CN111562741A - 一种延长电动汽车电池寿命的方法 - Google Patents

一种延长电动汽车电池寿命的方法 Download PDF

Info

Publication number
CN111562741A
CN111562741A CN202010387808.5A CN202010387808A CN111562741A CN 111562741 A CN111562741 A CN 111562741A CN 202010387808 A CN202010387808 A CN 202010387808A CN 111562741 A CN111562741 A CN 111562741A
Authority
CN
China
Prior art keywords
model
electric automobile
vehicle
sub
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010387808.5A
Other languages
English (en)
Inventor
荣丹丹
杨博
陈彩莲
关新平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010387808.5A priority Critical patent/CN111562741A/zh
Publication of CN111562741A publication Critical patent/CN111562741A/zh
Priority to PCT/CN2021/092653 priority patent/WO2021228019A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开的一种延长电动汽车电池寿命的方法,涉及电动汽车技术领域,包括以下步骤:系统建模:建立电动汽车的驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;获取决策参数:获取电动汽车由开始时刻至以后某一时刻之间内所述电动汽车的决策参数;控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将所述最优控制决策作用于所述暖通空调系统。通过本发明的实施,不仅具有控制算法的复杂度低的优点,还能够根据车辆的所述驱动系统能耗需求,动态调节所述暖通空调系统的性能,实现两个能耗系统之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,延长所述电池系统的寿命。

Description

一种延长电动汽车电池寿命的方法
技术领域
本发明涉及电动汽车技术领域,尤其涉及一种延长电动汽车电池寿命的方法。
背景技术
面对日益突出的能源紧张和环境污染问题,电动汽车由于其节能、环保和使用成本低等优点被视为汽车产业未来的发展方向。但电动汽车续航里程短、充电难,电池寿命短、电池价格高昂等问题也制约了电动汽车产业的发展。目前,在针对提升电动汽车电池性能和延长电池寿命的研究中,往往都是考虑了驱动系统的动态性能对电池性能的影响,大多忽视了暖通空调系统对整车能耗的重要影响。但在电动车行驶过程中,暖通空调系统的能耗较大,尤其在冬夏季的能耗占比将高达40%,有时甚至会超过驱动系统能耗。如果没有重视暖通空调系统这一最大的附属能耗系统,或只对其进行简单的假设,无法达到最优的控制效果,无法有效提升电动汽车电池性能和延长电池寿命。
因此,本领域的技术人员致力于开发一种延长电动汽车电池寿命的方法,能够综合驱动系统和暖通空调系统,达到对电池寿命的最优控制。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是克服因忽略暖通空调系统对整车能耗需求的重要影响而导致无法有效提升电动汽车电池性能和延长电池寿命的问题,提出一种延长电动汽车电池寿命的方法。
为实现上述目的,本发明提供了一种延长电动汽车电池寿命的方法,包括以下步骤:
系统建模:建立电动汽车的子系统模型,所述子系统模型包括驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
获取决策参数:获取第一时域内所述电动汽车的决策参数,所述第一时域是指所述电动汽车由开始时刻至以后某一时刻之间的时间段,所述决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将所述最优控制决策作用于所述暖通空调系统,具体包括如下子步骤:
变量定义:定义控制系统的系统控制模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
建立目标函数:所述目标函数包括最小化电池系统的寿命衰退、最小化所述电池系统总能耗、所述电动汽车的车室内温度最接近于目标设定值;
算法求解:根据所述目标函数求解所述控制系统的所述控制系统模型,以当前采样时刻的初始数据作为所述控制系统模型的初始状态,所述初始数据包括所述车室内温度的目标值、当前时刻的所述车室内温度的测量值和所述暖通空调系统的运行状态,采用基于多模型的预测控制算法求解所述控制系统模型;
最优控制:将通过所述算法求解步骤获得的最优输入控制变量作用于所述暖通空调系统;在当前采样时刻的下一个采样时刻,获取新的所述外界干扰变量和所述状态变量,重复所述获取决策参数步骤和所述控制决策的获取与刷新步骤。
本发明的其中一个技术方案中,所述电池系统模型是所述电动汽车唯一的储能模块和动力来源。
为了便于描述,本发明技术方案中所述制冷是指所述暖通空调系统工作在制冷状态,当所述暖通空调系统工作在制热状态时,对应的所述制冷应理解为制热。
进一步地,所述驱动系统模型的建立包括如下步骤:
获得所述电动汽车的行驶阻力,所述行驶阻力通过如下方法获得:
Figure BDA0002484721990000021
Figure BDA0002484721990000022
Fgr=mg·sin(α),
其中,
Froll为所述电动汽车行驶中受到的滚动阻力,
Faero为所述电动汽车行驶中受到的空气阻力,
Fgr为所述电动汽车行驶中受到的坡度阻力,
m为所述电动汽车的质量,g为重力加速度,
c0为滚动阻力系数1,c1为滚动阻力系数2,
vcar为所述电动汽车的行驶速度,
ρair为空气密度,Cx是为空气阻力系数,
Ax为所述电动汽车的有效受风面积,
vwind为相对于所述电动汽车行驶方向的风速,α为道路坡度;
获得所述电机驱动功率,所述电机驱动功率通过如下方法获得:
Ftr=Froll+Faero+Fgr+ma,
Figure BDA0002484721990000023
其中,
Ftr为所述电动汽车的驱动系统提供的驱动力,
a为所述电动汽车的加速度,
ηm为所述驱动系统电动机的工作效率,Pem为所述电机驱动功率。
进一步地,所述车室内热负荷系统模型为:
Qload=Qcon+Qrad+Qman+Qint
Figure BDA0002484721990000031
其中,
Qcon为通过热对流和热传导的形式进入所述电动汽车的车室内的热负荷,
Qrad为通过热辐射的形式进入所述车室内的热负荷,
Qman为所述车室内驾乘人员产生的热负荷,
Qint为所述车室内电气设备、座椅、仪表板的热惯性产生的热负荷,
Qload为所述车室内热负荷,
Qhvac为所述暖通空调系统的制冷量,
Vair为通过所述暖通空调系统制冷后的空气进入所述车室内的体积,
cp为空气的比热容,Tcab为所述车室内的温度。
进一步地,获取所述Qcon包括如下步骤:
将所述电动汽车外表面分为互相独立的外表子部分,所述外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分;
通过以下等式获得所述Qcon
Figure BDA0002484721990000032
其中,
ki为第i个所述外表子部分的对流换热系数,
Ai为第i个所述外表子部分的有效面积,
Tcol.i为第i个所述外表子部分的表面综合温度;
所述表面综合温度Tcol通过以下等式获得:
Figure BDA0002484721990000033
其中,
Tamb为所述电动汽车的外界温度,
q为所述车室内外壁受到的太阳辐射强度,
αw为所述车室内外壁热辐射吸收系数,
μ为所述车室内外壁的吸热效率。
进一步地,获得所述Qrad包括如下步骤:
将所述电动汽车外表玻璃分为互相独立的外玻璃子部分,所述外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃;
通过以下等式获得所述Qrad
Figure BDA0002484721990000041
其中,
ηi为太阳辐射穿过第i块所述外玻璃子部分的透入系数,
qi为第i块所述外玻璃子部分受到的太阳辐射强度,
Fi为第i块所述外玻璃子部分在太阳直射方向的有效面积。
进一步地,所述暖通空调系统模型为:
Figure BDA0002484721990000042
Phvac=Pc+Pf
Figure BDA0002484721990000043
Figure BDA0002484721990000044
其中,
Figure BDA0002484721990000045
为通过所述暖通空调系统制冷后的空气进入所述车室内的质量,
Tsup为所述暖通空调系统所能达到的制冷温度,
Phvac为所述暖通空调系统总能耗,
Pc为所述电动汽车的压缩机能耗,
Pf为所述电动汽车的鼓风机能耗,β1,β2和β3分别是所述鼓风机的能耗系数,
ηcop为所述暖通空调系统的能效系数。
进一步地,所述电池系统模型为:
Pbat=Pem+Phvac+Paux
Figure BDA0002484721990000051
其中,
Pbat为所述电池系统总能耗,
Paux为所述电动汽车的所述车内其他电气设备的附属能耗,所述车内其他电气设备的附属能耗在所述电池系统模型中为定值,
SoH为所述电池系统的健康状态,
SoC为所述电池系统的剩余电量,
Figure BDA0002484721990000052
为所述电池系统寿命的衰减。
进一步地,所述获取决策参数包括如下步骤:
将当前采样时刻设置为所述开始时刻,将所述第一时域划分为若干子时域;
根据所述第一时域内的道路状况和车辆速度轨迹,通过所述驱动系统模型,获得各个所述子时域内所述电动汽车的所述电机驱动功率;
根据所述第一时域内的外界天气状况,获得各个所述子时域内所述电动汽车的所述外界温度;
通过所述车室内热负荷系统模型获得各个所述子时域内所述电动汽车的所述Qload
进一步地,所述控制决策的获取与刷新步骤还包括:
所述状态变量定义为:
x=Tcab
所述输入控制变量定义:
Figure BDA0002484721990000053
所述系统输出变量定义为:
Figure BDA0002484721990000054
所述外界干扰变量定义为:
Figure BDA0002484721990000055
所述目标函数定义为:
Figure BDA0002484721990000061
其中,
Np为将所述第一时域划分的所述子时域的数量;
k为第k次采样时刻,
Ttar为所述车室内温度的目标值,
Figure BDA0002484721990000062
为第k次采样时刻的第i次所述子时域的所述电池系统寿命的衰减,Pbat(k+i|k)为第k次采样时刻的第i次所述子时域的所述电池系统总能耗,
(Tcab(k+i|k)-Ttar(k+i))2为第k次采样时刻的第i次所述子时域的所述车室内温度与所述车室内温度的目标值的偏差。
进一步地,所述算法求解步骤包括:
步骤S1:根据所述暖通空调系统的运行状态将其工作区间划分为L个子空间设置为:Ω={Ω1,Ω2,...,ΩL};
每个所述子区间都对应一个平衡状态,第j个所述子空间Ωj对应的所述平衡状态设置为:
Figure BDA0002484721990000063
在所述平衡状态附近将所述控制系统模型线性化展开,则获得第j个所述子空间Ωj的线性近似模型Θj
x(k+1)=Ajx(k)+Bju(k)+Cjd(k),
y(k)=Djx(k)+Eju(k)+Fjd(k),
j=1,2,...L,
其中,
x(k)为第k次采样时刻的所述状态变量,
u(k)为第k次采样时刻的所述输入控制变量,
d(k)为第k次采样时刻的所述外界干扰变量,
Aj、Bj、Cj、Dj、Ej和Fj为所述Θj的系统矩阵,
在L个所述子空间的所述平衡状态附近均进行线性化得到L个所述子空间的所述线性近似模型的模型集,所述模型集设置为:
Θ={Θ1,Θ2,...,ΘL};
步骤S2:根据采样时刻时的所述控制系统模型的所述状态变量、所述输入控制变量和所述外界干扰变量所属于的所述子空间,在所述模型集中选择所述子空间对应的所述线性近似模型作为计算线性模型以替换所述控制系统模型;
步骤S3:建立所述控制系统模型的约束如下:
Figure BDA0002484721990000071
用向量形式表示为:
Figure BDA0002484721990000072
其中,
k为采样时刻,
i为第k次采样时刻的所述子时域的序次,
Figure BDA0002484721990000073
为所述
Figure BDA0002484721990000078
的最小值,
Figure BDA0002484721990000074
为所述
Figure BDA0002484721990000075
的最大值,
Tsup.min为所述Tsup的最小值,Tsup.max为所述Tsup的最大值,
Pbat.max为所述电池系统总能耗的最大值,
Pem.max为所述电机驱动功率的最大值,
Pc.max为所述电动汽车的压缩机能耗的最大值,
Pf.min为所述电动汽车的鼓风机能耗的最小值,
Pf.max为所述电动汽车的鼓风机能耗的最大值;
步骤S4:将所述状态变量的初始值设置为当前采样时刻的所述车室内温度的测量值,根据所述目标函数求解所述计算线性模型,得到所述第一时域内所述控制系统模型的最优控制输入变量序列,表示为:
Figure BDA0002484721990000076
步骤S5:将所述
Figure BDA0002484721990000077
的第一个所述输入控制变量设置为所述最优输入控制变量,表述为:
Figure BDA0002484721990000081
与现有技术相比,本发明具有如下有益技术效果:
1、本发明将所述电动汽车的所述驱动系统和所述暖通空调系统综合考虑,根据车辆的所述驱动系统能耗需求,动态调节所述暖通空调系统的性能,实现两个能耗系统之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,也缓解了驾驶人员激进的驾驶行为给所述电池系统带来的放电压力,从而提升所述电池系统的放电性能,延长所述电池系统的寿命;
2、本发明采用基于多模型预测控制方法,降低了控制算法的复杂度,实现了控制算法的在线求解,具有计算量低,控制精度高的优点。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的基本步骤流程图。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图所示,图1是本发明的一个较佳实施例的基本步骤流程图。
为了便于描述,本发明技术方案中制冷是指暖通空调系统工作在制冷状态,当暖通空调系统工作在制热状态时,对应的制冷应理解为制热。
如图1所示,本发明公开的一种延长电池寿命的方法,针对在行驶过程中的电动汽车暖通空调系统设计基于模型预测控制算法的控制策略,包括以下步骤:
步骤1:系统建模,建立电动汽车的子系统模型,子系统模型包括驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
电池系统模型是电动汽车唯一的储能模块和动力来源;电池系统寿命的衰减和老化用电池系统容量的下降
Figure BDA0002484721990000082
来表示,与当前电池系统的剩余电量SoC以及车辆所需的电池放电功率即电池系统总能耗Pbat有关;驱动系统和暖通空调系统是电动汽车主要的能耗部分;驱动系统主要通过电动机将电池系统的电能转化为机械能,通过传动装置推动车辆以期望的速度和加速度行驶;暖通空调系统是通过制冷和制热功能来保证车内的热舒适性,满足驾乘人员对于温度、湿度和通风的需求;车室内的温度取决于车辆受到的热负荷Qload和暖通空调系统的制冷量Qhvac
驱动系统模型的建立包括如下步骤:
获得电动汽车的行驶阻力,行驶阻力通过如下方法获得:
Figure BDA0002484721990000091
Figure BDA0002484721990000092
Fgr=mg·sin(α),
其中,
Froll为电动汽车行驶中受到的滚动阻力,
Paero为电动汽车行驶中受到的空气阻力,
Fgr为电动汽车行驶中受到的坡度阻力,
m为电动汽车的质量,g为重力加速度,
c0为滚动阻力系数1,c1为滚动阻力系数2,
vcar为电动汽车的行驶速度,
ρair为空气密度,Cx是为空气阻力系数,
Ax为电动汽车的有效受风面积,
vwind为相对于电动汽车行驶方向的风速,α为道路坡度;
获得电动汽车的电机驱动功率,电动机将电能转化为机械能,通过传动装置,推动车辆克服阻力,并按照期望的速度和加速度行驶,电机驱动功率通过如下方法获得:
Ftr=Froll+Faero+Fgr+ma,
Figure BDA0002484721990000093
其中,
Ftr为电动汽车的驱动系统提供的驱动力,
a为电动汽车的加速度,
ηm为驱动系统电动机的工作效率,Pem为电机驱动功率。
车辆在行驶过程中,车室所受到的热负荷包括两大类。第一类是外界环境对车辆的热负荷,主要通过太阳辐射和热对流、热传导的形式,这部分热负荷主要取决于外部天气和车辆本身的材料和结构;第二类来自于车辆内部的热负荷,主要包括车内驾乘人员产生的热负荷和车内电气设备、座椅、仪表板等由于热惯性产生的热负荷。
车室内热负荷系统模型为:
Qload=Qcon+Qrad+Qman+Qint
Figure BDA0002484721990000101
其中,
Qcon为通过热对流和热传导的形式进入电动汽车的车室内的热负荷,
Qrad为通过热辐射的形式进入车室内的热负荷,
Qman为车室内驾乘人员产生的热负荷,
Qint为车室内电气设备、座椅、仪表板的热惯性产生的热负荷,
Qload为车室内热负荷,
Qhvac为暖通空调系统的制冷量,
Vair为通过暖通空调系统制冷后的空气进入车室内的体积,
cp为空气的比热容,Tcab为车室内的温度。
由于车舱内部与外界空气的温度差,车舱内外会发生热对流和热传导作用,从而给车室带来热负荷,所以Qcon可以通过如下步骤计算:
将电动汽车外表面分为互相独立的外表子部分,外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分;
通过以下等式获得Qcon
Figure BDA0002484721990000102
其中,
ki为第i个外表子部分的对流换热系数,
Ai为第i个外表子部分的有效面积,
Tcol.i为第i个外表子部分的表面综合温度;
车身外部各部分结构由于受到太阳辐射的影响,其外表面的温度会升高,因此表面综合温度Tcol通过以下等式获得:
Figure BDA0002484721990000103
其中,
Tamb为电动汽车的外界温度,
q为车室内外壁受到的太阳辐射强度,
αw为车室内外壁热辐射吸收系数,
μ为车室内外壁的吸热效率。
由于不同位置的玻璃受到的太阳辐射强度有很大差别,所以通过热辐射的形式进入车室内的热负荷Qrad可以通过如下步骤计算:
将电动汽车外表玻璃分为互相独立的外玻璃子部分,外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃;
通过以下等式获得Qrad
Figure BDA0002484721990000111
其中,
ηi为太阳辐射穿过第i块外玻璃子部分的透入系数,
qi为第i块外玻璃子部分受到的太阳辐射强度,
Fi为第i块外玻璃子部分在太阳直射方向的有效面积。
汽车中暖通空调系统的作用是通过制冷、制热等功能来保证车内的热舒适性,满足驾乘人员对于温度、湿度和通风的需求,所以暖通空调系统模型为:
Figure BDA0002484721990000112
Phvac=Pc+Pf
Figure BDA0002484721990000113
Figure BDA0002484721990000114
其中,
Figure BDA0002484721990000115
为通过暖通空调系统制冷后的空气进入车室内的质量,
Tsup为暖通空调系统所能达到的制冷温度,
Phvac为暖通空调系统总能耗,
Pc为电动汽车的压缩机能耗,
Pf为电动汽车的鼓风机能耗,
β1,β2和β3分别是所述鼓风机的能耗系数,与所述暖通空调系统的参数有关,
ηcop为暖通空调系统的能效系数,
电动汽车电池模型为:
Pbat=Pem+Phvac+Paux
Figure BDA0002484721990000121
其中,
Pbat为电池系统总能耗,
Paux为电动汽车的车内其他电气设备的附属能耗,车内其他电气设备的附属能耗在电池系统模型中为定值,
SoH为电池系统的健康状态,
SoC为电池系统的剩余电量,
Figure BDA0002484721990000122
为电池系统寿命的衰减。
步骤2:获取决策参数:获取第一时域内电动汽车的决策参数,第一时域是指电动汽车由开始时刻至以后某一时刻之间的时间段,决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
将当前采样时刻设置为开始时刻,将第一时域划分为若干子时域,子时域的数量为Np,标记为1,2,3,...Np
通过车车通信(V2V)和车与基站通信(V2I)得到的道路交通信息中得到第一时域内的道路状况和车辆速度轨迹,通过驱动系统模型,获得各个子时域内电动汽车的电机驱动功率:
{Pe(k+1|k),Pe(k+2|k),Pe(k+3|k),...,Pe(k+Np|k)};
根据第一时域内的外界天气状况或者车外的传感器,获得各个子时域内电动汽车的外界温度:
{Tamb(k+1|k),Tamb(k+2|k),Tamb(k+3|k),...,Tamb(k+Np|k)};
通过车室内的传感器获得车室内的空气温度,通过车室内热负荷系统模型获得各个子时域内电动汽车的Qload
{Qload(k+1|k),Qload(k+2|k),Qload(k+3|k),...,Qload(k+Np|k)}。
步骤3:控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将最优控制决策作用于暖通空调系统,具体包括如下步骤:
变量定义:定义控制系统的系统控制模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
车室内的温度为系统的状态变量,其定义为:
x=Tcab
暖通空调系统的制冷温度和制冷空气流量为控制系统模型的控制输入变量,其定义为:
Figure BDA0002484721990000131
暖通空调系统的能耗即压缩机和鼓风机的能耗为系统输出变量其,其定义为:
Figure BDA0002484721990000132
电机驱动功率、外界温度、车室内热负荷为控制系统模型的外部可测干扰,其定义为:
Figure BDA0002484721990000133
建立目标函数:目标函数包括最小化电池系统的寿命衰退、最小化电池系统总能耗、电动汽车的车室内温度最接近于目标设定值;
目标函数定义为:
Figure BDA0002484721990000134
其中,
Np为将第一时域划分的子时域的数量;
k为第k次采样时刻,
Ttar为车室内温度的目标值,
Figure BDA0002484721990000135
为第k次采样时刻的第i次子时域的电池系统寿命的衰减,
Pbat(k+i|k)为第k次采样时刻的第i次子时域的电池系统总能耗,
(Tcab(k+i|k)-Ttar(k+i))2为第k次采样时刻的第i次子时域的电动汽车的车室内温度与车室内温度的目标值的偏差;
算法求解:根据目标函数求解控制系统的控制系统模型,以当前采样时刻的初始数据作为控制系统模型的初始状态,初始数据包括车室内温度的目标值、当前时刻的车室内温度的测量值和暖通空调系统的运行状态,采用基于多模型的预测控制算法求解控制系统模型;具体包括如下步骤:
步骤S1:根据暖通空调系统的运行状态将其工作区间划分为L个子空间设置为:Ω={Ω1,Ω2,...,ΩL};
每个子区间都对应一个平衡状态,第j个子空间Ωj对应的平衡状态设置为:
Figure BDA0002484721990000141
在平衡状态附近将控制系统模型线性化展开,则获得第j个子空间Ωj的线性近似模型Θj
x(k+1)=Ajx(k)+Bju(k)+Cjd(k),
y(k)=Djx(k)+Eju(k)+Fjd(k),
j=1,2,...L,
其中,
x(k)为第k次采样时刻的所述状态变量,
u(k)为第k次采样时刻的所述输入控制变量,
d(k)为第k次采样时刻的所述外界干扰变量,
Aj、Bj、Cj、Dj、Ej和Fj为所述Θj的系统矩阵,
在L个子空间的平衡状态附近均进行线性化得到L个子空间的线性近似模型的模型集,模型集设置为:
Θ={Θ1,Θ2,...,ΘL};
步骤S2:根据采样时刻时的控制系统模型的状态变量、输入控制变量和外界干扰变量所属于的子空间,在模型集中选择子空间对应的线性近似模型作为计算线性模型以替换控制系统模型;
例如,如果
Figure BDA0002484721990000142
那么采样时刻k的计算线性模型为Θj,通过上述转化,将上述非线性模型预测控制问题转化为线性模型预测控制问题求解;
步骤S3:考虑现有暖通空调系统实际运行过程中对最小通风量和制冷温度的约束以及执行机构的物理约束,建立控制系统模型的约束如下:
Figure BDA0002484721990000143
用向量形式表示为:
Figure BDA0002484721990000151
其中,
k为采样时刻,
i为第k次采样时刻的子时域的序次,
Figure BDA0002484721990000152
为所述
Figure BDA0002484721990000153
的最小值,由所述暖通空调系统需满足车室最小通风量需求决定,
Figure BDA0002484721990000154
为所述
Figure BDA0002484721990000155
的最大值,由所述电动汽车的鼓风机最大功率决定,
Tsup.min为所述Tsup的最小值,由所述电动汽车的蒸发器能力决定,
Tsup.max为所述Tsup的最大值,由所述电动汽车的蒸发器能力决定,
Pbat.max为所述电池系统总能耗的最大值,
Pem.max为所述电机驱动功率的最大值,
Pc.max为所述电动汽车的压缩机能耗的最大值,
Pf.min为所述电动汽车的鼓风机能耗的最小值,
Pf.max为所述电动汽车的鼓风机能耗的最大值;
在每个采样时刻k,获取当前时刻车室内温度的真实测量值Tcab(k)为系统的初始状态变量,根据目标函数来求解线性模型预测控制问题,线性模型预测控制问题具体形式为:
目标函数定义为:
Figure BDA0002484721990000156
系统预测方程和输出方程:
x(k+1)=Ajx(k)+Bju(k)+Cjd(k),
y(k)=Djx(k)+Eju(k)+Fjd(k),
j=1,2,...L,
系统约束为:
Figure BDA0002484721990000157
步骤S4:将状态变量的初始值设置为当前采样时刻的车室内温度的测量值,根据目标函数求解计算线性模型,得到第一时域内控制系统模型的最优控制输入变量序列,表示为:
Figure BDA0002484721990000161
步骤S5:将
Figure BDA0002484721990000162
的第一个输入控制变量设置为最优输入控制变量,表述为:
Figure BDA0002484721990000163
最优控制:将通过算法求解步骤获得的最优输入控制变量作用于暖通空调系统;在当前采样时刻的下一个采样时刻即k+1采样时刻,获取新的外界干扰变量和状态变量,重复步骤2和步骤3。
相对于传统的电池寿命延长方法,本实施例针对电动汽车暖通空调系统设计模型预测控制算法,根据车辆的驱动系统能耗需求来调节暖通空调系统的动态性能,实现能耗系统之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,也缓解了驾驶人员激进的驾驶行为给电池带来的放电压力,从而提升电池的放电性能,延长电池寿命。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种延长电动汽车电池寿命的方法,其特征在于,包括以下步骤:
系统建模:建立电动汽车的子系统模型,所述子系统模型包括驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
获取决策参数:获取第一时域内所述电动汽车的决策参数,所述第一时域是指所述电动汽车由开始时刻至以后某一时刻之间的时间段,所述决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将所述最优控制决策作用于所述暖通空调系统,具体包括如下子步骤:
变量定义:定义控制系统的系统控制模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
建立目标函数:所述目标函数包括最小化电池系统的寿命衰退、最小化所述电池系统总能耗、所述电动汽车的车室内温度最接近于目标设定值;
算法求解:根据所述目标函数求解所述控制系统的所述控制系统模型,以当前采样时刻的初始数据作为所述控制系统模型的初始状态,所述初始数据包括所述车室内温度的目标值、当前时刻的所述车室内温度的测量值和所述暖通空调系统的运行状态,采用基于多模型的预测控制算法求解所述控制系统模型;
最优控制:将通过所述算法求解步骤获得的最优输入控制变量作用于所述暖通空调系统;在当前采样时刻的下一个采样时刻,获取新的所述外界干扰变量和所述状态变量,重复所述获取决策参数步骤和所述控制决策的获取与刷新步骤。
2.如权利要求1所述的延长电动汽车电池寿命的方法,其特征在于,所述驱动系统模型的建立包括如下步骤:
获得所述电动汽车的行驶阻力,所述行驶阻力通过如下方法获得:
Figure FDA0002484721980000011
Figure FDA0002484721980000012
Fgr=mg·sin(α),
其中,
Froll为所述电动汽车行驶中受到的滚动阻力,
Faero为所述电动汽车行驶中受到的空气阻力,
Fgr为所述电动汽车行驶中受到的坡度阻力,
m为所述电动汽车的质量,g为重力加速度,
c0为滚动阻力系数1,c1为滚动阻力系数2,
vcar为所述电动汽车的行驶速度,
ρair为空气密度,Cx是为空气阻力系数,
Ax为所述电动汽车的有效受风面积,
vwind为相对于所述电动汽车行驶方向的风速,α为道路坡度;
获得所述电机驱动功率,所述电机驱动功率通过如下方法获得:
Ftr=Froll+Faero+Fgr+ma,
Figure FDA0002484721980000021
其中,
Ftr为所述电动汽车的驱动系统提供的驱动力,
a为所述电动汽车的加速度,
ηm为所述驱动系统电动机的工作效率,Pem为所述电机驱动功率。
3.如权利要求2所述的延长电动汽车电池寿命的方法,其特征在于,所述车室内热负荷系统模型为:
Qload=Qcon+Qrad+Qman+Qint
Figure FDA0002484721980000022
其中,
Qcon为通过热对流和热传导的形式进入所述电动汽车的车室内的热负荷,
Qrad为通过热辐射的形式进入所述车室内的热负荷,
Qman为所述车室内驾乘人员产生的热负荷,
Qint为所述车室内电气设备、座椅、仪表板的热惯性产生的热负荷,
Qload为所述车室内热负荷,
Qhvac为所述暖通空调系统的制冷量,
Vair为通过所述暖通空调系统制冷后的空气进入所述车室内的体积,
cp为空气的比热容,Tcab为所述车室内的温度。
4.如权利要求3所述的延长电动汽车电池寿命的方法,其特征在于,获取所述Qcon包括如下步骤:
将所述电动汽车外表面分为互相独立的外表子部分,所述外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分;
通过以下等式获得所述Qcon
Figure FDA0002484721980000031
其中,
ki为第i个所述外表子部分的对流换热系数,
Ai为第i个所述外表子部分的有效面积,
Tcol.i为第i个所述外表子部分的表面综合温度;
所述表面综合温度Tcol通过以下等式获得:
Figure FDA0002484721980000032
其中,
Tamb为所述电动汽车的外界温度,
q为所述车室内外壁受到的太阳辐射强度,
αw为所述车室内外壁热辐射吸收系数,
μ为所述车室内外壁的吸热效率。
5.如权利要求4所述的延长电动汽车电池寿命的方法,其特征在于,获得所述Qrad包括如下步骤:
将所述电动汽车外表玻璃分为互相独立的外玻璃子部分,所述外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃;
通过以下等式获得所述Qrad
Figure FDA0002484721980000033
其中,
ηi为太阳辐射穿过第i块所述外玻璃子部分的透入系数,
qi为第i块所述外玻璃子部分受到的太阳辐射强度,
Fi为第i块所述外玻璃子部分在太阳直射方向的有效面积。
6.如权利要求5所述的延长电动汽车电池寿命的方法,其特征在于,所述暖通空调系统模型为:
Figure FDA0002484721980000041
Phvac=Pc+Pf
Figure FDA0002484721980000042
Figure FDA0002484721980000043
其中,
Figure FDA0002484721980000044
为通过所述暖通空调系统制冷后的空气进入所述车室内的质量,
Tsup为所述暖通空调系统所能达到的制冷温度,
Phvac为所述暖通空调系统总能耗,
Pc为所述电动汽车的压缩机能耗,
Pf为所述电动汽车的鼓风机能耗,β1,β2和β3分别是所述鼓风机的能耗系数,
ηcop为所述暖通空调系统的能效系数。
7.如权利要求6所述的延长电动汽车电池寿命的方法,其特征在于,所述电池系统模型为:
Pbat=Pem+Phvac+Paux
Figure FDA0002484721980000045
其中,
Pbat为所述电池系统总能耗,
Paux为所述电动汽车的所述车内其他电气设备的附属能耗,所述车内其他电气设备的附属能耗在所述电池系统模型中为定值,
SoH为所述电池系统的健康状态,
SoC为所述电池系统的剩余电量,
Figure FDA0002484721980000046
为所述电池系统寿命的衰减。
8.如权利要求7所述的延长电动汽车电池寿命的方法,其特征在于,所述获取决策参数包括如下步骤:
将当前采样时刻设置为所述开始时刻,将所述第一时域划分为若干子时域;
根据所述第一时域内的道路状况和车辆速度轨迹,通过所述驱动系统模型,获得各个所述子时域内所述电动汽车的所述电机驱动功率;
根据所述第一时域内的外界天气状况,获得各个所述子时域内所述电动汽车的所述外界温度;
通过所述车室内热负荷系统模型获得各个所述子时域内所述电动汽车的所述Qload
9.如权利要求8所述的延长电动汽车电池寿命的方法,其特征在于,所述控制决策的获取与刷新步骤还包括:
所述状态变量定义为:
x=Tcab
所述输入控制变量定义:
Figure FDA0002484721980000051
所述系统输出变量定义为:
Figure FDA0002484721980000052
所述外界干扰变量定义为:
Figure FDA0002484721980000053
所述目标函数定义为:
Figure FDA0002484721980000054
其中,
Np为将所述第一时域划分的所述子时域的数量;
k为第k次采样时刻,
Ttar为所述车室内温度的目标值,
Figure FDA0002484721980000055
为第k次采样时刻的第i次所述子时域的所述电池系统寿命的衰减,
Pbat(k+i|k)为第k次采样时刻的第i次所述子时域的所述电池系统总能耗,
(Tcab(k+i|k)-Ttar(k+i))2为第k次采样时刻的第i次所述子时域的所述车室内温度与所述车室内温度的目标值的偏差。
10.如权利要求9所述的延长电动汽车电池寿命的方法,其特征在于,所述算法求解步骤包括:
步骤S1:根据所述暖通空调系统的运行状态将其工作区间划分为L个子空间设置为:Ω={Ω1,Ω2,...,ΩL};
每个所述子区间都对应一个平衡状态,第j个所述子空间Ωj对应的所述平衡状态设置为:
Figure FDA0002484721980000061
在所述平衡状态附近将所述控制系统模型线性化展开,则获得第j个所述子空间Ωj的线性近似模型Θj
x(k+1)=Ajx(k)+Bju(k)+Cjd(k),
y(k)=Djx(k)+Eju(k)+Fjd(k),
j=1,2,...L,
其中,
x(k)为第k次采样时刻的所述状态变量,
u(k)为第k次采样时刻的所述输入控制变量,
d(k)为第k次采样时刻的所述外界干扰变量,
Aj、Bj、Cj、Dj、Ej和Fj为所述Θj的系统矩阵,
在L个所述子空间的所述平衡状态附近均进行线性化得到L个所述子空间的所述线性近似模型的模型集,所述模型集设置为:
Θ={Θ1,Θ2,...,ΘL};
步骤S2:根据采样时刻时的所述控制系统模型的所述状态变量、所述输入控制变量和所述外界干扰变量所属于的所述子空间,在所述模型集中选择所述子空间对应的所述线性近似模型作为计算线性模型以替换所述控制系统模型;
步骤S3:建立所述控制系统模型的约束如下:
Figure FDA0002484721980000079
用向量形式表示为:
Figure FDA0002484721980000071
其中,
k为采样时刻,
i为第k次采样时刻的所述子时域的序次,
Figure FDA0002484721980000072
为所述
Figure FDA0002484721980000073
的最小值,
Figure FDA0002484721980000074
为所述
Figure FDA0002484721980000075
的最大值,
Tsup.min为所述Tsup的最小值,Tsup.max为所述Tsup的最大值,
Pbat.max为所述电池系统总能耗的最大值,
Pem.max为所述电机驱动功率的最大值,
Pc.max为所述电动汽车的压缩机能耗的最大值,
Pf.min为所述电动汽车的鼓风机能耗的最小值,
Pf.max为所述电动汽车的鼓风机能耗的最大值;
步骤S4:将所述状态变量的初始值设置为当前采样时刻的所述车室内温度的测量值,根据所述目标函数求解所述计算线性模型,得到所述第一时域内所述控制系统模型的最优控制输入变量序列,表示为:
Figure FDA0002484721980000076
步骤S5:将所述
Figure FDA0002484721980000077
的第一个所述输入控制变量设置为所述最优输入控制变量,表述为:
Figure FDA0002484721980000078
CN202010387808.5A 2020-05-09 2020-05-09 一种延长电动汽车电池寿命的方法 Pending CN111562741A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010387808.5A CN111562741A (zh) 2020-05-09 2020-05-09 一种延长电动汽车电池寿命的方法
PCT/CN2021/092653 WO2021228019A1 (zh) 2020-05-09 2021-05-10 一种延长电动汽车电池寿命的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010387808.5A CN111562741A (zh) 2020-05-09 2020-05-09 一种延长电动汽车电池寿命的方法

Publications (1)

Publication Number Publication Date
CN111562741A true CN111562741A (zh) 2020-08-21

Family

ID=72070955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010387808.5A Pending CN111562741A (zh) 2020-05-09 2020-05-09 一种延长电动汽车电池寿命的方法

Country Status (2)

Country Link
CN (1) CN111562741A (zh)
WO (1) WO2021228019A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113147321A (zh) * 2021-04-29 2021-07-23 重庆大学 一种车载空调与可再生制动协调控制方法
WO2021228019A1 (zh) * 2020-05-09 2021-11-18 上海交通大学 一种延长电动汽车电池寿命的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033752A (zh) * 2011-09-30 2013-04-10 吴昌旭 电动车电池寿命预测方法以及延长方法
CN104298191A (zh) * 2014-08-21 2015-01-21 上海交通大学 智能建筑中基于热量预测管理的能耗控制方法
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN105082937A (zh) * 2015-07-23 2015-11-25 北汽福田汽车股份有限公司 纯电动汽车的空调控制方法、系统及纯电动汽车
US9535480B2 (en) * 2013-11-26 2017-01-03 Nec Corporation Power coordination system for hybrid energy storage system
CN110103775A (zh) * 2019-06-03 2019-08-09 江阴市辉龙电热电器有限公司 一种电动汽车动力电池温度控制装置及方法
CN111261973A (zh) * 2020-01-19 2020-06-09 重庆大学 基于模型预测控制的电动汽车整车电池热管理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254174B (zh) * 2019-07-08 2022-10-25 华南理工大学 一种基于信息融合的电动汽车热管理系统
CN111562741A (zh) * 2020-05-09 2020-08-21 上海交通大学 一种延长电动汽车电池寿命的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033752A (zh) * 2011-09-30 2013-04-10 吴昌旭 电动车电池寿命预测方法以及延长方法
US9535480B2 (en) * 2013-11-26 2017-01-03 Nec Corporation Power coordination system for hybrid energy storage system
CN104298191A (zh) * 2014-08-21 2015-01-21 上海交通大学 智能建筑中基于热量预测管理的能耗控制方法
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN105082937A (zh) * 2015-07-23 2015-11-25 北汽福田汽车股份有限公司 纯电动汽车的空调控制方法、系统及纯电动汽车
CN110103775A (zh) * 2019-06-03 2019-08-09 江阴市辉龙电热电器有限公司 一种电动汽车动力电池温度控制装置及方法
CN111261973A (zh) * 2020-01-19 2020-06-09 重庆大学 基于模型预测控制的电动汽车整车电池热管理方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DANDAN RONG, BO YANG, CAILIAN CHEN: "Model Predictive Climate Control of Electric Vehicles for Improved Battery Lifetime", 《2019 CHINESE AUTOMATION CONGRESS (CAC)》 *
全国勘察设计注册工程师公用设备专业管理委会员: "《全国勘察设计注册公用设备工程师暖通空调专业考试标准规范汇编》", 31 May 2004, 中国计划出版社 *
吴祯利: "电动车动力电池热管理与空调系统联合仿真及控制技术研究", 《中国优秀硕士学位论文全文数据库》 *
赵辰朝: "纯电动汽车高效蓄能空调系统的研究", 《第十二届全国电冰箱(柜)、空调器及压缩机学术交流大会论文集》 *
韩敬贤: "电动汽车空调系统的建模分析与优化", 《新能源汽车》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228019A1 (zh) * 2020-05-09 2021-11-18 上海交通大学 一种延长电动汽车电池寿命的方法
CN113147321A (zh) * 2021-04-29 2021-07-23 重庆大学 一种车载空调与可再生制动协调控制方法

Also Published As

Publication number Publication date
WO2021228019A1 (zh) 2021-11-18

Similar Documents

Publication Publication Date Title
Jeffers et al. Climate control load reduction strategies for electric drive vehicles in warm weather
CN113071506B (zh) 考虑座舱温度的燃料电池汽车能耗优化系统
US10696136B2 (en) Method for motor vehicle interior climate control
Xie et al. A Self-learning intelligent passenger vehicle comfort cooling system control strategy
CN202896215U (zh) 太阳能汽车空调系统
He et al. Stochastic model predictive control of air conditioning system for electric vehicles: Sensitivity study, comparison, and improvement
CN103587375A (zh) 用于优化汽车能耗的空调控制系统及方法
Wang et al. Eco-cooling control strategy for automotive air-conditioning system: Design and experimental validation
CN111562741A (zh) 一种延长电动汽车电池寿命的方法
CN105764736A (zh) 用于运行车辆的方法和装置
Wang et al. MPC-based precision cooling strategy (PCS) for efficient thermal management of automotive air conditioning system
CN113147321B (zh) 一种车载空调与可再生制动协调控制方法
CN105678429A (zh) 一种实现电动汽车空调系统多学科多目标优化的方法
Zhao et al. A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion
Ramsey et al. Flexible simulation of an electric vehicle to estimate the impact of thermal comfort on the energy consumption
CN115503559B (zh) 考虑空调系统的燃料电池汽车学习型协同能量管理方法
Zhang et al. Multiphysics modeling of energy intensity and energy efficiency of electric vehicle operation
Doshi et al. Modeling of thermal dynamics of a connected hybrid electric vehicle for integrated HVAC and powertrain optimal operation
Liebers et al. Using air walls for the reduction of open-door heat losses in buses
Rong et al. Model predictive climate control of electric vehicles for improved battery lifetime
CN116198519A (zh) 基于道路信息及空调热管理的电动车能耗预测方法及系统
CN105678024A (zh) 一种汽车乘客舱降温速率的获取方法
Kim et al. The effect of driver's behavior and environmental conditions on thermal management of electric vehicles
TW201932325A (zh) 自適應運艙空調系統與其控制方法及具有該系統的移動載具
Liu et al. A model predictive control-based energy management strategy considering electric vehicle battery thermal and cabin climate control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200821