CN111563506B - 基于曲线轮廓匹配的甲骨拓片缀合方法 - Google Patents

基于曲线轮廓匹配的甲骨拓片缀合方法 Download PDF

Info

Publication number
CN111563506B
CN111563506B CN202010191701.3A CN202010191701A CN111563506B CN 111563506 B CN111563506 B CN 111563506B CN 202010191701 A CN202010191701 A CN 202010191701A CN 111563506 B CN111563506 B CN 111563506B
Authority
CN
China
Prior art keywords
curve
matching
conjugation
correlation
curves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010191701.3A
Other languages
English (en)
Other versions
CN111563506A (zh
Inventor
高未泽
田瑶琳
陈善雄
莫伯峰
赵富佳
王定旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Capital Normal University
Original Assignee
Southwest University
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University, Capital Normal University filed Critical Southwest University
Priority to CN202010191701.3A priority Critical patent/CN111563506B/zh
Publication of CN111563506A publication Critical patent/CN111563506A/zh
Application granted granted Critical
Publication of CN111563506B publication Critical patent/CN111563506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/752Contour matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供一种基于曲线轮廓匹配的甲骨拓片缀合方法所述方法包括,预处理阶段:通过预处理对甲骨拓片图像进行分割、转化提取与再转化,生成完整的轮廓曲线图像;特征提取阶段:对轮廓曲线图像进行特征分析、特征提取,生成碴口曲线匹配特征集;曲线轮廓跟踪及拟合阶段,对碴口曲线匹配特征集进行相似性曲线粗筛选、查找碴口轨迹坐标,生成曲线轨迹序列;甲骨拓片缀合阶段,基于相关性分析和拟合度分析相结合的曲线匹配算法生成缀合推荐排名表,基于缀合推荐排名表生成目标匹配图像库。该方法不仅能使甲骨拓片的匹配准确度高达84%以上,而且能通过相似排名进行模糊匹配,从而提高了缀合工作的容错性。

Description

基于曲线轮廓匹配的甲骨拓片缀合方法
技术领域
本发明主要涉及甲骨碎片缀合相关技术领域,具体是一种基于曲线轮廓匹配的甲骨拓片缀合方法。
背景技术
为了推进学术研究,甲骨残片往往被用来作为古代历史发展和汉语言演化研究的材料。然而,甲骨本身乃易碎之物,甲骨材料经过长时间的埋藏,在长期的地下活动下碎片化严重、信息残缺,无法直接用于科学研究。要利用甲骨文来研究古代的语言和历史,必须首先对出土的甲骨进行缀合,尽可能地恢复其本来的面貌。而待出土的甲骨碎片既遭到了锄铲的敲击,又遭受了运输的颠簸,再经商贩与收藏者之间流转,其碴口边缘的蚀损程度可想而知,这给甲骨碎片缀合工作带来了很大的挑战。因此,如何有效进行甲骨缀合便成为亟待解决的问题。
在实际缀合过程中,传统的甲骨缀合工作需要参考大量专业文献来对甲骨的断痕、弧度、断痕处的文字笔画等多种特征来进行综合判断,所以仍需要由甲骨文专家全程参与,学者们仍然没有从大量的人工劳动中解放出来。尽管学术界已经提出了许多利用计算机技术辅助甲骨碎片缀合的方案,但大多数方法的提出缺乏专家指导,尚不能满足学者们的真正需求,因此,即使是在信息技术如此普及的当下,甲骨文专家仍然不可避免的耗费大量时间整理甲骨碎片资料。随着计算机视觉、深度学习和数学统计方法等技术的突破性发展,如何利用计算机技术科学有效地完成甲骨文缀合工作逐渐成为研究的焦点,学术界渴望找到一种计算机技术方案简化甲骨缀合工作,大大减少甲骨碎片拼接的人工成本。
发明内容
为解决目前技术的不足,本发明结合现有技术,从实际应用出发,提供一宗基于曲线轮廓匹配的甲骨拓片缀合方法。该方法不仅能使甲骨拓片的匹配准确度高达84%以上,而且能通过相似排名进行模糊匹配,从而提高了缀合工作的容错性。
为实现上述目的,本发明的技术方案如下:
基于曲线轮廓匹配的甲骨拓片缀合方法,所述方法包括,
预处理阶段:通过预处理对甲骨拓片图像进行分割、转化提取与再转化,生成完整的轮廓曲线图像;
特征提取阶段:对轮廓曲线图像进行特征分析、特征提取,生成碴口曲线匹配特征集;
曲线轮廓跟踪及拟合阶段,对碴口曲线匹配特征集进行相似性曲线粗筛选、查找碴口轨迹坐标,生成曲线轨迹序列;
甲骨拓片缀合阶段,基于相关性分析和拟合度分析相结合的曲线匹配算法生成缀合推荐排名表,基于缀合推荐排名表生成目标匹配图像库。
进一步的,在特征提取阶段,将曲线正交化,基于甲骨拓片特征分析对轮廓曲线图像集中的数据进行特征提取,选取曲线长度和倾斜角作为曲线特征描述对象,得到碴口曲线匹配特征集。
进一步的,在曲线轮廓跟踪及拟合阶段,定义倾斜角度的范围,从待缀合集中任选甲骨拓片,并从缀合集中任选拓片,提取两个碴口曲线的特征集进行欧氏距离的计算,其中欧式距离的计算包括倾斜角的欧氏距离以及曲线长度的欧氏距离;
对于倾斜角特征,通过判断倾斜角的欧氏距离,初步筛选出所有和待缀合甲骨拓片的碴口曲线倾斜度相似的拓片,对于碴口曲线长度特征,通过判断曲线长度的欧氏距离,初步筛选所有和待缀合甲骨拓片的碴口曲线长度相似的拓片;
经过粗筛选,实现相似甲骨拓片的碴口曲线之间的倾斜角特征的归一化。
进一步的,在曲线轮廓跟踪及拟合阶段,为了对图像进行正交化,对标注轮廓线进行基于RGB特征的像素点提取操作,对轮廓线进行坐标定位,使碴口曲线图像可置于同一坐标系下进行准确地匹配和比对;
定义碴口曲线图像的曲线起点坐标作为坐标系原点建立笛卡尔坐标系,借助傅里叶描述子的思想进行坐标点提取,实现按照一定的方向跟踪曲线轮廓,以便得到每一条轮廓线的坐标序列。
进一步的,在曲线轮廓跟踪及拟合阶段,针对每一条碴口曲线,建立与之对应的一个轨迹坐标点序列集作为曲线的特征描述;
在碴口曲线坐标点的搜寻过程中,按照特定方向顺序,同时将在目标区域内搜寻到的坐标点写入至轨迹列表中,曲线轨迹列表生成过程中,从起始点开始按特定方向查找该范围内的像素点,若找到下一个坐标点,则用下一个坐标点更新当前坐标点,直到当前坐标点和终点重合为止,最终得到每个碴口曲线对应的轨迹序列。
进一步的,在甲骨拓片缀合阶段,基于Pearson相关系数实现相关性分析,对于两个向量ai={x1,x2,x3,...,xn}和aj={y1,y2,y3,...,yn},Pearson系数用如下公式(1)表示:
Figure GDA0003702784520000041
其中,cov(ai,aj)表示ai和aj的协方差,var(ai)表示变量ai的方差,var(aj)表示aj的方差,由两个向量的定义可知,公式(1)又可表示为如下公式(2)所示:
Figure GDA0003702784520000042
其中,ai和aj表示两组长度相等的向量,
Figure GDA0003702784520000043
的取值范围在[-1,+1]之间;
Figure GDA0003702784520000044
Figure GDA0003702784520000045
分别表示完全负相关和完全正相关;而
Figure GDA0003702784520000046
则表示两变量之间完全没有相关性,相关系数的绝对值越接近于1,表示相关程度越高;
在相关性分析过程中,对任意两条碴口曲线先进行长度比较,再以最短曲线的长度作为测量Pearson相似度的取样范围;由于曲线正交化后两条曲线的起始点相同,即对于向量ai和aj有x1=y1,为了满足Pearson相关系数的适用条件,将采集到的曲线特征集和特征轨迹先后进行标准化处理,随后基于Pearson系数通过相关性分析算法以进行随机两两碴口曲线之间匹配度的测量。
进一步的,在甲骨拓片缀合阶段,相关性分析算法是在移动步长范围内,利用皮尔逊系数对同一横轴上的各坐标点进行纵轴维度的相似性测量,在水平移动进行比较的过程中,将比较二维坐标的相关性问题转化成为一维纵坐标的相关性比较问题,实现对相关性分析输入变量维度的降低。
进一步的,在甲骨拓片缀合阶段,相关性分析算法中将长度较短的待匹配曲线作为长度基准,每次选取较长曲线的部分片段与之进行相似性匹配测量,使较短的曲线在较长的曲线的矢量方向上以一定步长依次移动,直至从较长曲线的起始点移动到其尾部坐标,与此同时,将单次移动产生的皮尔逊系数值依次存储到列表中,最终,将若干次局部相似性度量的最大值作为两条待匹配曲线的相关系数的结果值。
进一步的,在甲骨拓片缀合阶段,拟合度分析算法在相关性分析算法的基础上实现了垂直维度上纵向分量的搜寻查找,在适当扩充匹配范围的条件下对碴口曲线进行拟合度评分,以确定相关性分析算法移动步长的最优选择。
进一步的,在甲骨拓片缀合阶段,拟合度分析算法以较长曲线为基准水平移动较短曲线;此时,指定单次水平移动的步长为一个坐标点,移动过程中依次比较两条曲线的纵向分量,设较短曲线为A且其曲线长度为M,设较长曲线为B,则拟合度分析算法的纵向搜寻策略为:当A在B上水平移动到某一位置时,对于A曲线上此时的每一个坐标点,以纵轴分量为中心在上下范围内以一定步数作为查找区间,即,判断在该查找区间内是否存在B曲线在该位置上的纵向分量值,若找到则视为两点重合,待A曲线遍历结束后,将两条曲线纵向分量的重合个数记为Num,则此时的曲线拟合度为
Figure GDA0003702784520000051
随后,水平移动曲线A,以步长为1循环重复上述过程直至曲线A水平移动至曲线B的尾端,将每次测得的score放入列表中;最后,取score列表中最大值作为最终该两条曲线的拟合度。
本发明的有益效果:
针对目前基于多种匹配算法进行碴口轮廓匹配以实现甲骨缀合的研究甚少,同时相关方向的研究也不够成熟彻底的问题,本发明在匹配算法计算量大、建立实验所用数据集仍然需要耗费大量人力劳动的研究现状下,通过广泛采集、参考甲骨文专家提出的建议,以少量人工标注的碴口轮廓线作为测试样本,扩展生成碴口曲线数据并设计匹配流程,在设置了大量干扰甲骨拓片的实验环境下经过本发明提出的皮尔逊相关性分析(Pearsoncorrelation analysis,PCA)和曲线拟合度分析(curve fitting degree analysis)CFDA综合算法对碴口曲线进行碎片的缀合匹配,同时统计可缀合匹配拓片组的缀合情况以进行缀合程度的量化评估,甲骨拓片样本经过多种算法和策略的粗筛选、细定位、精匹配,最终基于曲线特征匹配精选出相似度靠前的匹配候选对象构成与其推荐缀合图像库,在推荐缀合图像不超过10张的前提下,缀合准确率可达到84%以上,缀合工作效果较好,而且能通过相似排名进行模糊匹配,从而提高了缀合工作的容错性。
附图说明
图1所示为本发明甲骨拓片缀合工作流程图。
图2所示为本发明碴口曲线特征提取流程图。
图3所示为本发明曲线轮廓跟踪关键算法流程图。
图4所示为本发明相关性分析算法流程图。
图5所示为本发明拟合度分析算法流程图。
图6所示为本发明可缀合碴口曲线示意图。
具体实施方式
结合附图和具体实施例,对本发明作进一步说明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所限定的范围。
针对甲骨文拓片缀合问题,本发明实施例提出了如图1所示的缀合流程。本实施例搜集了甲骨学专家标注过的二十组可缀合轮廓线组作为测试研究的标注曲线集。其中,每条完整轮廓线由多张曲线碎片图像构成。首先通过预处理阶段,对甲骨拓片图像进行了分割、转化提取与再转化,目的主要有两个方面。一方面,图像可被分成多个具有独立特征性质的,互补相交的区域,在对甲骨图像进行处理时,只需提取研究感兴趣的碴口曲线部分。另一方面在于实现机器自动检测并拼接某些边缘曲线的散片图像,以生成完整的曲线轮廓曲线。为了将轮廓线的特征值进行量化,在特征处理阶段将曲线正交化,基于甲骨拓片特征分析对轮廓线图像集中的数据进行特征提取,选取曲线长度和倾斜角作为曲线特征描述对象,得到了碴口曲线特征集。曲线轮廓跟踪及拟合阶段的目标实现甲骨拓片的轮廓提取。由于轮廓线上任意相邻的两点都存在联系,坐标点与坐标点之间的位置关系反映了曲线的倾斜特征。因此,为了将在同一坐标系下绘制轮廓线以执行曲线匹配算法,在曲线轮廓跟踪及拟合阶段跟踪曲线轨迹,构建了每条曲线唯一对应的曲线轨迹序列,便于后续与甲骨拓片数据集结合,在综合性曲线匹配算法策略下进行甲骨拓片缀合实验。采用不同的曲线匹配算法往往对拓片缀合的准确率的影响不尽相同,因此,我们在对现有的曲线匹配算法进行分析的情况下,设计了单一PCA算法和PCA和CFDA结合算法两种曲线匹配算法策略,并结合其他基于不同相似性度量的曲线匹配算法,分别生成了曲线缀合推荐匹配表及其图像库。最终,基于多轮对比实验的数据结果,分析得到缀合准确率。
在甲骨缀合工作中,各环节原理如下。
甲骨残片碴口特征分析:
从直观感受上来说,若两块甲骨碎片拼缀后的碴口曲线高度吻合,往往可以反映该缀合结果的准确度。但由于种种自然、历史、人为因素,甲骨碴口处发生了二次断裂,致使甲骨碎片的碴口曲线受损严重(主要表现为碴口曲线上部分曲线特征缺失、断裂线向碎片内延伸等),因此要想实现碴口曲线之间匹配的精准匹配往往是不现实的。因此,在对甲骨残片碴口特征进行分析的过程中,选取出针对甲骨拓片有效的匹配特征显得尤为关键,这能在相当大的程度上简化工作并提高甲骨文缀合的准确度。在甲骨专家的辅助下,本发明实施例搜集了10组标注的两两可缀合的甲骨拓片作为分析对象,以进行甲骨碴口曲线的特征比对分析。
通过对甲骨残片进行长度、倾斜角度、色彩分布等特征分析,发现:(1)两两可缀合的甲骨残片的碴口曲线大致水平等长;(2)两条可相互缀合的甲骨残片的碴口曲线走势基本相同,倾斜方向也大致吻合;(3)从平面曲线轮廓粗匹配的角度来看,满足RST的甲骨残片两两间的碴口曲线差异较小,曲线匹配误差一般出现在甲骨碎片边缘的多个严重损坏的碴口处,其四周往往呈磨损、断裂、分化等特点;(4)在甲骨拓片、照片、摹本等甲骨影像资料中,甲骨碎片上的缺损文字和一些曲线边缘的凹陷部分均呈白色,导致在部分文字笔画与拓片边界相连时难以区分甲骨的真实边界;(5)本次实验的主要材料是甲骨拓片图像集,因为这些拓片是在甲骨残片出土后被技术人员扫描所得的,故不可避免的存在旋转角差异。
综上,通过对甲骨这些特征的分析,可知甲骨拓片具有具有一定程度的尺度不变性,边缘特征较明显,因此本实施例选择甲骨拓片的碴口作为缀合的依据。
碴口曲线局部特征提取:
由于甲骨拓片碴口曲线的轮廓特征的提取需要建立在局部特征分析的基础之上,故需要比较筛选曲线有效特征,以保证后续甲骨文缀合工作的顺利进行。特征是用来建立两幅图像之间的匹配对应关系的,合理选择特征空间可以提高配准算法的适应性、降低搜索空间,减小噪声等不确定因素对匹配算法的影响。由于曲线倾斜度决定了曲线的趋势和方向,而曲线长度决定了曲线轮廓特征提取时坐标点数量的多少,因此,此处选取了倾斜度和曲线长度作为曲线轮廓局部特征。特别地,由于倾斜度和曲线长度是同时提取的,此处用曲线的水平长度近似作为曲线长度。该环节主要是要实现对图像的正交化,通过建立笛卡尔坐标系从而对缀合图像进行建模分析,提取量化特征。碴口曲线特征提取环节的主要目标是提取碴口曲线局部特征,生成曲线匹配特征集,即通过确定碴口曲线的起始坐标和终点坐标来提取曲线的倾斜度K和长度D。本次待缀合的碴口曲线特征提取的具体工作流程如图2所示。
由图2所示,碴口曲线特征提取共经历了四个环节。其中,为了保证曲线匹配算法的准确输入,本实施例采用专家手动标注过的碴口曲线轮廓曲线图像作为特征提取的对象。通过沟通,了解到手工标注的局部碴口曲线图像的起止点存在颠倒现象,因此,随后需对每个曲线几部标注图像进行180度的旋转,使得碴口曲线轮廓的起点与标注曲线的起点位置吻合,减少标注带来的人为误差。为了降低手工标注过程中多标或少标对缀合结果产生的影响,实验过程中,本实施例随后对每个局部碴口曲线进行再拼接,以得到碴口曲线完整轮廓,基于碴口完整轮廓曲线再进行曲线特征的提取。
曲线轮廓跟踪及拟合:
曲线轮廓跟踪的实质是实现轮廓特征的提取,获取曲线轮廓形状的特征描述序列。基于缀合曲线倾斜度、水平长度等曲线特征,因此可以进一步实现完整碴口轮廓线两两之间的相似性比对,以找到每个待缀合碎片的缀合匹配对象。由于碴口曲线定位的准确度对后期碴口曲线匹配结果有着重要影响,因此为了提高缀合正确率,此过程需要借助曲线轮廓跟踪拟合环节的工作对轮廓线进行多轮筛选提取。为了实现对相似的曲线进行初步筛选并对同倾斜角度的曲线进行相似匹配,该曲线轮廓跟踪及拟合可大致分为以下三个子环节:相似性曲线粗筛选、查找碴口曲线轨迹坐标和生成碴口曲线轨迹坐标列表。
相似性曲线粗筛选
由于两两可匹配的碴口曲线有大致相同的倾斜角度。利用该特点,可以对曲线进行初步分类筛选,以进一步缩小每个轮廓线的待匹配对象范围。定义倾斜角度K的范围为[-θ,+θ],且从两个待匹配拓片的碴口曲线的上提取的像素点均不超过δ个(为了简化研究,此处用曲线像素点的个数来近似表示碴口曲线长度)。如图3中a所示,20组测试数据可分为含20张拓片的待缀合集和含20张拓片的缀合集。其中,每个拓片集内部任意两张不可缀合,但在缀合集中每一张都可以在待缀合集中找到唯一可与之匹配的甲骨拓片。从待缀合集中任选甲骨拓片Ti,i∈[1,20],并从缀合集中任选拓片Tj,j∈[1,20],其中i≠j。提取两个碴口曲线的特征集进行欧氏距离的计算,其中倾斜角的欧氏距离为
Figure GDA0003702784520000101
曲线长度的欧氏距离为
Figure GDA0003702784520000102
对于倾斜角特征K而言,可通过判断α∈[0,θ]是否成立,在测试集中初步筛选出所有和待缀合甲骨拓片Ti的碴口曲线倾斜度相似的拓片Tj。同理,对于碴口曲线长度特征D而言,可通过判断β∈[0,δ]是否成立,来初步筛选所有和待缀合甲骨拓片Ti的碴口曲线长度相似的拓片Tj
如图3中a所示,本实施例采用了如图所示的相似曲线粗筛选算法实现了图像两两相似性比对的批处理,实现了轮廓曲线的初步匹配,通过此过程,大大缩小了匹配对象的范围。其中,当Tj的碴口曲线被确认为与Ti的碴口曲线不相似时,程序将自动跳过Tj,进行下一轮特征比对;当Tj的碴口曲线被确认为与Ti的碴口曲线相似时,经旋转KTj=KTi。经过粗筛选,最终实现了相似甲骨拓片的碴口曲线之间的倾斜角特征的归一化。
查找碴口曲线轨迹坐标:
在人工标注阶段,碴口曲线标注采用的工具为电脑的外接设备(手绘板),故绘制的碴口曲线的线条较粗,在一定程度上平滑了细节特征点。所以,坐标点的提取对提高碴口曲线匹配的准确度是必不可少的。为了对图像进行正交化,本实施例对标注轮廓线进行了基于RGB特征的像素点提取操作,对红色标注的轮廓线进行了坐标定位,使碴口曲线图像可置于同一坐标系下进行准确地匹配和比对。定义碴口曲线图像的曲线起点坐标作为坐标系原点建立笛卡尔坐标系,借助傅里叶描述子的思想进行坐标点提取,实现按照一定的方向跟踪曲线轮廓,便于后续得到每一条轮廓线的坐标序列。所采用的曲线坐标点搜寻策略,在特定方向下依次搜寻,以尽可能多的覆盖碴口曲线上的坐标点。
生成碴口曲线轨迹序列
实际上,两条曲线的相似性拟合度可简单近似为:两条曲线在同一正交坐标系下的交点坐标数的占比。因此,对于每条碴口曲线,基于曲线的坐标点提取和基于坐标点构成曲线应该是可逆的过程。为了实现不同碴口曲线的拟合与相似性比对,针对每一条碴口轮廓线,本实施例建立了与之对应的一个轨迹坐标点序列集作为曲线的特征描述。在碴口曲线坐标点的搜寻过程中,本实施例按照特定方向顺序,同时将在目标区域内搜寻到的坐标点写入至轨迹列表中。曲线轨迹列表生成流程如图3中b所示。程序从起始点开始按特定方向查找该范围内的像素点,若找到下一个坐标点,则用下一个坐标点更新当前坐标点,直到当前坐标点和终点重合为止,最终即可得到每个碴口曲线对应的轨迹序列。
甲骨碴口曲线匹配算法:
相关性匹配算法
相关性分析(correlation analysis)是研究对象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。在对两个变量进行相关性分析时,往往需要借助某一相关性系数(correlation coefficient)作为分析指标。目前,可用于分析相关性的常见系数有Pearson、Spearman和Kendall。其中,…分析比较说明为什么用Pearson。Pearson相关性分析可以用来衡量两个变量之间的线性相关度、比较两组特征向量的紧密程度,这为衡量碴口曲线的匹配度提供了科学的量化标准。
在统计学中,Pearson相关系数(Pearson correlation coefficient)又称为积矩相关,是一种广泛用于分析变量间关联度的一种方法。作为两变量相关系数的渐近无偏最优估计,它是基于数据的协方差矩阵来评估两个向量之间关系的强度,可用来表示两组变量的相关程度。定义两个向量ai={x1,x2,x3,.x.n.,和aj={y1,y2,y3,...,yn},通常情况下,上述两个序列之间的Pearson系数可用公式(1)表示:
Figure GDA0003702784520000121
其中,cov(ai,aj)表示ai和aj的协方差,var(ai)表示变量ai的方差,var(aj)表示aj的方差。同时,由两个向量的定义可知,公式(1)又可写为:
Figure GDA0003702784520000122
其中,ai和aj表示两组长度相等的向量,
Figure GDA0003702784520000123
的取值范围在[-1,+1]之间。
Figure GDA0003702784520000124
Figure GDA0003702784520000125
分别表示完全负相关和完全正相关;而
Figure GDA0003702784520000126
则表示两变量之间完全没有相关性。一般地,相关系数的绝对值越接近于1,表示相关程度越高。为了加强变量的关联性描述,给出了关联度分级表如表1所示。
表1关联度取值与相关程度
Figure GDA0003702784520000127
Figure GDA0003702784520000131
由Pearson相关系数的要求知两向量的维度一致。因此,对任意两条碴口曲线先进行长度比较,再以最短曲线的长度作为测量Pearson相似度的取样范围。由前述可知,曲线正交化后两条曲线的起始点相同,即对于向量ai和aj有x1=y1。为了满足Pearson相关系数的适用条件,将采集到的曲线特征集和特征轨迹先后进行标准化处理,随后基于Pearson系数提出了一种相关性分析算法(Pearson Correlation Analysis,PCA)以进行随机两两碴口曲线之间匹配度的测量。它依托于传统的基于特征描述子的曲线匹配算法思想,但又区别于此。PCA算法从统计学的相关分析原理出发,以相似性度量的有关系数来量化曲线的相似度(也即匹配程度),在一定程度上避开了传统方法因选取局部特征不佳而导致曲线匹配结果不理想的问题,为甲骨碴口曲线缀合问题提供了一种全新的解决思路。
参照图4,上述PCA算法描述如下所示:
Figure GDA0003702784520000132
由上述算法1可知,PCA算法的核心思想是在移动步长范围内,利用皮尔逊系数对同一横轴上的各坐标点进行纵轴维度的相似性测量。由于在曲线特征提取阶段对具有较高特征相似度的曲线进行了旋转和起始点的归一化,使高度相似的两条曲线的整体倾斜角保持一致,因此在水平移动进行比较的过程中,可将比较二维坐标的相关性问题转化成为一维纵坐标的相关性比较问题,从而实现了对PCA输入变量维度的降低,减少了计算量。
为了解决输入变量维度不一致的问题,PCA采用了分而治之、平行移动的策略。将长度较短的待匹配曲线作为长度基准,每次选取较长曲线的部分片段与之进行相似性匹配测量。使较短的曲线在较长的曲线的矢量方向上以步长step_x依次移动,直至从较长曲线的起始点移动到其尾部坐标。与此同时,将单次移动产生的皮尔逊系数值ρi依次存储到列表list_ρ中。最终,将若干次局部相似性度量的最大值作为两条待匹配曲线list_a和list_b的相关系数的结果值ρ(list_a,list_b),也即ρ(list_a,list_b)=max{ρ11,...,ρlen(list_ρ)}。
拟合度分析算法
PCA算法通过在水平方向上滑动曲线来进行Pearson相关性系数的计算。在移动步长足够小的条件下,曲线移动的覆盖率看似可以接近100%。但实际上,这是不可能实现的。一方面,移动步长的大小直接决定了PCA算法准确率的高低,然而PCA算法中水平移动步长的选择却具有偶然性。故由于PCA算法本身的局限性,实验计算出的Pearson相关性系数往往要低于实际值(这同时也是PCA算法的结果往往取最大值的原因);另一方面,水平移动的步长不宜过长也不宜过短,这是因为步长过长将导致曲线移动的覆盖范围缩小,在一定程度上增大了曲线相关度的测量误差;步长过短将导致PCA算法计算量的激增,而用增大计算量来换取算法的更优解的做法显然违背了本次研究的初衷。因此,为了在一定程度上弥补PCA算法在甲骨缀合问题上的不足,本发明提出了一种曲线拟合度分析算法CFDA(CurveFitting Degree Analysis),在PCA的基础上实现了垂直维度上纵向分量的搜寻查找,在适当扩充匹配范围的条件下对碴口曲线进行拟合度评分,以确定PCA算法移动步长的最优选择,提高PCA算法的鲁棒性。
如图5所示,具体的CFDA算法如下:
Figure GDA0003702784520000151
由于在曲线特征提取阶段采取了控制变量的策略,实现了两条曲线起始点位置的统一,故在CFDA算法中仍然可对研究对象进行降维。如前文所述,两条曲线的整体拟合程度可由两条待匹配曲线纵向分量在指定的容错范围内的重合度进行表示,旨在忽略两条曲线的微小差异点的基础上做出拟合度评价。与PCA算法的水平移动策略类似,CFDA算法以较长曲线为基准水平移动较短曲线。此时,指定单次水平移动的步长为一个坐标点,移动过程中依次比较两条曲线的纵向分量。设较短曲线为A且其曲线长度为M(即为特征序列中坐标点个数),设较长曲线为B,则CFDA的纵向搜寻策略的中心思想为:当A在B上水平移动到某一位置时,对于A曲线上此时的每一个坐标点,以纵轴分量为中心在上下范围内以步数step_y作为查找区间,即[yi-step_y,yi+step_y],判断在该查找区间内是否存在B曲线在该位置上的纵向分量值,若找到则视为两点重合。待A曲线遍历结束后,将两条曲线纵向分量的重合个数记为Num,则此时的曲线拟合度为
Figure GDA0003702784520000152
随后,水平移动曲线A,以步长为1循环重复上述过程直至曲线A水平移动至曲线B的尾端,将每次测得的score放入列表中。最后,取score列表中最大值作为最终该两条曲线的拟合度。
实施例:
在本发明的具体实验过程中,我们选取了20张待缀合甲骨拓片图像和120张甲骨拓片作为匹配测试实验的数据集。120张甲骨拓片图像集中包含甲骨文专家手工标注的20张待缀合甲骨残片(与待缀合甲骨拓片图像集相同)和100张不可缀合的甲骨残片。其中,20张待缀合甲骨残片经过专家确认,可构成10组确认可进行缀合匹配的甲骨拓片组,而剩余的100张甲骨残片则作为碴口匹配测试实验中的干扰项出现。在输入20张待缀合图片和120张甲骨拓片图像集后,采用本发明的曲线匹配算法体系为待缀合甲骨拓片图片集中的每张甲骨拓片生成一个相关性排名,同时对应生成一个高相关性缀合推荐文件夹。
由于CFDA算法在一定程度上校准了PCA算法在纵向分量上的匹配误差,故在执行PCA算法前先采用CFDA算法将拟合度较低的样本进行初步筛除,即在曲线匹配算法体系中先后执行CFDA算法和PCA算法。对高于拟合度阈值的样本执行PCA算法以达到提高测量Pearson相关系数精确度的目的。随后,根据Pearson相关系数大小建立缀合推荐图像库。该相关性缀合推荐图像库为含有相关性排名位于前10的图像的推荐缀合图像的文件库。最终,通过判断某一曲线的推荐文件夹内是否含有确认可与之匹配的甲骨拓片曲线,统计10组可缀合的曲线在数据干扰下的正确匹配的概率,并以此作为衡量缀合准确率的依据。
实验结果:
为了从含大量干扰项的数据集中初步筛选出缀合匹配曲线,进一步减少PCA算法的计算量,本阶段从影响PCA算法准确度的关键参数入手,通过采用CFDA算法实施对比实验初步缩小曲线候选集的范围,并选出最优参数。本阶段研究的关键参数主要有以下三个:纵向分量步长step_y、曲线倾斜度的差值Δθ、缀合匹配库的容量大小Range。
由CFDA算法的基本思想可知,步长step_y的大小直接决定了曲线的搜寻范围且在较大程度上决定了拟合程度,故step_y的选取是本阶段的研究核心之一。其次,在PCA算法执行前,预处理阶段需基于倾斜度条件α∈[0,θ]进行曲线的粗筛选,而Δθ值的选取正是本研究阶段的任务之一。由于粗筛选数据量的大小直接影响着PCA的计算量,故Δθ值的选取较为关键。此外,缀合匹配库的容量大小和最终的准确率结果紧密相关,缀合匹配库的容量大小直接影响着可缀合曲线被选入候选集的几率大小。实际上,根据Pearson系数的大小对曲线进行择优筛选,相似度评分较高的曲线将进入缀合推荐库中。因此,缀合匹配库容量越大,则可缀合曲线被选入候选集的几率就越大。
在拟合度测量的实验中,我们利用控制变量的思想和CFDA算法探究了两条可缀合曲线在不同参数设置下的拟合度表现。针对可缀合的曲线组Adown和Aup,其拟合度测量值如表2所示。
表2 CFDA算法在不同参数设置下的拟合度值(score)
Figure GDA0003702784520000171
Figure GDA0003702784520000181
其中,Range表示每个曲线缀合匹配库的容量大小,如Range=5表示曲线缀合匹配库中的候选图像总数为5,且曲线缀合匹配库中的图像按照Pearson相关系数的大小择高筛取;Δθ表示曲线倾斜度差值;St±i,i={5,7,9,11,13,15,17,21}表示相对于每个坐标点的上下搜寻的移动范围,也即垂直移动步长step_y=i。为了划分拟合度评分范围,我们根据不同拟合度值划分对PCA算法执行时长的影响,最终拟定了如下的标准:score>0.5时,曲线拟合度较优,否则曲线拟合度不佳。此外,由于Range和step_y的取值越小PCA算法的计算量越小;Δθ取值越小曲线粗筛选的范围越精准,故在进行参数择优的时候对于表现相近的参数值,我们采取了“择低不择高”的准则作为参数筛选条件以减少计算量、提高结果的准确率。如表2所示,随着Range值的增大,score>0.5的比例也随之增大,整体拟合度水平呈现出上升的趋势。当Range取5时,拟合度大小受倾斜度差值大小影响较大,在Δθ取值的低区间表现极为不佳。例如,Δθ=5且step_y取较大值13至21时,曲线拟合度仍然不足0.5,表明此时碴口曲线的拟合程度较低。为了使PCA结果更为精准,当Range为5时无论是Δθ还是step_y都局限在较高区间,从而增大了PCA计算的复杂性。然而,当Range取值分别为10,15,20时,Δθ的不同取值在拟合度上表现的差距逐渐缩小,即存在一个step_y的“较优区间”使得拟合度取值在Δθ的各取值区间上尽可能多的存在较大值。与Range=5相比,Range=10时,不同Δθ在拟合度上表现的差距缩小得极为明显,且此时存在step_y≥13的“较优区间”使得Δθ在不同取值上拟合度取值均大于0.55。而Range=15或Range=20时,“较优区间”的范围并没有进一步缩小。可见,Range取10最优,而此时step_y取13最优。
同理,根据这种控制变量进而分析变量“较优区间”的思想可知,在Range=10的条件下,Δθ取11或13均存在一个使得拟合度取值在step_y的各取值区间上尽可能多的存在较大值的“较优区间”,根据参数“择低不择高”的准则可进一步确定Δθ的最优取值为11。
测量缀合曲线集的Pearson
在筛选缀合曲线集阶段,我们针对不同的曲线组进行了如上所述的参数择优,关键参数满足Range=10,Δθ=11°,step_y=13时,对于20组待缀合碴口曲线拟合度的取值表现均较优。因此,对于20条待缀合碴口曲线而言,根据倾斜角差值范围[0,11°]初步筛选出了一个匹配范围精简了的图像库,随后根据Pearson评分构建一个容量大小为10的曲线推荐缀合匹配库,也即前文所述的推荐缀合文件库。随后,采用PCA算法,设置step_y=13将待缀合碴口曲线与其曲线缀合匹配库中的每条曲线进行一次相关性评分度量。其中,部分曲线Bup、Bdown、Cup、Cdown、Dup、Ddown、Eup、Edown的Pearson相关系数评分结果如表3所示。
表3待缀合碴口曲线的Pearson系数评分表(局部)
Figure GDA0003702784520000191
如表3所示,Rank表示某曲线相似度排名,Bup至Edown均表示某待缀合曲线。其中,包含了4组可缀合曲线组,例如Dup和Ddown为可缀合的碴口曲线组,如图6所示。表3中加粗的项为各待缀合曲线的可缀合匹配项。对于某条待缀合曲线,表3在其所在列依次给出了10条候选曲线的命名及其pearson系数的取值。例如,对于Bup曲线,其可缀合曲线Bdown的排名为2且相关性系数值的大小为0.9923,因此Bup曲线和Bdown曲线的相似程度为极高相关。
由表3可知,除了少数曲线(如Cup)外,初步筛选出来的10条曲线(含干扰项)与目标匹配曲线的Peason相关系数的取值均在0.84以上。同时,由表1可知曲线相似度处于极高相关或高度相关。由此可证明,经CFDA算法粗筛选曲线与原缀合曲线的匹配度较好,从而从量化的角度印证了参数择优方案的合理性。
为进一步阐述表3中存在的可缀合曲线组Pearon系数的排名较干扰项更低的现象,以下从曲线特征的角度进行分析。可缀合曲线组Dup和Ddown如图6所示,可见,Dup和Ddown曲线在整体走势上表现相近,但在局部表现上差异程度各异。例如,两条曲线在曲线左端点处的曲线仅在倾斜率上出现较为细微的不同,而在右端点处差异较大。由表3数据可知,对于Dup曲线,Ddown曲线的相似度排名仅为10,尽管关联程度为极高相关但和其他干扰项相比相关性系数值略低,这是由于CFDA算法虽能够在一定程度上减少匹配的误差但无法完全消除曲线的局部匹配误差。但从结果上来看,10组可缀合曲线的Pearson相关系数的均高于0.75,较准确的反映出缀合曲线的高度相似性;从10组甲骨拓片的缀合表现来看,相比于其他算法,如基于欧式距离和曼哈顿距离的曲线匹配算法,本发明算法体系已经在一定程度上降低了曲线局部匹配误差对最终拓片缀合结果的影响。
计算缀合准确率
曲线匹配技术是图像匹配中的一项重要的图像处理技术,指在一定的相似度准则下进行曲线匹配,并确定它们之间的几何变换关系。其中,相似性度量是指衡量特征之间相似性的准则,在图像匹配中起着关键性的作用,直接影响了匹配结果的有效性、正确性。由此可见,各种曲线匹配算法都有各自的曲线相似性度量标注,而曲线匹配算法的精准度在很大程度上依赖于相似性度量标准的选择。故曲线匹配算法的性能高低,其本质上取决于基于不同特征选择策略的相似性度量标准的好坏。通过如上所述,PCA和CFDA结合算法的匹配准确度的高低在很大程度上依赖于Pearson相似系数。因此,为了验证Pearson相似系数选择的科学性,以及PCA和CFDA结合算法在甲骨碴口曲线缀合上的准确性和有效性,我们基于前述的参数选择和实验数据,对曼哈顿距离、欧式距离、切比雪夫距离、夹角余弦集几种常见的相似性度量标准设计了如表4所示的对比实验,实验结果如下。
表4不同曲线匹配算法下甲骨拓片的缀合准确率
Figure GDA0003702784520000211
由表4可知,随着缀合推荐库的范围扩大各个算法的评估结果都呈现出正确率大幅提高的趋势。在Range=50时,基于切比雪夫距离、余弦距离进行相似性估算的正确率极高,曲线缀合匹配评估效果同样可呈现出可喜的效果。然而,随着缀合推荐库的范围缩小,大部分现有算法的缀合准确率都出现了大幅波动。例如,随着缀合推荐库规模的缩小,基于欧氏距离进行曲线匹配的算法从0.60迅速跌至0.25,甚至迭近至0.10,其拓片缀合准确率远远低于本发明的PCA和CFDA结合算法。
综上可知,相比于其他算法,PCA和CFDA结合算法在各大小样本上的表现较为稳定。在极小范围内(当Range=5时),也能在一定范围内保持稳定。可见,本发明提出的PCA和CFDA结合算法在小样本上呈现出其他算法不具备的缀合匹配精准性。实际上,由于甲骨拓片样本稀少、碎片化严重,借助更精细的算法提高甲骨缀合匹配在小样本上的正确度,有助于推进碎片化甲骨拓片的自动化缀合进程。
从实验结果来看,PCA和CFDA结合的算法思想在一定程度上有效提高了小样本上曲线匹配的准确率,在一定程度上解决了多数曲线匹配算法在小样本问题研究上的表现不佳的问题。针对基于轮廓线的相似性匹配算法特征选取具有随机性的问题,本发明通过采取如图1所示的甲骨拓片实验处理流程,有针对性地分析并提取甲骨碴口曲线的有效特征,将曲线的整体特征与局部特征整合起来,进一步提升计算机辅助甲骨拓片缀合的自动化水平。此外,通过将人工标注的曲线匹配结果与基于计算机曲线提取算法(如Canny算法)的曲线匹配结果对比分析,发现计算机辅助甲骨缀合的缀合准确率较为理想,虽然与人工准确标注之间仍然存在一定的差距,但是仍然有望将学者们从人工缀合甲骨碎片的繁琐工作中解放出来,对甲骨研究工作产生了一定的积极意义,同时也为未来的深入研究提供了方向。

Claims (1)

1.基于曲线轮廓匹配的甲骨拓片缀合方法,其特征在于,所述方法包括,
预处理阶段:通过预处理对甲骨拓片图像进行分割、转化提取与再转化,生成完整的轮廓曲线图像;
特征提取阶段:对轮廓曲线图像进行特征分析、特征提取,生成碴口曲线匹配特征集;
曲线轮廓跟踪及拟合阶段,对碴口曲线匹配特征集进行相似性曲线粗筛选、查找碴口轨迹坐标,生成曲线轨迹序列;
甲骨拓片缀合阶段,基于相关性分析和拟合度分析相结合的曲线匹配算法生成缀合推荐排名表,基于缀合推荐排名表生成目标匹配图像库;
在特征提取阶段,将曲线正交化,基于甲骨拓片特征分析对轮廓曲线图像集中的数据进行特征提取,选取曲线长度和倾斜角作为曲线特征描述对象,得到碴口曲线匹配特征集;
在曲线轮廓跟踪及拟合阶段,定义倾斜角度的范围,从待缀合集中任选甲骨拓片,并从缀合集中任选拓片,提取两个碴口曲线的特征集进行欧氏距离的计算,其中欧式距离的计算包括倾斜角的欧氏距离以及曲线长度的欧氏距离;
对于倾斜角特征,通过判断倾斜角的欧氏距离,初步筛选出所有和待缀合甲骨拓片的碴口曲线倾斜度相似的拓片,对于碴口曲线长度特征,通过判断曲线长度的欧氏距离,初步筛选所有和待缀合甲骨拓片的碴口曲线长度相似的拓片;
经过粗筛选,实现相似甲骨拓片的碴口曲线之间的倾斜角特征的归一化;
在曲线轮廓跟踪及拟合阶段,为了对图像进行正交化,对标注轮廓线进行基于RGB特征的像素点提取操作,对轮廓线进行坐标定位,使碴口曲线图像可置于同一坐标系下进行准确地匹配和比对;
定义碴口曲线图像的曲线起点坐标作为坐标系原点建立笛卡尔坐标系,借助傅里叶描述子的思想进行坐标点提取,实现按照一定的方向跟踪曲线轮廓,以便得到每一条轮廓线的坐标序列;
在曲线轮廓跟踪及拟合阶段,针对每一条碴口曲线,建立与之对应的一个轨迹坐标点序列集作为曲线的特征描述;
在碴口曲线坐标点的搜寻过程中,按照特定方向顺序,同时将在目标区域内搜寻到的坐标点写入至轨迹列表中,曲线轨迹列表生成过程中,从起始点开始按特定方向查找该范围内的像素点,若找到下一个坐标点,则用下一个坐标点更新当前坐标点,直到当前坐标点和终点重合为止,最终得到每个碴口曲线对应的轨迹序列;
在甲骨拓片缀合阶段,基于Pearson相关系数实现相关性分析,对于两个向量ai={x1,x2,x3,...,xn}和aj={y1,y2,y3,...,yn},Pearson系数用如下公式(1)表示:
Figure FDA0003666473390000021
其中,cov(ai,aj)表示ai和aj的协方差,var(ai)表示变量ai的方差,var(aj)表示aj的方差,由两个向量的定义可知,公式(1)又可表示为如下公式(2)所示:
Figure FDA0003666473390000022
其中,ai和aj表示两组长度相等的向量,
Figure FDA0003666473390000023
的取值范围在[-1,+1]之间;
Figure FDA0003666473390000024
Figure FDA0003666473390000025
分别表示完全负相关和完全正相关;而
Figure FDA0003666473390000026
则表示两变量之间完全没有相关性,相关系数的绝对值越接近于1,表示相关程度越高;
在相关性分析过程中,对任意两条碴口曲线先进行长度比较,再以最短曲线的长度作为测量Pearson相似度的取样范围;由于曲线正交化后两条曲线的起始点相同,即对于向量ai和aj有x1=y1,为了满足Pearson相关系数的适用条件,将采集到的曲线特征集和特征轨迹先后进行标准化处理,随后基于Pearson系数通过相关性分析算法以进行随机两两碴口曲线之间匹配度的测量;
在甲骨拓片缀合阶段,相关性分析算法是在移动步长范围内,利用皮尔逊系数对同一横轴上的各坐标点进行纵轴维度的相似性测量,在水平移动进行比较的过程中,将比较二维坐标的相关性问题转化成为一维纵坐标的相关性比较问题,实现对相关性分析输入变量维度的降低;
在甲骨拓片缀合阶段,相关性分析算法中将长度较短的待匹配曲线作为长度基准,每次选取较长曲线的部分片段与之进行相似性匹配测量,使较短的曲线在较长的曲线的矢量方向上以一定步长依次移动,直至从较长曲线的起始点移动到其尾部坐标,与此同时,将单次移动产生的皮尔逊系数值依次存储到列表中,最终,将若干次局部相似性度量的最大值作为两条待匹配曲线的相关系数的结果值;
在甲骨拓片缀合阶段,拟合度分析算法在相关性分析算法的基础上实现了垂直维度上纵向分量的搜寻查找,在适当扩充匹配范围的条件下对碴口曲线进行拟合度评分,以确定相关性分析算法移动步长的最优选择;
在甲骨拓片缀合阶段,拟合度分析算法以较长曲线为基准水平移动较短曲线;此时,指定单次水平移动的步长为一个坐标点,移动过程中依次比较两条曲线的纵向分量,设较短曲线为A且其曲线长度为M,设较长曲线为B,则拟合度分析算法的纵向搜寻策略为:当A在B上水平移动到某一位置时,对于A曲线上此时的每一个坐标点,以纵轴分量为中心在上下范围内以一定步数作为查找区间,即,判断在该搜寻区间内是否存在B曲线在该位置上的纵向分量值,若找到则视为两点重合,待A曲线遍历结束后,将两条曲线纵向分量的重合个数记为Num,则此时的曲线拟合度为
Figure FDA0003666473390000031
随后,水平移动曲线A,以步长为1循环重复上述过程直至曲线A水平移动至曲线B的尾端,将每次测得的score放入列表中;最后,取score列表中最大值作为最终该两条曲线的拟合度。
CN202010191701.3A 2020-03-18 2020-03-18 基于曲线轮廓匹配的甲骨拓片缀合方法 Active CN111563506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010191701.3A CN111563506B (zh) 2020-03-18 2020-03-18 基于曲线轮廓匹配的甲骨拓片缀合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010191701.3A CN111563506B (zh) 2020-03-18 2020-03-18 基于曲线轮廓匹配的甲骨拓片缀合方法

Publications (2)

Publication Number Publication Date
CN111563506A CN111563506A (zh) 2020-08-21
CN111563506B true CN111563506B (zh) 2022-07-22

Family

ID=72067698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010191701.3A Active CN111563506B (zh) 2020-03-18 2020-03-18 基于曲线轮廓匹配的甲骨拓片缀合方法

Country Status (1)

Country Link
CN (1) CN111563506B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837334B (zh) * 2021-04-02 2022-07-05 河南大学 一种汉简图像的自动缀合方法
CN114494750B (zh) * 2022-02-11 2024-04-02 辽宁师范大学 基于正交v-系统变换的计算机辅助甲骨缀合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087742A (zh) * 2011-01-26 2011-06-08 王爱民 基于图像处理的甲骨碎片缀合方法
CN107563393A (zh) * 2017-09-14 2018-01-09 安阳师范学院 一种甲骨文图片局部纹理特征的提取及匹配方法及系统
CN107590772A (zh) * 2017-07-18 2018-01-16 西北大学 一种基于自适应邻域匹配的文物碎片自动拼接方法
CN108376385A (zh) * 2018-01-26 2018-08-07 江南大学 一种融合形状特征和颜色的智能拼图算法及其系统
CN109615581A (zh) * 2018-11-30 2019-04-12 扬州大学 一种融合扩展高斯球和颜色几何特征的三维碎片的拼接复原方法
CN110598030A (zh) * 2019-09-26 2019-12-20 西南大学 一种基于局部cnn框架的甲骨拓片分类方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8375032B2 (en) * 2009-06-25 2013-02-12 University Of Tennessee Research Foundation Method and apparatus for predicting object properties and events using similarity-based information retrieval and modeling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087742A (zh) * 2011-01-26 2011-06-08 王爱民 基于图像处理的甲骨碎片缀合方法
CN107590772A (zh) * 2017-07-18 2018-01-16 西北大学 一种基于自适应邻域匹配的文物碎片自动拼接方法
CN107563393A (zh) * 2017-09-14 2018-01-09 安阳师范学院 一种甲骨文图片局部纹理特征的提取及匹配方法及系统
CN108376385A (zh) * 2018-01-26 2018-08-07 江南大学 一种融合形状特征和颜色的智能拼图算法及其系统
CN109615581A (zh) * 2018-11-30 2019-04-12 扬州大学 一种融合扩展高斯球和颜色几何特征的三维碎片的拼接复原方法
CN110598030A (zh) * 2019-09-26 2019-12-20 西南大学 一种基于局部cnn框架的甲骨拓片分类方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A System for High-Volume Acquisition and Matching of Fresco Fragments:Reassembling Theran Wall Paintings;Benedict J. Brown等;《ACM Transactions on Graphics》;20080801;第27卷(第3期);1-9 *
一种计算机辅助甲骨文拓片缀合方法;张长青等;《电子设计工程》;20120905;第20卷(第17期);1-3 *
基于带参数的多结点样条表示的物体轮廓曲线匹配;王金梅;《微电子学与计算机》;20080705;第25卷(第7期);103-107 *
甲骨文数字化处理研究述评;顾绍通;《西华大学学报(自然科学版)》;20100915;第29卷(第5期);38-48 *

Also Published As

Publication number Publication date
CN111563506A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN108416342B (zh) 一种结合细节点和细线结构的指纹识别方法
CN114821114B (zh) 一种基于视觉系统的坡口切割机器人图像处理方法
Guo et al. Efficient center voting for object detection and 6D pose estimation in 3D point cloud
CN111563506B (zh) 基于曲线轮廓匹配的甲骨拓片缀合方法
CN102704215B (zh) 基于dst文件解析与机器视觉结合的绣布自动切割方法
US7620250B2 (en) Shape matching method for indexing and retrieving multimedia data
CN111462175A (zh) 时空卷积孪生匹配网络目标跟踪方法、装置、介质及设备
CN107230203A (zh) 基于人眼视觉注意机制的铸件缺陷识别方法
CN109472280B (zh) 一种更新物种识别模型库的方法、存储介质及电子设备
CN105046694A (zh) 一种基于曲面拟合系数特征的点云快速配准方法
CN110033007A (zh) 基于深度姿态预估和多特征融合的行人衣着属性识别方法
CN110008828B (zh) 基于差异正则化的成对约束成分分析度量优化方法
CN107016323A (zh) 一种手掌感兴趣区域的定位方法及装置
CN106204422B (zh) 基于区块子图搜索的超大幅影像快速匹配拼接方法
CN112150523A (zh) 一种低重叠率的三维点云配准方法
CN116883393B (zh) 一种基于无锚框目标检测算法的金属表面缺陷检测方法
Bickler Machine learning identification and classification of historic ceramics
Tsai et al. Transfer learning for surgical task segmentation
CN113379777A (zh) 一种基于最小外接矩形垂直内距离比例的形状描述与检索方法
CN106897723B (zh) 基于特征匹配的目标实时识别方法
CN114863129A (zh) 仪表数值分析方法、装置、设备及存储介质
Su et al. Iris location based on regional property and iterative searching
CN110070120B (zh) 基于判别采样策略的深度度量学习方法及系统
CN116452826A (zh) 基于机器视觉的遮挡情况下煤矸石轮廓估计方法
CN113592906B (zh) 一种基于标注帧特征融合的长视频目标跟踪方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant