经连接就可以达到目的。机器的大脑神经连接关系就是关系网络)。达成一个目标,带来快乐(受到奖励),这是进化带给我们的礼物,这是我们这个种族能够不断发展的动力。我们也可以给机器赋予类似的本能动机,让机器建立自我发展的动力。所以,当机器达成一个目标后,既可以通过人类给予的奖励,也可以通过预设程序给机器奖励值,从而激发机器愿意不断去尝试的动机。支配与被支配,是通过收益和损失来告诉机器它可以支配的范围,这个范围随不同环境和不同过程变化而变化,它也是一个奖励和惩罚系统。但它和利益损失系统的差异在于,利益损失系统着眼于行为的结果,而支配与被支配着眼于行为的范围。它和利益损失系统采用一样的训练方法。我们也可以把机器自身身体状态评估值和需求与情绪、外部输入信息联系起来,目的是让机器理解自己身体状态评估值和它们之间的联系。比如在下雨天,机器如果发现自己的电量,或者其他性能在快速下降,它把这些记忆存储下来。如果多次重复一样的情况后,机器就会把性能下降和下雨之间建立更加紧密的联系。这些联系在后续机器选择自己的响应过程时,激活下雨这个特征,就会给损失这个符号带去较大的损失值。而损失值是机器用于评估选择什么样的响应的指标之一,所以机器就可能倾向于选择排除下雨带来损失值的方案。所以,在本发明中,我们只需要把奖励和惩罚与所有的外部和内部信息一起放入记忆中,机器就能把这些奖励和惩罚信息纳入自己的思维中,而不需要做很多“规则”来告诉机器该怎么识别环境、该做些什么和如何表达情绪(这实际上是不可能完成的任务)。
机器的情绪是机器和人类交流的重要途径。所以在本发明申请中,我们把机器的情绪也纳入考虑。人类的情绪反应,是对自己需求是否被满足的一种与生俱来的反应,但通过后天的学习,我们逐步学会了调整这种反应,控制这种反应,甚至隐藏这种反应。同理,我们通过预置程序,把机器的情绪和机器的需求是否被满足联系起来。比如,识别到危险时,机器的情绪是“担心”、“畏惧”和“恐惧”,这要看危险程度有多大。比如机器的各个内部运转参数都在正确的区间,带给机器的是“舒适”、“放松”等情绪。如果有些参数脱离了正确的区间(相当于机器生病了),机器的表情可能是“难受”和“担心”。所以,采用这样的方法,我们可以把人类拥有的所有情绪,赋予给机器。而情绪本身,是通过机器的面部表情和肢体语言
来表达的。同理,机器的这些本能情绪,会受到奖励和惩罚机制的调整。机器在生活中,在不同的环境或者过程中,训练者会不断告诉机器,它的情绪表现,哪些受到奖励,哪些受到惩罚。也可以直接告诉它,在特定或者过程中,合适的情绪是什么。当然也可以直接修改它的神经网络连接来调整它的情绪反应。所以,通过这样的方式,机器可以把情绪调整到和人类相似程度,而进一步,由于情绪和其他记忆是存放在一起的,在同一个记忆中。当机器需要某种结果时,它会模仿带来这个结果的记忆。比如某一类行为带来某种结果能够重复出现,那么机器就会模仿包含这类行为的记忆,当然也会模仿这些记忆中的情绪,所以它会为了某种目的而调整自己的情绪。这是一种情绪利用的方式。
需要指出,通过本发明申请所提出的方法而建立的机器智能,其思维和情绪对人类而言,是可见的可控的,是完全可以理解的,所以这样的机器智能对人类是不会带来危险的,这也是本发明申请所提出的通用人工智能实现方法的一个特征。
4,通过关系网络和记忆来理解输入信息。
图4是信息在关系网络中的处理过程。S401是机器对输入信息按照自己需要的分辨率做预处理,并按照分辨率提取静态特征图和动态特征图。S402是机器把获得的特征图中,找到正确的概念。一个语言特征图可能有很多其歧义信息,比如一个语言输入可能多义词汇,机器采用的策略就是把关系网络作为语义库,通过上下文的联系来找出正确的概念。这一步可以通过识别输入信息之间的连接紧密程度来实现。而实现“识别输入信息之间的连接紧密程度”的一种快捷查找方法就是对所有输入信息特征,赋予初始激活值,启动链式激活,来寻找关注点。找到的激活值最高并且能凸显的1~N(自然数)个特征图中,那些和语言特征图存在连接的特征图,包含它的概念就是正确的概念。
S403是机器建立环境空间的步骤。当我们处于现实环境中,我们调用S402步骤中识别出来的概念,通过把这些概念下其他图像特征图(就是记忆中以前的相似特征图。因为相似,所以才在同一个概念下)和目前输入的特征图,按照最大相似度,通过缩放和旋转来叠放。显然,要实现这样的叠放,必须有全局坐标和局域坐标。局部坐标是具体物体的惯用坐标,是一种存在于记忆中的常用局域坐标,通常沿物体的边沿或者中心建立。而全局坐标则通常是沿自己所处的地平线、重力方向和景深来建立的。把特征图和原始数据叠放的方法,可以是预置程序,具体的实现方法在业内是非常成熟的算法,也是公知的技术,这里不再赘述。在建立好环境空间后,机器通过在记忆中寻找和环境空间类似或者局部类似的空间,把记忆空间和现实空间重叠,这样我们就能根据被借鉴的记忆空间的其他部分,来了解现实空间中目前看不到的部分。比如我们看熟悉的柜子时,仿佛能看到柜子里面的图像。但这其实是因为我们叠加了柜子里面的记忆图像。这是机器理解环境的一种方法。机器的所有活动和决策都是建立在特定环境中的,所以识别环境是机器对外界信息处理的第一步。
环境空间中数据的具体存储方式,是每发生一个事件就存储一次数据。我们可以近似地认为对输入信息的特征提取是对2维数据的压缩,而事件存储机制就是对数据在时间上的压缩。数据的压缩方法也可以被其他数据压缩方法代替或者部分代替。但无论哪种方法,都必须保留事物的相似性和环境关系。这些不同的压缩方法都不会影响本发明申请中其他方法的权利要求。
S404是机器把特征图,组织成一个合理的次序。机器把代表输入信息的特征图做适当的次序调整,并通过增减部分内容,形成一个合理的序列。而调整的依据就是模仿记忆中这些概念的组合方式。我们可以用比喻来说明。这个过程就好像仓库管理员,把输入的图纸(S401),根据目前所处的工作车间(环境),图纸上零部件之间的相互配合使用的关系(链式激活),找到正确的零部件(S402和S403)。
如果我们把记忆看作是一个包含了无数特征图的立体空间,那么关系网络,就是这个空间中的脉络。这些脉络的出现,是因为记忆和遗忘机制,那些不能重复出现的关系被遗忘了,而那些能重复出现的关系得到加强。那些通过粗大的关系脉络连接起来的特征图就组成了概念。它连接同类信息的图像、语音、文字或者其他任何表达形式。由于这些表达形式频繁出现在一起,并频繁相互转换,所以它们之间的连接更加紧密。最紧密的局域的连接关系就构成了基础概念(包括静态特征图及其语言,动态特征图及其语言);比基础概念松散一点的是静态扩展概念和动态概念扩展概念(包括代表关系的概念和过程特征图),比概念松散就是记忆。在关系网络中,那些静态特征图(或者概念)通常就是小零件,而那些动态特征图(包括表示关系的概念)就是连接件,而那些过程特征就是大框架,它是多个小零件(静态对象)和、连接件(动态特征)和按照一定的时间和空间次序组织起来的。这些都是我们组织信息时的关键部件。这些零部件,因为它们是各种事物、场景和过程中的共有部分,所以经常被调用。而每被使用一次,就按照记忆曲线增加记忆值。反过来,也因为它们记忆值高,不容易被忘记,而能被经常被找到。所以,正确的概念,其形成过程是一个正反馈的强化过程。
在找到正确的零部件后,机器会首先寻找这些信息中表示动态的概念(动作特征、关系概念或者过程特征),它们通常是和多个对象连接,而且对象又可以是泛化的,所以它们通常在生活中出现的频次比静态特征图高,所以通常记忆值也高。所以动态过程是机器泛化经验的至关重要的途径。这些动态过程起连接不同对象的作用。通过它们机器就可以把输入信息的静态图像和动态图像连接起来,形成机器可以理解的一连串特征图序列。
机器确定动态特征图和静态特征图之间的组合方式是模仿记忆中类似的记忆,采用同概念相同属性替代的方式来确定。比如一个人收到“吃牛排”这样的输入信息,虽然他人没有“吃牛排”的相关经验,但他通过搜索,发现最相关记忆是“吃”。还有一个“披萨”的激活值也比较高。这是因为“牛排”这个特征图激活后,会给“披萨”等食物类特征图传递激活值。而“牛排”还会通过“西餐”这个概念给“披萨”传递激活值。同时“西餐厅”这个环境也会通过关系网络向“披萨”传递激活值。所以他可能选出“吃披萨”这段记忆。他参考“吃披萨”静态特征图和动态特征图连接的方式,把输入信息的特征图组合成“吃”“牛排”这样一个特征图序列。如果输入信息中有多个表示动态特征的概念,机器就可能形成多个特征图序列。这时,机器需要使用输入信息中表示关系的概念来确定这些特征图序列的时间和空间关系。比如收到的信息是“你先吃披萨,然后再吃甜点”,显然,“...先....然后再...”这个表示关系的动态特征已经安排了两个过程发生的先后次序。如果通过表示关系的概念,从输入信息中还无法把这些多个特征图序列构成一个单独的特征图序列。那么,机器就需要借助记忆来确定这几个特征图序列的时间和空间关系。比如收到的信息是“你买单,吃完牛排回家”。这段信息里面有2段特征图序列,但时间次序无法通过信息自身的关系来确定。机器需要根据信息源和自己共同的记忆或者其他信息渠道,来确定信息源的意图。比如在这家餐厅是先付费,后上菜,那么机器参考记忆,就理解为先买单,后吃牛排,然后回家。如果这家是先上菜,后付费,那么机器参考记忆,就理解为先吃牛排,后买单,然后回家。
所以,机器通过记忆调用和结合现实,通过分段模仿重组的这一连串特征图序列有自己的时间和空间位置。它们组合起来后,是一个立体的、连续的动态过程。当机器为了理解这一连串特征图序列,机器再次把它们作为一个输入时,机器实际上相当于在观看“记忆+现实”通过重组方法创造出来的一段“电影”。这是因为机器通过记忆重建的环境是立体的,机器通过动态特征(包含关系概念)重建的记忆也是动态的。机器理解这些重建的动态记忆过程和机器理解真实过程没有什么差异。只不过通过记忆重建的立体动态过程只有部分信息,记忆中那些记忆值不高的信息已经被遗忘了。在重组的“电影”里,语言(文字和语音)也是存在的,但它们是作为图像和声音的形式存在的。机器需要对“电影”里的语言相关的图像和声音做再次识别才能理解其含义。这是因为语言的识别是大脑在底层信息形式的基础上建立的更高层次。
机器在通过记忆中的环境信息重建记忆环境时,同一个环境可能有多个不同角度的记忆。机器处理的方法是通过这些不同角度的记忆,建立一个立体的环境空间。这个空间可能包括机器在目前看不到的部分。而机器重建立体环境的具体实现方法,在目前的行业中是很成熟的技术,尤其大量运用在电子游戏中。机器在立体的环境空间中重建动态特征(或者过程特征)时,很多时候这些动态过程的相关对象是机器自身。所以机器还需要根据动态过程的需要,来重建动态过程的对象之一:机器自身的形象。机器对自身的重建和机器对环境的重建过程是一样的:也是通过不同角度对自身的记忆,建立一个代表自身的立体图形。而且对这个代表机器自身的立体图形可以有不同的分辨率。比如在重建高分辨率的动态特征下,机器可能需要重建自己的手部动作,甚至是手指的动作。而在较低的分辨率下,可能只需要重建一个代表自己的整体对象就可以。
机器对外界的动态特征,可以通过观察得到,并且可以通过视觉来重建。但很多时候,人类需要重建自己的动作过程时,人类对自己的一些动作并没有视觉,比如我们手在视线之外的动作。这时,我们是根据动作发生时的记忆中,自身的重力感应、姿态感应和触觉等相关数据来重建的。在本发明中,我们对机器也引入同样的机制。机器通过把包含视觉的动作和重力感应、姿态感应和触觉等数据的关系,把它们存在一个记忆帧中。当我们的动作在视觉之外时,机器寻找和相似重力感应、姿态感应和触觉等数据紧密连接的视觉记忆图像,把这样的记忆图像用于重组我们看不到的动作。所以我们能仿佛看到我们的手在我们背后的动作。同理,机器也是这样。
通过这样的方式,在重建的立体环境里,重建的机器自身立体形象和记忆中其他对象之间发生的动态过程就能重建起来。所以这些重建的动画过程中,它们的组成部分是来自于多个记忆的重组。所以调用记忆本身,就是在调用重组后的记忆。我们是通过不同的记忆来拼凑起必要的信息,供我们理解信息和做出决策。所以我们的记忆本身可能出现差错。在本发明申请中,机器也是采用同样的方式,也会犯同样的错误。
机器创建了立体环境和立体自身形象后,也重建了记忆中的动态过程。机器有可能根据需要创建多段记忆构成的“动画电影”,并从第三方角度来观看这些“动画电影”。之所以能从第三方角度来观察我们自身,是因为我们根据记忆创建了一个“对象”来代表我们自身去实现动态过程。并根据需要,给这个对象赋予不同的分辨率。同时,根据记忆中自己在相似重力感应、姿态感应和触觉数据等内部数据下的动作来重建这个对象在类似数据下的动作,即使这些动作并不在我们的视觉记忆里面。这一点,类似于人类,我们也可以在记忆中,从我们的背后观察我们自己的活动。机器把创建的动态过程作为一个虚拟的输入,从记忆中寻找类似动态过程的前因和后果,就能理解输入信息。另外,在机器创建虚拟响应时,机器也是使用一样的方法,把自己创建的响应计划,作为一个输入信息序列,再通过重建这个序列相关的立体环境和立体自身形象,来重建代表这个序列的动态过程,并从第三方角度来观看这些动态过程,并从记忆中寻找类似动态过程带来的后果,用于评估得失。而实现上述评估过程的一种快捷方法就是把这段动态过程中相关信息,采用链式激活方法,就能快捷的得到评估结果。所以链式激活方法是一种搜索方法,它不是本发明申请中的实现通用机器智能的必要步骤,而是一种实现某些步骤的具体方法。
S405是机器使用S404中建立的特征图序列来理解信息源的目的。所谓理解信息,就是理解信息源的目的。信息源发出信息,一定是基于机器以往在这个信息下的响应,这就是信息源预期的目的。否者,信息源完全没有必要发出这样的信息。因为达不到目的的方式,很快就会被信息源放弃。所以,机器把自己和信息源之间发生次数最多的、和输入信息相关的响应作为信息源的目的。如果机器和信息源之间没有频繁的互动,那么机器就把他人使用最多的响应,认为是信息源发出信息的目的。当机器理解了信息源的目的,也就理解了输入信息。
6,通过关系网络和记忆来建立对输入信息的响应。
图5是机器建立响应的过程。在S501中,机器需要使用输入信息组合后的特征图序列,在记忆中寻找类似序列相关的记忆。1,寻找自己收到类似序列后的响应;2,寻找他人收到类似序列后的响应;3,寻找自己发出类似序列后收到的响应;4,寻找他人发出类似序列后收到的响应。具体寻找这些记忆时,机器并不需要去区分它们。机器只需要直接使用输入信息组合后的特征图序列,把它们组合成动态过程作为输入,再次赋予初始激活值。在链式激活过程完成后,寻找激活值之和最高的1~N(自然数)个记忆帧,它们就是上述4个方面的记忆帧。在本发明申请中,我们称它们为和输入信息最相关的记忆。因为上述4个方面的记忆帧都是和输入信息序列最相关的记忆值。寻找激活值之和的目的,是找到包含激活值比较高的记忆帧和找到包含激活值比较多的记忆帧。所以,采用求和的方式并非必要,其他能实现上述目的的方法也是可以的。为了排除干扰信息,机器可以在S501步骤中重复一到多次上述过程。
机器通过从这些经验中寻找对信息的响应,既是从经验中寻找答案,也是从“共情”中进一步寻找答案。因为这些被参考的记忆中,也有机器自己发出类似信息序列时的状态和获得的响应。机器在随后的响应创建中,这些记忆也会被用于和现实信息一起通过重组来创建机器的响应。这些响应就可能带有机器通过“共情”做出的反应。另外,在交流中,发出信息的人和接收信息的人,很可能省略掉很多双方都知道的信息。比如共有的认知、经历和曾经讨论过的事情等。而通过上面的记忆搜索,这些缺失的信息就能补充上。
机器对输入信息的响应可能有很多种形式:比如可能是对输入信息置之不理,可能是再次确认输入信息,可能是调用一段输入信息提及的记忆,可能是对输入信息做出语言响应,可能是对输入信息做出动作响应,还可能是通过“共情”思维,来推测信息源的弦外之音。当具体采用哪种响应形式,机器需要通过创建虚拟的响应,然后通过评估这个虚拟的响应来确定是否合适,最终才能选择出合适的响应。机器确定一个响应是否合适的标准就是“趋利避害”。
S502是机器建立虚拟响应的过程。这个过程是一个创造并评估的过程,是机器智能的最集中体现。在信息交流中,信息源为了得到自己需要的响应,一定会在发出的信息中指定信息范围,这样才能期待机器做出正确的响应。所以,机器需要从输入信息中提取信息范围。这些范围包括输入信息中的静态特征图和作为连接这些静态特征图的动态特征图(包括表示关系的概念)。由于动态特征图的操作对象可以泛化,所以它们在记忆中存在更加广泛。机器使用在S501中寻找到的最相关记忆,按照动态特征在这些记忆中的组织方式,对动态特征操作对象,采用概念代替的方式把输入相关的静态特征图带入,构成的特征图序列就是机器建立的虚拟响应序列。这些序列是机器参照过去的经验和自己的动机,把过去经验和现实信息重组后构成的响应。这个响应属于机器的惯常响应。惯常响应就是符合信息源预期的响应。但机器是否做出这样的响应,机器还需要经过评估才能决定。
S503是机器对S502建立的虚拟响应做出评估值。在S503的过程中,机器评估S502建立的虚拟响应的具体方法就是:把这个虚拟输出,作为一个假设已经发生了的事件,评估这个虚拟输出可能带来的后果。机器对可能后果的评估,就是基于经验来评估其产生的后果给自己的各种需求带来的影响。机器采用的具体方法就是:
1,使用机器计划输出的特征图序列,寻找和这个序列相似情况发生后的结果:相似情况发生时间后的相关记忆。如果没有完全相似的情况,就选用多个局部相似的特征图序列,寻找和这些局部相似序列相关的结果(发生之后的结果)。
2,这些和后果相关的记忆中中包含有机器的需求状态(它们的记忆值,和记忆存储时对应的需求值正相关),机器对它们累计后,就能确定如果把计划响应真实的输出后,可能的后果(对自己需求状态的影响)。
寻找这些记忆和得到对需求的影响,一种比较快捷的方式就是链式激活。机器把输出序列转为一个输入,在关系网络中,对这些输入特征图做链式激活。激活完成后,机器得到的需求状态的累计,就能看到可能的后果。因为链式激活过程中,那些最相关记忆获得的激活值最多,它们会沿这些记忆中特征图和需求状态之间的连接关系紧密程度传播激活值,从而正确的反映可能的需求状态改变情况。
因为在我们的关系网络中,所有的记忆帧存储时,同时存储了当时机器的需求符号和对应的记忆值。这些记忆值是和当时需求符号的状态值正相关的。举例说明,如果机器在某种行为后,收到了责备。由于责备是一种损失(这个经验既可以预置,也可以通过训练者语言表达,还可以直接修改关系网络来实现),而且责备的程度(比如语言里面表示程度的词)给机器带来不同的损失值。责备越强烈,机器给这个记忆中的损失符号赋予的记忆值也相应比较高。那么在这个记忆中,由于损失符号记忆值比较高,所以这个记忆帧中所有其他记忆值比较高的特征图都和损失符号之间的连接比较强。如果在类似环境,类似动作发出对象或者接受对象,再次发生了类似受到责备的行为,那么这个记忆帧中的带来损失的特征图和损失符号本身由于被重复了,它们的记忆值在这个记忆帧中都按照记忆曲线增加了,从而增加了带来损失的特征图和损失符号之间的关系。通过一次次重复,那些真正带来损失的特征图和损失符号之前的关系就按照记忆和遗忘机制挑选出来了。机器从一开始不清楚为什么被责骂,到后面就能清楚是什么东西给自己带来了被责骂的后果。这个过程和人类孩子的学习过程是类似的。
同理,机器的收益值、安全值、危险值、目标达成值、支配值等就是类似的情况。它们都是通过机器在过去的经验中,不断的把行为和行为结果联系在一起。联系在一起的方法就是把它们放入同一个记忆帧中。即使机器在行为发生时没有得到及时反馈。训练者在后期也可能通过指出行为本身并发出反馈,这样就是在一个单独的记忆帧中把行为和结果连接起来了。训练者甚至无需去指明具体哪个行为好和不好,机器只需要每次收到正确的反馈,通过记忆和遗忘,就能逐步建立正确的行为和需求值之间的连接关系。比如那些一定会收到奖励或者惩罚的行为,每次行为和奖励或者惩罚发生后,它们被同时记忆下来。每重复一次,它们的记忆就增加,最终两者之间的连接,比其他连接会越来越紧密。
机器的评估系统,是一个预置的程序。这个程序是基于机器需求的收益和损失值、安全和危险值、目标达成值、支配值等满足状态来决定一个虚拟输出是否要转变成一个真正的输出。这些需求类型,是人类赋予给机器的。当然,我们可以赋予机器更多人类期望他们拥有的目标,比如“遵守机器人公约”、“遵守人类法律”、“富有同情心”、“讲道德”、“行为优雅”等目标。这些目标都可以通过在记忆中设定需求符号,并通过训练者反馈来调整机器的行为,从而实现人类的期望。需要指出,这些目标都可以按照人类的期望来增减。而对这些目标的增减不影响本发明申请的权利要求。
为了更好的和人类交流。本发明申请提出把机器需求的实际满足状态作为情绪系统的输入,采用预置程序,把它们转换成机器的情绪。这样做的目的是拟人化,模仿人类自身在不同的需求满足状态下的情绪反应。只有这样,机器才能更好的和人类交流。同时,我们采用如下方法来实现机器自身可以利用自己的情绪来达到自己的目的:1,机器每次存储记忆时,同步存储自己的情绪。2,训练者需要对机器的情绪做出反馈。通过训练者的反馈,机器来确定情绪应该怎么调整。3,机器可以自己修改预置程序的参数,根据自己的经验来输出情绪。有了以上3点,机器就能把情绪和反馈联系起来。这样情绪既是一种表达方式,又是一种可以利用的手段。因为特定的情绪和特定的外界反馈是相联系的。机器在寻找特定的反馈过程中,情绪就可能被纳入记忆,成为机器期望再现特定结果时的一种模仿对象。需要指出,情绪的种类和强度,都可以按照人类的期望来增减。而对这些目标的增减不影响本发明申请的权利要求。
S504是对S503建立的各种评估值(每种需求状态获得的值),并结合机器自身内部状态值(比如是不是缺电了,是不是自己有些系统坏了等)来做出判断,判断的结果就是通过或者不通过。这是一个对机器赋予个性化的环节,不同的选择就是相当于不同的性格。这一步通过预置的逻辑判断程序就可以实现,也可以保留一些可以让机器自己调整的参数,让机器自己去尝试不同的选择,来带不同的后果,从而逐步建立最符合自己需求的响应。这一步通过现有的公知技术就可以实现,这里不再赘述。
在S504中,机器所建立的响应如果无法通过评估系统。那么机器需要重新建立其他响应。机器回到S502的步骤后,需要去掉上次评估中,带来重大损失、危险等各种负面结果的行为。这些行为就是由那些带来损失的静态特征图和动态特征图结合后的行为。去掉负面行为也是一个比较复杂的机器思维过程。在这个过程中,机器需要把目前的目标全部转为继承目标,把计算能力空置出来,用于去掉负面行为这样一个临时目标的计算。机器采用的方式可以是给予自己一小段时间缓冲,让关系网络中的现有激活值消退。然后,机器需要寻找关于这个负面行为的所有记忆,从中找到如何排除它的经验。如果这个过程中,机器迟迟找不到合适的选择,它可能发出“嗯”“啊”等临时响应来告诉外界自己正在思考,请勿打扰。或者思考时间有点长,机器需要把正在思考的对象,再次输入给自己,用于刷新关系网络中的激活值,避免遗忘了自己的思考内容是什么。这个过程还可以达到排除关系网络中的其他信息干扰的用途。
在去掉带来负面结果的行为后,机器重新按照S502中的方法,建立新的响应。而建立的过程,依然是优选动态特征图,概念替换静态特征图,然后借助相似记忆来确定它们的结合方式。重新建立新的响应,然后机器重新进入S503和S504步骤去做评估。
如果机器反复多次还是无法建立能通过评估的响应。则有可能是在前面的步骤中有差错,或者机器碰到了无法解决的难题。这时机器进入对“无法处理的信息”流程的处理。也就是说,“无法处理信息”本身就是一种对信息的处理结果。机器根据自己的经验,建立对“无法处理信息”的响应。这些响应可能是置之不理,可能是再次和信息源确认信息,或者再次采用更高分辨率来识别信息等。这些也都是类似于人类行为的合理响应。
7,执行响应。
执行响应步骤是一个翻译过程。如果在选择各种可能的响应步骤中,机器选用的是语音输出,这就比较简单,只需要把准备输出的图像特征图转变为语音,然后利用关系网络和记忆,采用概念替换的方法把动态特征图(包括表示关系的概念)和静态概念结合起来,组织成语言输出序列,并调用发音经验来实施就可以了。需要指出,机器可能根据经验(自己或者他人经验),选用一些表达整个句子的动态特征(比如使用语气、音频音调或者重音变化的不同运动模式,来表达疑问、嘲弄、不信任、强调重点等人类常用方式)。因为机器是从人类生活中学习到这些表达方式的,所以人类有的表达方式,理论上机器都可以学习到。
如果机器选用的是动作输出,或者是语音和动作混合输出,那么问题就会变得复杂很多。这相当于组织起一场活动。机器的响应计划中,可能只有主要步骤和最终目标,其余都需要在实践中随机应变。
1,机器需要把准备输出的图像特征图序列作为目标(这是中间目标和最终目标),按照这些目标涉及到不同的时间和空间。机器需要对它们在时间和空间上做划分,便于协调自己的执行效率。采用的方法是通过选择时间上紧密联系的目标和空间上紧密联系的目标作为分组。因为动态特征图和静态特征图结合后构成的信息组合,其相关记忆的环境空间是带有时间和空间信息的,所以这一步可以采用归类方法。(这一步相当于从总剧本改写到分剧本)。
2,机器需要把每个环节中的中间目标,再次结合现实环境,采用分段模仿的方法,来逐层展开。机器在顶层提出的响应计划,通常只是使用概括性很高的过程特征,和概括性很高的静态概念组成的(因为这些概括性很高的过程才能找到多个相似的记忆,所以借鉴它们建立的响应也是高度概括的)。比如“出差”这个总输出响应下面,“去机场”是一个中间环节目标。但这个目标依然很抽象,机器是无法执行模仿的。
所以机器需要按照时间和空间划分,把在目前时间和空间中,需要执行的环节作为目前的目标。而把其他时间和空间的目标作为继承目标,暂时放到一边。机器把中间环节作为目标后,机器还是需要进一步细分时间和空间(再次写下级分剧本)。这是一个时间和空间分辨率不断增加的过程。机器把一个目标转换成多个中间环节目标的过程,依然是一个创建各种可能响应,并使用评估系统来评估,按照“趋利避害”的原则来选择自己的响应的过程。上述过程是不断迭代,每一个目标划分成多个中间目的的过程是完全相似的处理流程。一直要分解到机器的底层经验为止。底层经验对语言来说就是调动肌肉发出音节。对动作而言,就是分解到对相关“肌肉”发出驱动命令。这是一个塔形分解结构。机器从顶层目标开始,把一个目标分解成多个中间环节目标。这个过程就是创建虚拟的中间过程目标,如果这些中间过程目标“符合要求”就保留。如果“不符合要求”就重新创建。这个过程逐层展开,最终建立机器丰富多彩的响应。
3,在这个过程中,机器随时可能碰到新信息,导致机器需要处理各种信息,而这些原来的目标就变成继承动机。这就相当于组织活动的过程中,不断碰到新情况,需要立即解决,否者活动就无法组织下去了。于是导演叫停其他活动,先来解决眼前碰到的问题。解决后,活动继续进行。另外一种情况就是在这个过程中,导演突然接到一个新任务,于是导演权衡利弊后,决定活动先暂停,优先处理新任务。
4,机器是一边执行可以进行的模仿任务,一边分解其他目标到更细致目标的。所以机器是边做边想的。这是因为现实情况千差万别,机器不可能事先都知道外界情况而做出计划。所以这是一个环境和机器互动来完成的一个目标的过程。
至此,机器就完成了对一次信息输入的理解和响应。这个过程作为机器和外界互动的一个最小周期,会不断被重复使用来完成更大的目标。
8,更新记忆库。
更新记忆库是贯穿于所有步骤中的,它不是一个单独的步骤,是关系提取机制的实现。在S1步骤中,建立底层特征主要是使用记忆和遗忘机制。机器通过局部视野每发现一个相似的局部特征,如果特征图库中已经有相似的局部特征,就按照记忆曲线增加它的记忆值。如果特征图库中没有相似的局部特征,就把它存入特征图,并赋予它初始记忆值。所有特征图库中的记忆值随时间或者训练时间(随训练样本数量增长)而按照遗忘曲线逐渐递减。最终那些广泛存在于各种事物中的,共有的简单特征会拥有高记忆值,成为底层特征图。
在S2步骤中,每发现一个底层特征或者特征图,如果临时记忆库、特征图库或者记忆中已经有相似的底层特征或者特征图,它的记忆值就按照记忆曲线增加。它们也遵从遗忘机制。在S2步骤中,机器首先把环境空间存入到临时记忆库。机器在记忆库中存储这些环境空间时,会同时存储环境空间中的特征图和它们的记忆值,这些特征图的初始记忆值和其存储发生时的激活值正相关。在S3、S4、S5和S6步骤中,记忆库中特征图记忆值遵从记忆和遗忘机制。记忆中某一个关系每当被使用一次,就对这个关系涉及到的特征图按照记忆曲线增加记忆值,同时所有特征图按照自己所在的记忆库的遗忘曲线对记忆值进行遗忘。
9,一个互动周期的实施例。
我们通过举例来简要说明一个互动周期。假设在一个陌生的城市酒店房间里,机器收到主人发出的“出去买一瓶啤酒拿回来”这样的指令。通过S2步骤,机器提取了很多底层音节输入和很多环境信息的底层特征。经过S3步骤,机器找到的关注点可能是:“房间”、“酒店”、“出去”、“买”、“一瓶”、“啤酒”、“拿”、“回来”、“傍晚”、“自己电不多了”、“交房费”等(其中交房费可能是机器之前活动留下的继承目标),并把这些特征图翻译成机器底层信息处理形式(语言之外的形式)。在S4步骤中,机器开始理解这些信息。机器采用的方式就是给所有的关注点赋予初始激活值(这些激活值可以是统一的初始值,它们是使用预设程序,基于机器目前的需求状态来设置的)并启动链式激活过程。链式激活过程完成后,机器寻找记忆中,包含1~N个最高激活值的记忆,包含被激活特征图数量最多的记忆,或者简单的对每个记忆中的激活值求和,和最大的1~M(自然数)个记忆就是机器选用的记忆。机器在这些记忆中,首先是搜索和动态特征有关的部分。它们是“出去”、“买”、“拿”、“回来”。这些动态特征都是一些运动图像,它们可以和各种静态特征图连接构成一个过程特征。机器模仿这些记忆中的动态特征图和静态特征图组合方式,把它们组合起来。如果记忆中的静态特征图和现实中的静态特征图不符合,机器采用同类(同一概念下特征图)类比替代的方式使用现实中静态特征图代替记忆中的静态特征图。这是一种通过相同属性进行类比思维实现的泛化应用。
机器把输入信息组织起来后,建立了一个或者多个理解序列,包含了“出去”的特征图,“买”的特征图,“拿”的特征图,“回来”的特征图,还有把各种对象和这些动态特征图结合起来的次序。然后,机器把这个理解序列重新输入到自己的关系网络中,在记忆中寻找自己在类似输入情况下最多的响应。这些重复次数最多的响应就是主人的目的。显然,这里机器能够理解到主人的目的就是要求机器按照自己的要求去执行。
机器开始评估本能响应“听从主人安排,出去买一瓶啤酒拿回来”,发现无法通过评估(因为这时自己的电量并不充足),于是机器再次寻找其他可能响应。有可能找到之前给主人拿啤酒是从冰箱里拿出的记忆。于是机器建立了一个“从冰箱里拿出啤酒给主人”这样一个可能的虚拟输出过程。机器在评估这个虚拟输出过程时,再次在关系网络中使用链式激活来寻找相关记忆。这时,所有包含“打开冰箱”、“拿啤酒”、“给主人”的记忆都会被激活,还可能激活那些“打开...”,“拿...”、“给...”相关的记忆,这些记忆中的其他特征图也会被激活,包括所有的需求状态和情绪状态。其中一个记忆可能是自己“打开柜子没有找到需要的东西而被主人责骂”,那么包含在这段记忆中的“打开...”,“拿...”,“没有找到...”的动态特征图,因为它们和同一记忆中“损失”符号有联系,所以在这个记忆中,“打开...”,“拿...”,“没有找到...”等特征图都会向“损失”符号传递激活值。而“没有找到...”这个特征图可能在多个记忆中都有,而且在这些记忆中,机器都被主人责骂了。所以在这些记忆中,“没有找到...”、“责骂”、”损失”的记忆值都比较高,所以它们彼此连接关系紧密。而当“没有找到...”被激活,它会推高“损失”符号在整个链式激活完成后的累计激活值。如果“损失”符号的值过高,那么这个方案可能就无法通过评估系统。于是机器需要再次重新建立可能的输出序列。在重新建立响应的过程中,一种可能的选择就是在现有的响应基础上改进。在“趋利避害”的动机下,机器可能不愿意放弃这个方案(收益获得值很高),于是机器给自己建立一个临时目标:“在这个方案下,如何避免出现损失”。
在这个临时目标的驱动下,机器分析上次获得的结果,很明显损失来自某个特定的记忆。去掉这个记忆后,机器就获得非常好的评估结果。于是机器给自己建立一个临时目标:“如何避免出现...打开....却发现....没有的情况”。机器实现这个临时目标的方法,是和机器实现任何其他目标的方式是一样的:
1,把目标作为一个输入信息序列。2,在关系网络中进行链式激活。3,评估需求满足情况。4,如果通过,就执行。如果不能通过,就重新建立虚拟响应。5,重建虚拟响应时,首先尝试增加对响应的范围限制(增加目标),如果能够去除负面结果,获得好的正面结果,那么这就是重建后的虚拟响应。如果增加对响应的范围限制无法排除负面结果,就去掉部分带来负面结果的目标。6,回到步骤1。
机器在实现临时目标过程中,可能经过多次选择,最后模仿自己以前做类似决定时的经验,选择出的响应是“先确认一下前提条件,然后根据情况再做其他决定...”。于是机器开始去实现这个临时目标。机器同样通过搜索记忆中实现类似目标的过程(这些过程中很多细节可能已经被忘记,但“走过去...看....”的这个过程特征由于经常被模仿,记忆值高,而被记忆下来),把实现这个目标的过程展开为“走过去看冰箱里面有没有啤酒”这样一连串动作特征图序列。这就是新的虚拟输出。
机器把新的虚拟输出作为输入,再次在关系网络中激活这些特征图序列,再次查看评估系统的结果。它可能发现,这个响应也无法通过评估系统。因为有多个它转向其他目标,没有及时响应主人的指令而被责骂的记忆,都向损失符号传递了高的激活值。所以需要重新选择方案。同上面的过程一样,在“趋利避害”的动机下,机器可能不愿意放弃这个方案(收益获得值很高),于是机器根据经验,只需要排除带来损失的因素,这就是一个很好的方案。于是机器继续增加目标来限定响应的范围:“避免主人责骂”。
于是机器在现有状态下,把其他目标转为继承目标,建立一个临时目标“避免主人责骂”。
于是机器把“避免主人责骂”作为一个虚拟输出过程,通过链式激活,这个是被鼓励的行为,所以立即通过了评估系统。于是机器开始把实现“避免主人责骂”这个目标,展开成具体的过程。它通过记忆中类似的“避免主人责骂”相关的记忆,发现这些记忆中,自己先向主人做出了语言响应的记忆中,被责骂的次数较少。在这些包含语音响应的记忆中,进一步比较是发现,自己的情绪是微笑的时候,并且发出语音时,选用的语调动态模式为“恭敬”时,一次也没有被责骂过,这些记忆中评估结果最好。于是机器通过对评估系统和相关记忆的搜索,选出了自己的响应,并通过了评估系统:“微笑着给主人一个语音响应,在语言里面加入‘对不起’效果最好...”。
于是机器开始执行这个响应,它微笑着,给主人说“主人,对不起,我的电量不足了,我先看看冰箱里有没有啤酒。有的话我拿给您,没有的话,我充好电然后出去给您买啤酒,并顺道把房费给交了...”。这些语言输出组织过程同样是通过塔形展开一步步实现的。其中“对比起,主人....”由于频繁使用,已经是一种过程特征,在记忆中有较高的记忆值,可以经常被找到和使用。“我电量不足了”也是由于频繁使用,已经是一种过程特征,成为了一种常用语。“我先看看冰箱里有没有啤酒,有的话我拿给您,没有的话,我充好电然后出去给您买啤酒...”这是模仿在生活中经常使用的语言过程特征:“我先.....,然后....”这些句型由于频繁使用,在记忆中有较高的记忆值,可以经常被找到被模仿。而“看看冰箱里有没有啤酒”是“看看....有没有....”这种常见句型的运用,它们也是语言中的过程特征。它们和冰箱、啤酒通过模仿记忆中概念替换就可以建立“看看冰箱里有没有啤酒”这样的语音。“有的话我拿给您,没有的话,我充好电然后出去给您买啤酒...”同样是在找到的记忆中,通过去掉记忆值低的特征图,通过去掉和现实不相关的特征图,留下来的:“有的话,...,没有的话,...”这样的语言过程特征。动作和语言相结合,也是采用同属性概念替换的方法。另外,机器把“有啤酒的话,我拿给您啤酒,没有啤酒的话,我...”中的啤酒信息省略掉了,因为机器根据不断模仿人类使用这些语言的经验,省略了这些重复的信息。而“我充好电然后出去给您买啤酒...”这一句则包含了很多信息。首先是“出去”这个动态特征的使用。因为机器目前所处的空间是酒店房间,而“买啤酒”在记忆中都是和商店联系在一起的,这中间的地理位置上缺失了连接。所以机器根据自己位置和商店位置,使用了代表从一个空间到另外一个空间的过程特征的语言符号:“去”来把两个地方连接起来。由于机器在房间这样的封闭空间,而商店在房间外,所以机器选用了和现状最匹配的词语“出去”来表示从房间到外面的商店这个过程,尽管这两个地方都没有出现在语言里。另外,这里面存在3个动态过程,它们分别是“充电”、“出去”、“买啤酒”,机器需要寻找和这3个动态过程先关的记忆,来寻找它们的次序,并把合适的现实静态对象安排进去,这才能构成“我充好电然后出去给您买啤酒...”这样的信息表达。机器在建立“出去给您买啤酒”这个图像动态过程时,整个动态过程出现了“酒店前台”这个图像,因为这是出去的路途记忆。机器在划分分剧本时,继承目标“交房费”展开的空间位置也包含了“酒店前台”这个图像,所以机器把实现这些目标划分到空一个空间剧本中。并按照记忆中,一个目标途中顺便实现另一个目标的动态模式:顺道进行....。使用了顺道这个表示动态关系的概念来把两个行为连接起来。机器在组织好信息后,按照自己选择的语调动态模式,来确定每个发音选用的过程特征。每一个发音都是一个塔形展开过程,把一个语音展开成多个音节发音。而选择音节发音是在“恭敬”这个发音动态模式下选择的。而每一个音节的发音,又都是一个动态过程,包含了大量的肌肉运动,这些都是来自于经验。
机器发出响应后,等待主人的反馈。它通过传感器发现了一个图像特征是和“点头”这个概念紧密联系的,而“点头”又是和“表示同意”这个概念联系在一起的,所以机器就能识别出主人同意自己的方案。于是它认为这个临时目标已经完成了。它开始回到上层目标(继承目标):“走到冰箱那儿”。
在模仿“走到冰箱那儿”的过程中,机器需要把自己的位置、冰箱的位置和环境信息合并后,作为整体的输入,使用路径规划程序来规划路径,并使用经验来调整路径。在模仿“走到冰箱那儿”这个过程特征时,机器可能发现塔形分解下层目标中,第一个是“走”这个动态特征。模仿“走”这个动态特征时,机器发现自己模仿不了,因为“走”是站立的,而自己是坐在沙发上的。于是机器需要临时建立一个目标“从坐转变为站立”。机器实现这个目标的过程和之前的分析过程是一样的。它通过模仿“从坐转变为站立”的过程特征(无数次类似记忆中的共有部分,因为被反复模仿而记忆值变高),开始结合自己的现实环境(沙发),寻找类似的经验,对各种“肌肉”发出驱动命令。这些命令中的参数来自于环境和经验的结合,它们是经验的一部分。机器可能实施“腿使劲”、“身体前倾”、“保持平衡”、“手伸开保护自己”等一串更加细节的目标。每一个目标都对应一套肌肉经验参数。于是机器站了起来。然后沿着规划路径行走。
在这个过程中,机器可能发现新情况:“发现了一个障碍物”。那么,面对这些新的输入信息,机器不得不在把原来的目标暂停,进入处理新信息的过程中,而这些原来的目标,就变成了继承目标。机器有可能不得不从S2步骤来处理新的信息输入,比如形状、大小、纹理和颜色等。这些信息是机器后面找到解决方案的基础。通过这些信息,通过关系网络和记忆,机器需要确定它们的属性(比如重量和是否安全等),然后寻找解决方法(比如确定是否可以跨过去,移开后是否有地方放置等)。
当机器排除这些障碍物,来到冰箱这儿。当机器背对主人,根据类比于从第三方的角度观看自己记忆中图像的经验,机器知道主人看不见自己的脸。于是为了省电,机器取消了笑容。在拿到啤酒后,转身之前,机器根据经验,给主人笑脸是一项带来收益的活动。带来的收益值超过耗电带来的损失值。于是机器重新换上笑脸,拿着啤酒走向主人,满脸笑容....。
图6是一种实现通用机器智能的模块组成示意图。其中S600是建立机器特征提取模块。这个模块是通过对比局部相似性来选择数据在不同分辨率下的静态特征和动态特征,并建立对比相似性或者训练神经网络,或者其他任何已有算法来提取数据的特征。其中S601和S602模块是从外部输入信息中提取信息特征的模块,它们涉及到不同的分辨率。机器可能需要在多种分辨率下对输入数据进行特征提取。在S601中,可以通过预处理把同一传感器数据分成多路数据来提取数据的不同特征。S602中可以通过不同分辨率下,再次使用不同的预处理算法,来提取不同分辨率下的数据特征。完成输入信息提取后,机器在S603中,可以包含两个模块。其中一个是专门用于记忆搜索和相似度对比的专用模块,它可以是一块专用的搜索硬件。这样做的目的是为了把搜索记忆和对比相似性算法固化,通过采用专门的硬件来提高效率。另外一个是组合记忆信息和现实信息的模块,它相当于实现数据重组的软件。这一步,主要是通过从相关记忆中寻找动态过程,然后通过动作特征的泛化能力,把经验泛化。S604是整个记忆库(包括为了提高搜索效率而建立的快速搜索库,它包含常用记忆信息。也包含临时记忆库、长期记忆库和可能有的其他记忆库)。记忆库相当于存储空间,但它带有每个信息的生命周期(记忆值)。记忆库可以采用专门的记忆值刷新模块来维护记忆值。S605是需求评估系统,它利用S603过程中获得的需求值来做逻辑判断。S605可以是软件实现。S606是分段模仿过程(迭代进行概念展开的过程),这个过程需要不断调用S603和S604,它可以是软件实现。S607是一个逻辑判断,它可以是软件实现。S608是新记忆的存储过程,它可以是软件实现,也可以使用专门的硬件来实现。新记忆包含机器的内外输入信息,机器的需求信息和机器的情绪信息。它们是首先存储到临时记忆库中。S609是完成一个信息响应周期的状态。
在图6的实施方案中,其特征在于需要一个单独的记忆搜索和相似度对比模块。因为机器需要频繁使用记忆搜索和相似性对比,所以在本发明申请中,我们提出采用一个独立的硬件电路来实现这个功能的方法。

Claims (21)

1.一种模仿人类智能的机器智能实现方法,其特征在于,包括:
S1:机器依照不同分辨率来选取信息特征,并建立从输入数据中提取信息特征的算法;
S2:提取底层特征,并建立环境空间;其中机器首先把提取的特征,通过缩放和旋转,按照和原始数据相似度最高的位置、角度和大小,来调整底层特征的位置、角度和大小,把调整的底层特征和原始数据重叠放置,就能保留所述底层特征在时间和空间上的相对位置,建立环境空间;
S3:建立概念和关系网络;
S4:机器通过关系网络来寻找和输入信息序列相关的记忆;
S5:建立响应,并评估响应;其中机器根据自己的经验来组合自己的响应计划,并通过评估系统来评估不同的响应计划,确定最终选择;
S6:把响应转换为输出;机器模仿自己的经验,采用分段模仿的方法,把概念层层展开,直到静态特征图和动态特征图,然后机器模仿经验,把所述静态特征图和所述动态特征图组合成自己的一连串语言或者动作响应,以完成了一次信息处理过程;在理解信息时,概念的塔形结构展开到具体图像;而在模仿执行时,概念的塔形结构展开到机器的底层经验;所述分段模仿是一个迭代过程,每一个上层环节,通过分段模仿展开成符合现实条件的多个下层环节,然后在模仿过程中,继续采用一样的方法,把每一个下层环节,再次展开成符合现实条件的多个更下层环节,这个过程不断迭代,直到机器能真正地采取行动为止;
S7:贯穿所述信息处理流程更新数据库;
其中,S2中机器处理输入信息,并使用所述信息建立环境空间的过程中,包括机器在记忆中存入其他相关信息,机器存储的记忆包括的每一类数据都有自己的记忆值,第一类数据是外部输入的信息特征,和具体环境密切相关,第二类数据是内部自身信息,和环境无关,第三类数据是机器需求和需求所处状态的数据,给机器赋予不同的需求类型或/与不同的情绪类型,并把不同需求类型或/与不同情绪类型采用不同的符号来代表;并把代表需求或/与代表情绪的符号和引起需求状态或/与情绪状态发生改变的信息一起存储在记忆中;并使用数字或者符号来表示需求得到满足的情况或/与表示情绪的强度。
2.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S3建立关系网络的方法包括:
提取二种基本关系来建立关系网络,分别是:信息的相似关系;信息的环境关系。
3.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2包括:
机器存储信息到记忆库时,保留信息之间原来的相似性关系和环境关系;机器使用数值或者符号来表示这些信息能在记忆库中存在的时间,它们称为记忆值;同一记忆中的信息,彼此之间存在关系;其中任意两个信息之间的关系强度和这两个信息的记忆值相关。
4.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2中记忆存储的方法包括:
机器存储记忆时,既存储内部传感器和外部传感器给出的数据,也存储机器的需求数据或者机器的情绪数据,或者同时存储机器的需求数据和机器的情绪数据;并且把这些数据存储在同一个记忆中。
5.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2中记忆存储的方法包括:
机器存储记忆时,机器赋予给被存储信息的初始记忆值和存储发生时的激活值相关。
6.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S1数据特征选取方法包括:
机器采用对比局部相似度的方法来选取数据特征;机器按照不同的分辨率来选取数据特征,同样的数据,在不同分辨率下选取的数据特征可能并不相同;机器采用的分辨率包括时间分辨率和空间分辨率,机器分析的数据包括静态数据和动态数据;机器需要对同一数据采用不同的分辨率来进行选取特征的操作。
7.根据权利要求6所述的模仿人类智能的机器智能实现方法,S2提取底层特征的方法包括:机器采用不同的空间分辨率,使用一到多个窗口来代表窗口内的数据,通过对比窗口的运动轨迹来对比两个动态运动的相似性;机器对比运动轨迹的相似性是在同一空间分辨率下进行对比;机器使用时间分辨率,来对比机器的运动轨迹的变化率,来确定动态速率;
机器对比变化速率的相似性是在同一时间分辨率下进行对比;机器需要对数据采用不同的分辨率来进行重复提取。
8.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S5对输入信息建立响应的方法包括:
机器首先在记忆中找到一段或者多段最相关记忆;这些记忆是过去对模仿输入信息的响应,或者是过去对局部模仿输入信息的多个信息的响应;机器寻找这些响应中的过程特征,并按照时间和空间关系把这些过程特征组成一个或者多个动态过程;机器采用同概念下属性相同就可以替代的原则,使用输入信息中的动作相关对象代替记忆中对应动作相关对象,建立起对输入信息的响应;上述过程可以迭代进行。
9.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S5包括机器对计划输出的信息做评估的步骤,包括:机器首先在记忆中找到一段或者多段最相关记忆,这些记忆是机器在过去做出类似输出信息,或者过去做出局部类似输出信息的情况下,得到的外界反馈;机器调用包含这些外界反馈的记忆中的需求状态信息,并把这些需求状态信息做累计,来预估特定响应实际输出后可能带来的后果。
10.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S4包括实现机器经验泛化的步骤,包括:
机器首先寻找经验中的动态特征;所述动态特征指运动的模式,和具体发出和接受对象无关,机器使用同概念下属性相同就可以替代的原则,把过去的动态经验泛化到不同的对象上。
11.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S3中关系网络建立在以下假设基础上,包括:在特定分辨率下,部分属性相似的事物,其他属性可能也相似;那些出现在同一环境中的信息彼此存在关系,关系强度和信息能重复出现的次数正相关。
12.根据权利要求11所述的模仿人类智能的机器智能实现方法,其特征在于,S5中机器按照经验泛化的方法来建立对信息的响应,并按照“趋利避害”的原则在不同响应中选择合适的输出。
13.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S4中机器包含一个的记忆搜索模块和一个信息相似度对比模块,或者所述记忆搜索模块和所述信息相似度对比模块这两个模块合并为一个模块。
14.根据权利要求13所述的模仿人类智能的机器智能实现方法,其特征在于,S4中所述记忆搜索模块和所述信息相似度对比模块可以各自单独采用硬件实现,也可以合并采用硬件实现。
15.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S4中提高在关系网络中搜索的方法包括:机器把存在于记忆中的关系网络,提取出来,构成一个可以提高搜索效率的认知网络。
16.根据权利要求15所述的模仿人类智能的机器智能实现方法,其特征在于,S3中机器对每一个记忆提取出局域关系网络,然后通过相似特征图把这些局域网络关系连接成整体关系网络。
17.根据权利要求16所述的模仿人类智能的机器智能实现方法,其特征在于,S3中机器还对每一个记忆提取出局域关系网络,采用以特征图为中心,以连接关系为连接线,按照和连接线两边的特征图记忆值相关的函数来确定连接值,代表连接强度。
18.根据权利要求17所述的模仿人类智能的机器智能实现方法,其特征在于,S3中机器对每个特征图发出的连接值归一化;这样两个特征图之间的彼此连接值可能是不对称的,带有方向性。
19.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2中记忆存储方法包括:
机器把重力的方向,存储在每一个记忆中。
20.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2中机器的情绪由机器的需求和需求状态通过预置程序来控制;同时,机器根据需要来调整自己的情绪。
21.根据权利要求1所述的模仿人类智能的机器智能实现方法,其特征在于,S2中记忆存储的方法包括:机器存储信息的同时,也存储代表所述信息能在数据库中存在时间的数据;
实施步骤S6的装置包括:
机器特征提取模块(S600),通过对比局部相似性来选择数据在不同分辨率下的静态特征和动态特征,并建立对比相似性或者训练神经网络,或者提取数据的特征;
第一模块(S601)和第二模块(S602),从外部输入信息中提取信息特征,涉及到不同的分辨率,使机器在多种分辨率下对输入数据进行特征提取;其中,第一模块(S601)用于通过预处理把同一传感器数据分成多路数据来提取数据的不同特征,第二模块(S602)用于通过不同分辨率下,再次使用不同的预处理算法,来提取不同分辨率下的数据特征;
第三模块(S603),在完成输入信息提取后,其中一个第三模块(S603)是专门用于记忆搜索和相似度对比的专用模块,把搜索记忆和对比相似性算法固化,另外一个第三模块(S603)是组合记忆信息和现实信息的模块,实现数据重组,通过从相关记忆中寻找动态过程,然后通过动作特征的泛化能力,把经验泛化;
记忆库(S604),包含常用记忆信息,也包含临时记忆库、长期记忆库和可能有的其他记忆库),记忆库(S604)提供存储空间,包括带有对应每个信息的生命周期的记忆值,记忆库(S604)采用专门的记忆值刷新模块来维护所述记忆值;
需求评估系统(S605),利用第三模块(S603)处理过程中获得的需求值来做逻辑判断;
分段模仿模块(S606),用于迭代进行概念展开,展开过程需要不断调用第三模块(S603)和记忆库(S604);
逻辑判断模块(S607),用于判断中间是否碰到新情况,若否,则完成响应,若是,回到第一模块(S601)重新提取特征;
新记忆存储模块(S608),用于存储分段模仿模块(S606)得到的新记忆,所述新记忆包含机器的内外输入信息、机器的需求信息和机器的情绪信息,所述新记忆首先存储到临时记忆库中。
CN202010379539.8A 2020-04-30 2020-05-06 一种模仿人类智能的机器智能实现方法 Active CN111563575B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010379539.8A CN111563575B (zh) 2020-05-06 2020-05-06 一种模仿人类智能的机器智能实现方法
PCT/CN2020/000107 WO2021223042A1 (zh) 2020-05-06 2020-05-15 一种类似于人类智能的机器智能实现方法
PCT/CN2021/086573 WO2021218614A1 (zh) 2020-04-30 2021-04-12 通用人工智能的体系建立
US17/565,449 US11715291B2 (en) 2020-04-30 2021-12-29 Establishment of general-purpose artificial intelligence system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010379539.8A CN111563575B (zh) 2020-05-06 2020-05-06 一种模仿人类智能的机器智能实现方法

Publications (2)

Publication Number Publication Date
CN111563575A CN111563575A (zh) 2020-08-21
CN111563575B true CN111563575B (zh) 2021-06-29

Family

ID=72073211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010379539.8A Active CN111563575B (zh) 2020-04-30 2020-05-06 一种模仿人类智能的机器智能实现方法

Country Status (2)

Country Link
CN (1) CN111563575B (zh)
WO (1) WO2021223042A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016664A (zh) * 2020-09-14 2020-12-01 陈永聪 一种实现类人通用人工智能机器的方法
WO2021218614A1 (zh) * 2020-04-30 2021-11-04 陈永聪 通用人工智能的体系建立
WO2022109759A1 (zh) * 2020-11-25 2022-06-02 陈永聪 一种类人通用人工智能的实现方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312501A (zh) * 2001-04-20 2001-09-12 中国科学院合肥智能机械研究所 一种集成化智能信息系统开发控制的方法
CN106778043A (zh) * 2017-01-23 2017-05-31 深圳亲友科技有限公司 基于智能家居的老人监护系统、家居终端以及云服务平台

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587846B1 (en) * 1999-10-01 2003-07-01 Lamuth John E. Inductive inference affective language analyzer simulating artificial intelligence
JP4204839B2 (ja) * 2002-10-04 2009-01-07 株式会社エイ・ジー・アイ 発想モデル装置、自発感情モデル装置、発想のシミュレーション方法、自発感情のシミュレーション方法、およびプログラム
US7739208B2 (en) * 2005-06-06 2010-06-15 Numenta, Inc. Trainable hierarchical memory system and method
JP2008129845A (ja) * 2006-11-21 2008-06-05 Tadayuki Hattori 人工知能として人格を実現するコンピュータ・プログラムおよび装置
US20080243745A1 (en) * 2007-03-31 2008-10-02 Mitchell Kwok Human Level Artificial Intelligence Software Application for Machine & Computer Based Program Function
CN101093500B (zh) * 2007-07-16 2010-05-19 武汉大学 视频中事件语义识别方法
CN103699125B (zh) * 2013-12-09 2016-04-06 北京工业大学 一种基于鼠脑海马导航的机器人仿真导航方法
EP3566175A4 (en) * 2017-01-06 2020-07-29 Sportlogiq Inc. SYSTEMS AND METHODS FOR UNDERSTANDING BEHAVIOR FROM TRAJECTORIES
US10146768B2 (en) * 2017-01-25 2018-12-04 Google Llc Automatic suggested responses to images received in messages using language model
US10628528B2 (en) * 2017-06-29 2020-04-21 Robert Bosch Gmbh System and method for domain-independent aspect level sentiment detection
CN109202921B (zh) * 2017-07-03 2020-10-20 北京光年无限科技有限公司 用于机器人的基于遗忘机制的人机交互方法及装置
US11200424B2 (en) * 2018-10-12 2021-12-14 Adobe Inc. Space-time memory network for locating target object in video content
CN110909153B (zh) * 2019-10-22 2022-09-09 中国船舶重工集团公司第七0九研究所 一种基于语义关注度模型的知识图谱可视化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312501A (zh) * 2001-04-20 2001-09-12 中国科学院合肥智能机械研究所 一种集成化智能信息系统开发控制的方法
CN106778043A (zh) * 2017-01-23 2017-05-31 深圳亲友科技有限公司 基于智能家居的老人监护系统、家居终端以及云服务平台

Also Published As

Publication number Publication date
WO2021223042A1 (zh) 2021-11-11
CN111563575A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
Sejnowski The deep learning revolution
CN111563575B (zh) 一种模仿人类智能的机器智能实现方法
Krohn et al. Deep learning illustrated: a visual, interactive guide to artificial intelligence
Bhattacharya et al. Text2gestures: A transformer-based network for generating emotive body gestures for virtual agents
Takagi Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation
US8494982B2 (en) Emotion model, apparatus, and method for adaptively modifying personality features of emotion model
CN111553467B (zh) 一种实现通用人工智能的方法
CN106683672A (zh) 一种基于情感和语义的智能对话方法及系统
Ren Affective information processing and recognizing human emotion
US20070156625A1 (en) Method for movie animation
Rázuri et al. Automatic emotion recognition through facial expression analysis in merged images based on an artificial neural network
CN111582457A (zh) 一种模仿人类记忆来实现通用机器智能的方法
Lerner et al. Fitting behaviors to pedestrian simulations
Banf et al. Sonification of images for the visually impaired using a multi-level approach
US11715291B2 (en) Establishment of general-purpose artificial intelligence system
CN112215346B (zh) 一种实现类人通用人工智能机器的方法
CN113962353A (zh) 一种建立强人工智能的方法
WO2007092795A2 (en) Method for movie animation
CN112016664A (zh) 一种实现类人通用人工智能机器的方法
Kraayenbrink et al. Semantic crowds: reusable population for virtual worlds
Da Silva et al. Modelling shared attention through relational reinforcement learning
Khan An Approach of Lip Synchronization With Facial Expression Rendering for an ECA
Viliunas et al. Shape-finding in biophilic architecture: application of AI-based tool
del Campo et al. Architecture Design in the Age of Artificial Intelligence: The Latent Ontology of Architectural Features
WO2022109759A1 (zh) 一种类人通用人工智能的实现方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant