WO2021228019A1 - 一种延长电动汽车电池寿命的方法 - Google Patents

一种延长电动汽车电池寿命的方法 Download PDF

Info

Publication number
WO2021228019A1
WO2021228019A1 PCT/CN2021/092653 CN2021092653W WO2021228019A1 WO 2021228019 A1 WO2021228019 A1 WO 2021228019A1 CN 2021092653 W CN2021092653 W CN 2021092653W WO 2021228019 A1 WO2021228019 A1 WO 2021228019A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
vehicle
sub
system model
energy consumption
Prior art date
Application number
PCT/CN2021/092653
Other languages
English (en)
French (fr)
Inventor
杨博
荣丹丹
陈彩莲
关新平
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2021228019A1 publication Critical patent/WO2021228019A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Definitions

  • This application relates to the technical field of electric vehicles, and in particular to a method for extending the battery life of electric vehicles.
  • the technical problem to be solved by this application is to overcome the problem of ignoring the important impact of the HVAC system on the energy consumption requirements of the entire vehicle, resulting in the inability to effectively improve the performance of the electric vehicle battery and extend the battery life.
  • this application provides a method for prolonging the battery life of an electric vehicle, which includes the following steps:
  • System modeling establish electric vehicle drive system model, car interior heat load system model, HVAC system model, battery system model;
  • Obtaining decision-making parameters obtaining the decision-making parameters of the electric vehicle in the first time domain.
  • the first time domain refers to the time period from the start of the electric vehicle to a later time, and the decision-making parameters include motor drive. Power, heat load inside the car, total energy consumption of the HVAC system, and auxiliary energy consumption of other electrical equipment in the car;
  • Obtaining and refreshing control decisions Based on the model predictive control method, obtaining the optimal control decision of the HVAC system, and applying the optimal control decision to the HVAC system, specifically includes the following sub-steps:
  • Variable definition define the state variables, input control variables, system output variables and external disturbance variables of the system control model of the control system
  • the objective function includes minimizing the life decay of the battery system, minimizing the total energy consumption of the battery system, and the interior temperature of the electric vehicle is closest to the target set value;
  • Solving the control system model solving the control system model of the control system according to the objective function, taking the initial data at the current sampling time as the initial state of the control system model, the initial data including the cabin
  • the target value of temperature, the measured value of the vehicle interior temperature at the current moment, and the operating state of the HVAC system are solved by using a predictive control algorithm based on multiple models to solve the control system model;
  • Realize optimal control apply the optimal input control variable obtained through the algorithm solving step to the HVAC system; at the next sampling time of the current sampling time, obtain the new external disturbance variable and the state Variable, repeat the step of obtaining decision parameters and the steps of obtaining and refreshing the control decision.
  • the battery system model is the only energy storage module and power source of the electric vehicle.
  • the refrigeration in the technical solution of the present application means that the HVAC system is working in a cooling state.
  • the HVAC system is working in a heating state, the corresponding refrigeration should be understood as heating.
  • the establishment of the driving system model includes the following steps:
  • the driving resistance of the electric vehicle is obtained, and the driving resistance is obtained by the following method:
  • F roll is the rolling resistance of the electric vehicle during driving
  • F aero is the air resistance experienced by the electric vehicle during driving
  • F gr is the gradient resistance received by the electric vehicle during driving
  • m is the mass of the electric vehicle
  • g is the acceleration due to gravity
  • c 0 is the rolling resistance coefficient 1
  • c 1 is the rolling resistance coefficient 2
  • v car is the driving speed of the electric car
  • ⁇ air is the air density
  • C x is the air resistance coefficient
  • a x is the effective wind area of the electric vehicle
  • v wind is the wind speed relative to the driving direction of the electric vehicle, and ⁇ is the road gradient;
  • the motor drive power is obtained by the following method:
  • F tr is the driving force provided by the driving system of the electric vehicle
  • a is the acceleration of the electric vehicle
  • ⁇ m is the working efficiency of the drive system motor, and P em is the motor drive power.
  • heat load system model in the vehicle compartment is:
  • Q con is the heat load that enters the interior of the electric vehicle in the form of heat convection and heat conduction
  • Q rad is the heat load entering the vehicle compartment in the form of heat radiation
  • Q man is the heat load generated by the drivers and occupants in the vehicle compartment
  • Q int is the thermal load generated by the thermal inertia of the electrical equipment, seats, and instrument panel in the vehicle interior,
  • Q load is the thermal load in the vehicle compartment
  • Q hvac is the cooling capacity of the HVAC system
  • V air is the volume of air cooled by the HVAC system into the vehicle compartment
  • T c p is the specific heat capacity of air
  • T cab is the temperature in the vehicle compartment.
  • obtaining the Q con includes the following steps:
  • the outer surface sub-parts including a roof sub-part, a front car wall sub-part, a rear car wall sub-part, a ground sub-part, and a side car wall sub-part;
  • k i is the convective heat transfer coefficient of the i-th said outer surface sub-part
  • a i is the effective area of the i-th said outer surface sub-part
  • T col.i is the integrated surface temperature of the i-th said outer surface sub-part
  • the surface integrated temperature T col is obtained by the following equation:
  • T amb is the outside temperature of the electric vehicle
  • q is the solar radiation intensity received by the interior and exterior walls of the vehicle
  • ⁇ w is the heat radiation absorption coefficient of the interior and exterior walls of the vehicle
  • is the heat absorption efficiency of the interior and exterior walls of the vehicle.
  • obtaining the Q rad includes the following steps:
  • the outer glass sub-parts including a front windshield, a rear window, a left side glass, and a right side glass;
  • ⁇ i is the penetration coefficient of solar radiation through the i-th outer glass sub-part
  • q i is the solar radiation intensity received by the outer glass sub-part of the i-th block
  • F i is the effective area of the outer glass sub-part of the i-th block in the direct sun direction.
  • HVAC system model is:
  • T sup is the cooling temperature that the HVAC system can reach
  • P hvac is the total energy consumption of the HVAC system
  • P c is the compressor energy consumption of the electric vehicle
  • P f is the energy consumption of the blower of the electric vehicle
  • ⁇ 1 , ⁇ 2 and ⁇ 3 are respectively the energy consumption coefficient of the blower
  • ⁇ cop is the energy efficiency coefficient of the HVAC system.
  • P bat is the total energy consumption of the battery system
  • P aux is the auxiliary energy consumption of other electrical equipment in the electric vehicle of the electric vehicle, and the auxiliary energy consumption of other electrical equipment in the vehicle is a fixed value in the battery system model,
  • SoH is the health status of the battery system
  • SoC is the remaining power of the battery system
  • said obtaining decision parameters includes the following steps:
  • the Q load of the electric vehicle in each of the sub-time domains is obtained through the vehicle interior thermal load system model.
  • step of obtaining and refreshing the control decision further includes:
  • the state variable is defined as:
  • the system output variable is defined as:
  • the external interference variable is defined as:
  • the objective function is defined as:
  • N p is the number of the sub-time domains divided into the first time domain
  • T tar is the target value of the vehicle interior temperature
  • k) is the total energy consumption of the battery system in the i-th sub-time domain at the k-th sampling moment
  • k)-T tar (k+i)) 2 is the target value of the vehicle interior temperature and the vehicle interior temperature in the i-th sub-time domain at the k-th sampling time The deviation.
  • the algorithm solving step includes:
  • Each of the sub-intervals corresponds to a balance state, and the balance state corresponding to the j-th subspace ⁇ j is set as:
  • x(k+1) A j x(k)+B j u(k)+C j d(k),
  • x(k) is the state variable at the kth sampling time
  • u(k) is the input control variable at the kth sampling time
  • d(k) is the external disturbance variable at the kth sampling moment
  • a j , B j , C j , D j , E j and F j are the system matrices of ⁇ j,
  • Linearization is performed near the equilibrium states of the L subspaces to obtain a model set of the linear approximation model of the L subspaces, and the model set is set as:
  • ⁇ 1 , ⁇ 2 ,..., ⁇ L ⁇ ;
  • Step S2 According to the subspace to which the state variable, the input control variable and the external disturbance variable of the control system model belong at the sampling moment, select the subspace corresponding to the subspace in the model set
  • the linear approximation model is used as a computational linear model to replace the control system model
  • Step S3 The constraints for establishing the control system model are as follows:
  • i is the order of the sub-time domain at the k-th sampling moment
  • T sup.min is the minimum value of the T sup
  • T sup.max is the maximum value of the T sup
  • P bat.max is the maximum value of the total energy consumption of the battery system
  • P em.max is the maximum value of the motor drive power
  • P c.max is the maximum energy consumption of the compressor of the electric vehicle
  • P f.min is the minimum energy consumption of the blower of the electric vehicle
  • P f.max is the maximum energy consumption of the blower of the electric vehicle
  • Step S4 The initial value of the state variable is set to the measured value of the vehicle interior temperature at the current sampling moment, and the calculation linear model is solved according to the objective function to obtain the control system model in the first time domain
  • the optimal control input variable sequence of is expressed as:
  • Step S5 Put the The first input control variable of is set to the optimal input control variable, expressed as:
  • This application comprehensively considers the drive system and the HVAC system of the electric vehicle, and dynamically adjusts the performance of the HVAC system according to the energy consumption requirements of the drive system of the vehicle to achieve two performances.
  • the coordinated optimization control between the power consumption systems not only ensures the comfort of the drivers and passengers in the car, but also relieves the discharge pressure of the battery system caused by the driver’s aggressive driving behavior, thereby improving the discharge performance of the battery system , To extend the life of the battery system;
  • This application adopts a multi-model predictive control method, which reduces the complexity of the control algorithm, realizes the online solution of the control algorithm, and has the advantages of low calculation amount and high control accuracy.
  • Fig. 1 is a flowchart of the basic steps of a preferred embodiment of the present application.
  • Fig. 1 is a flowchart of the basic steps of a preferred embodiment of the present application.
  • refrigeration means that the HVAC system is working in a cooling state.
  • the HVAC system is working in a heating state, the corresponding cooling should be understood as heating.
  • a method for extending battery life disclosed in the present application is designed to design a control strategy based on a model predictive control algorithm for an electric vehicle HVAC system during driving, including the following steps:
  • Step 1 System modeling, establish the drive system model of the electric vehicle, the interior heat load system model, the HVAC system model, and the battery system model;
  • the battery system model is the only energy storage module and power source for electric vehicles; attenuation of battery system life and decline in battery system capacity for aging It is related to the remaining power SoC of the current battery system and the battery discharge power required by the vehicle, that is, the total energy consumption of the battery system P bat ;
  • the driving system and the HVAC system are the main energy consumption parts of electric vehicles;
  • the driving system is mainly through the electric motor Convert the electrical energy of the battery system into mechanical energy, and drive the vehicle to drive at the desired speed and acceleration through the transmission;
  • the HVAC system uses cooling and heating functions to ensure the thermal comfort of the vehicle, and meet the requirements of the drivers and passengers on temperature and humidity.
  • the demand for ventilation the temperature inside the vehicle depends on the heat load Q load received by the vehicle and the cooling capacity Q hvac of the HVAC system;
  • the establishment of the drive system model includes the following steps:
  • the driving resistance is obtained by the following method:
  • F roll is the rolling resistance experienced by the electric vehicle during driving
  • F aero is the air resistance experienced by electric vehicles during driving
  • F gr is the gradient resistance received by the electric vehicle during driving
  • m is the mass of the electric vehicle
  • g is the acceleration of gravity
  • c 0 is the rolling resistance coefficient 1
  • c 1 is the rolling resistance coefficient 2
  • v car is the driving speed of the electric car
  • ⁇ air is the air density
  • C x is the air resistance coefficient
  • a x is the effective wind area of the electric vehicle
  • v wind is the wind speed relative to the driving direction of the electric vehicle, and ⁇ is the road gradient;
  • the motor drive power of the electric vehicle.
  • the motor converts electrical energy into mechanical energy.
  • the transmission device the vehicle is pushed to overcome the resistance and drive at the desired speed and acceleration.
  • the motor drive power is obtained by the following method:
  • F tr is the driving force provided by the drive system of electric vehicles
  • a is the acceleration of the electric vehicle
  • ⁇ m is the working efficiency of the drive system motor, and P em is the motor drive power.
  • the thermal load on the cabin includes two categories.
  • the first type is the heat load of the external environment on the vehicle, mainly in the form of solar radiation, heat convection, and heat conduction. This part of the heat load mainly depends on the external weather and the material and structure of the vehicle itself; the second type comes from the heat inside the vehicle.
  • the load mainly includes the thermal load generated by the drivers and passengers in the car and the thermal load generated by the thermal inertia of the electrical equipment, seats, and dashboard in the car.
  • the heat load system model in the vehicle compartment is:
  • Q con is the heat load that enters the interior of the electric vehicle in the form of heat convection and heat conduction
  • Q rad is the heat load that enters the vehicle interior in the form of heat radiation
  • Q man is the heat load generated by the drivers and passengers in the car
  • Q int is the thermal load generated by the thermal inertia of the electrical equipment, seats, and dashboard in the car,
  • V air is the volume of air cooled by the HVAC system into the car interior
  • T c p is the specific heat capacity of air
  • T cab is the temperature in the vehicle interior.
  • Q con Due to the temperature difference between the interior of the cabin and the outside air, heat convection and heat conduction will occur inside and outside the cabin, which will bring a thermal load to the cabin, so Q con can be calculated by the following steps:
  • k i is the convective heat transfer coefficient of the i-th outer surface sub-part
  • a i is the effective area of the i-th external surface sub-part
  • T col.i is the comprehensive surface temperature of the i-th external surface sub-part
  • T amb is the outside temperature of the electric vehicle
  • q is the solar radiation intensity received by the interior and exterior walls of the vehicle
  • ⁇ w is the heat radiation absorption coefficient of the interior and exterior walls of the vehicle
  • is the heat absorption efficiency of the interior and exterior walls of the vehicle.
  • the heat load Q rad entering the vehicle cabin in the form of heat radiation can be calculated by the following steps:
  • the outer glass sub-parts include the front windshield, the rear window, the left side glass, and the right side glass;
  • ⁇ i is the penetration coefficient of solar radiation through the i-th outer glass sub-part
  • q i is the solar radiation intensity received by the i-th outer glass part
  • F i is the effective area of the i-th outer glass sub-part in the direct sun direction.
  • HVAC system model is:
  • T sup is the cooling temperature that the HVAC system can reach
  • P hvac is the total energy consumption of the HVAC system
  • P c is the compressor energy consumption of electric vehicles
  • P f is the energy consumption of the blower of the electric vehicle
  • ⁇ 1 , ⁇ 2 and ⁇ 3 are the energy consumption coefficients of the blower respectively, which are related to the parameters of the HVAC system,
  • ⁇ cop is the energy efficiency coefficient of the HVAC system
  • the electric vehicle battery model is:
  • P bat is the total energy consumption of the battery system
  • P aux is the auxiliary energy consumption of other electrical equipment in the electric vehicle, and the auxiliary energy consumption of other electrical equipment in the car is a fixed value in the battery system model.
  • SoH is the health status of the battery system
  • SoC is the remaining power of the battery system
  • Step 2 Obtain the decision-making parameters: Obtain the decision-making parameters of the electric vehicle in the first time domain.
  • the first time domain refers to the time period between the start of the electric vehicle and a later time.
  • the decision-making parameters include motor drive power and interior heating. Load, total energy consumption of HVAC system, auxiliary energy consumption of other electrical equipment in the car;
  • N p The number of sub-time domains is N p , marked as 1, 2, 3, ... N p ;
  • the road conditions and vehicle speed trajectory in the first time domain are obtained from the road traffic information obtained through vehicle-to-vehicle communication (V2V) and vehicle-to-base station communication (V2I), and the motor drive power of electric vehicles in each sub-time domain is obtained through the drive system model :
  • Step 3 Acquisition and update of control decisions: Based on the model predictive control method, the optimal control decision of the HVAC system is obtained, and the optimal control decision is applied to the HVAC system, which specifically includes the following steps:
  • Variable definition define the state variables, input control variables, system output variables and external disturbance variables of the system control model of the control system
  • the temperature inside the vehicle is the state variable of the system, which is defined as:
  • the cooling temperature and cooling air flow of the HVAC system are the control input variables of the control system model, which are defined as:
  • the energy consumption of the HVAC system that is, the energy consumption of compressors and blowers, is the output variable of the system, which is defined as:
  • the objective function includes minimizing the life decay of the battery system, minimizing the total energy consumption of the battery system, and the interior temperature of the electric vehicle is closest to the target set value;
  • the objective function is defined as:
  • N p is the number of sub-time domains that divide the first time domain
  • T tar is the target value of the vehicle interior temperature
  • k) is the total energy consumption of the battery system in the i-th sub-time domain at the k-th sampling moment
  • k)-T tar (k+i)) 2 is the deviation between the vehicle interior temperature of the electric vehicle in the i-th sub-time domain at the k-th sampling time and the target value of the vehicle interior temperature;
  • Algorithm solution Solve the control system model of the control system according to the objective function, and take the initial data at the current sampling time as the initial state of the control system model.
  • the initial data includes the target value of the vehicle interior temperature, the measured value of the vehicle interior temperature at the current moment, and the warmth
  • the operating state of the ventilation and air-conditioning system uses a predictive control algorithm based on multiple models to solve the control system model; specifically, it includes the following steps:
  • Each sub-interval corresponds to an equilibrium state
  • the equilibrium state corresponding to the j-th subspace ⁇ j is set as:
  • x(k+1) A j x(k)+B j u(k)+C j d(k),
  • x(k) is the state variable at the kth sampling time
  • u(k) is the input control variable at the kth sampling time
  • d(k) is the external disturbance variable at the kth sampling moment
  • a j , B j , C j , D j , E j and F j are the system matrices of ⁇ j,
  • the model set is set as:
  • ⁇ 1 , ⁇ 2 ,..., ⁇ L ⁇ ;
  • Step S2 According to the state variables of the control system model at the sampling time, the input control variables and the subspace to which external disturbance variables belong, select the linear approximate model corresponding to the subspace in the model set as the calculation linear model to replace the control system model;
  • Step S3 Considering the constraints on the minimum ventilation and cooling temperature and the physical constraints of the actuator during the actual operation of the existing HVAC system, the constraints for establishing the control system model are as follows:
  • i is the order of the sub-time domain at the kth sampling moment
  • the minimum value of is determined by the HVAC system that needs to meet the minimum ventilation requirements of the cabin,
  • the maximum value of is determined by the maximum power of the blower of the electric vehicle,
  • T sup.min is the minimum value of the T sup , which is determined by the evaporator capacity of the electric vehicle,
  • T sup.max is the maximum value of the T sup , which is determined by the evaporator capacity of the electric vehicle,
  • P bat.max is the maximum value of the total energy consumption of the battery system
  • P em.max is the maximum value of the motor drive power
  • P c.max is the maximum energy consumption of the compressor of the electric vehicle
  • P f.min is the minimum energy consumption of the blower of the electric vehicle
  • P f.max is the maximum energy consumption of the blower of the electric vehicle
  • the real measured value T cab (k) of the cabin temperature at the current time is obtained as the initial state variable of the system, and the linear model predictive control problem is solved according to the objective function.
  • the specific form of the linear model predictive control problem is:
  • the objective function is defined as:
  • x(k+1) A j x(k)+B j u(k)+C j d(k),
  • Step S4 Set the initial value of the state variable to the measured value of the vehicle interior temperature at the current sampling time, and calculate the linear model according to the objective function to obtain the optimal control input variable sequence of the control system model in the first time domain, expressed as:
  • Step S5 Change The first input control variable of is set as the optimal input control variable, which is expressed as:
  • Realize optimal control apply the optimal input control variable obtained through the algorithm solution step to the HVAC system; at the next sampling moment of the current sampling moment, that is, the k+1 sampling moment, obtain new external disturbance variables and state variables, Repeat steps 2 and 3.
  • this embodiment aims at the design model predictive control algorithm of the electric vehicle HVAC system, and adjusts the dynamic performance of the HVAC system according to the energy consumption demand of the vehicle drive system, and realizes the energy consumption system.
  • the coordinated optimization control not only ensures the comfort of the drivers and passengers in the car, but also relieves the discharge pressure of the battery caused by the driver's aggressive driving behavior, thereby improving the discharge performance of the battery and extending the battery life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种延长电动汽车电池寿命的方法,涉及电动汽车技术领域,包括以下步骤:系统建模;获取决策参数;控制决策的获取与刷新。延长电动汽车电池寿命的方法不仅具有控制算法的复杂度低的优点,还能够根据车辆的驱动系统能耗需求,动态调节暖通空调系统的性能,实现两个系统能耗之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,延长电池系统的寿命。

Description

一种延长电动汽车电池寿命的方法 技术领域
本申请涉及电动汽车技术领域,尤其涉及一种延长电动汽车电池寿命的方法。
背景技术
面对日益突出的能源紧张和环境污染问题,电动汽车由于其节能、环保和使用成本低等优点被视为汽车产业未来的发展方向。但电动汽车续航里程短、充电难,电池寿命短、电池价格高昂等问题也制约了电动汽车产业的发展。目前,在针对提升电动汽车电池性能和延长电池寿命的研究中,往往都是考虑了驱动系统的动态性能对电池性能的影响,大多忽视了暖通空调系统对整车能耗的重要影响。但在电动车行驶过程中,暖通空调系统的能耗较大,尤其在冬夏季的能耗占比将高达40%,有时甚至会超过驱动系统能耗。如果没有重视暖通空调系统这一最大的附属能耗系统,或只对其进行简单的假设,无法达到最优的控制效果,无法有效提升电动汽车电池性能和延长电池寿命。
因此,本领域的技术人员致力于开发一种延长电动汽车电池寿命的方法,能够综合驱动系统和暖通空调系统,达到对电池寿命的最优控制。
发明内容
有鉴于现有技术的上述缺陷,本申请所要解决的技术问题是克服因忽略暖通空调系统对整车能耗需求的重要影响而导致无法有效提升电动汽车电池性能和延长电池寿命的问题,提出一种延长电动汽车电池寿命的方法。
为实现上述目的,本申请提供了一种延长电动汽车电池寿命的方法,包括以下步骤:
系统建模:建立电动汽车的驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
获取决策参数:获取第一时域内所述电动汽车的决策参数,所述第一时域是指所述电动汽车由开始时刻至以后某一时刻之间的时间段,所述决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将所述最优控制决策作用于所述暖通空调系统,具体包括如下子步骤:
变量定义:定义控制系统的系统控制模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
建立目标函数:所述目标函数包括最小化电池系统的寿命衰退、最小化所述电池 系统总能耗、所述电动汽车的车室内温度最接近于目标设定值;
求解所述控制系统模型:根据所述目标函数求解所述控制系统的所述控制系统模型,以当前采样时刻的初始数据作为所述控制系统模型的初始状态,所述初始数据包括所述车室内温度的目标值、当前时刻的所述车室内温度的测量值和所述暖通空调系统的运行状态,采用基于多模型的预测控制算法求解所述控制系统模型;
实现最优控制:将通过所述算法求解步骤获得的最优输入控制变量作用于所述暖通空调系统;在当前采样时刻的下一个采样时刻,获取新的所述外界干扰变量和所述状态变量,重复所述获取决策参数步骤和所述控制决策的获取与刷新步骤。
本申请的其中一个技术方案中,所述电池系统模型是所述电动汽车唯一的储能模块和动力来源。
为了便于描述,本申请技术方案中所述制冷是指所述暖通空调系统工作在制冷状态,当所述暖通空调系统工作在制热状态时,对应的所述制冷应理解为制热。
进一步地,所述驱动系统模型的建立包括如下步骤:
获得所述电动汽车的行驶阻力,所述行驶阻力通过如下方法获得:
Figure PCTCN2021092653-appb-000001
Figure PCTCN2021092653-appb-000002
F gr=mg·sin(α),
其中,
F roll为所述电动汽车行驶中受到的滚动阻力,
F aero为所述电动汽车行驶中受到的空气阻力,
F gr为所述电动汽车行驶中受到的坡度阻力,
m为所述电动汽车的质量,g为重力加速度,
c 0为滚动阻力系数1,c 1为滚动阻力系数2,
v car为所述电动汽车的行驶速度,
ρ air为空气密度,C x是为空气阻力系数,
A x为所述电动汽车的有效受风面积,
v wind为相对于所述电动汽车行驶方向的风速,α为道路坡度;
获得所述电机驱动功率,所述电机驱动功率通过如下方法获得:
F tr=F roll+F aero+F gr+ma,
Figure PCTCN2021092653-appb-000003
其中,
F tr为所述电动汽车的驱动系统提供的驱动力,
a为所述电动汽车的加速度,
η m为所述驱动系统电动机的工作效率,P em为所述电机驱动功率。
进一步地,所述车室内热负荷系统模型为:
Q load=Q con+Q rad+Q man+Q int
Figure PCTCN2021092653-appb-000004
其中,
Q con为通过热对流和热传导的形式进入所述电动汽车的车室内的热负荷,
Q rad为通过热辐射的形式进入所述车室内的热负荷,
Q man为所述车室内驾乘人员产生的热负荷,
Q int为所述车室内电气设备、座椅、仪表板的热惯性产生的热负荷,
Q load为所述车室内热负荷,
Q hvac为所述暖通空调系统的制冷量,
V air为通过所述暖通空调系统制冷后的空气进入所述车室内的体积,
c p为空气的比热容,T cab为所述车室内的温度。
进一步地,获取所述Q con包括如下步骤:
将所述电动汽车外表面分为互相独立的外表子部分,所述外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分;
通过以下等式获得所述Q con
Figure PCTCN2021092653-appb-000005
其中,
k i为第i个所述外表子部分的对流换热系数,
A i为第i个所述外表子部分的有效面积,
T col.i为第i个所述外表子部分的表面综合温度;
所述表面综合温度T col通过以下等式获得:
Figure PCTCN2021092653-appb-000006
其中,
T amb为所述电动汽车的外界温度,
q为所述车室内外壁受到的太阳辐射强度,
α w为所述车室内外壁热辐射吸收系数,
μ为所述车室内外壁的吸热效率。
进一步地,获得所述Q rad包括如下步骤:
将所述电动汽车外表玻璃分为互相独立的外玻璃子部分,所述外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃;
通过以下等式获得所述Q rad
Figure PCTCN2021092653-appb-000007
其中,
η i为太阳辐射穿过第i块所述外玻璃子部分的透入系数,
q i为第i块所述外玻璃子部分受到的太阳辐射强度,
F i为第i块所述外玻璃子部分在太阳直射方向的有效面积。
进一步地,所述暖通空调系统模型为:
Figure PCTCN2021092653-appb-000008
P hvac=P c+P f
Figure PCTCN2021092653-appb-000009
Figure PCTCN2021092653-appb-000010
其中,
Figure PCTCN2021092653-appb-000011
为通过所述暖通空调系统制冷后的空气进入所述车室内的质量,
T sup为所述暖通空调系统所能达到的制冷温度,
P hvac为所述暖通空调系统总能耗,
P c为所述电动汽车的压缩机能耗,
P f为所述电动汽车的鼓风机能耗,β 1,β 2和β 3分别是所述鼓风机的能耗系数,
η cop为所述暖通空调系统的能效系数。
进一步地,所述电池系统模型为:
P bat=P em+P hvac+P aux
Figure PCTCN2021092653-appb-000012
其中,
P bat为所述电池系统总能耗,
P aux为所述电动汽车的所述车内其他电气设备的附属能耗,所述车内其他电气设备的附属能耗在所述电池系统模型中为定值,
SoH为所述电池系统的健康状态,
SoC为所述电池系统的剩余电量,
Figure PCTCN2021092653-appb-000013
为所述电池系统寿命的衰减。
进一步地,所述获取决策参数包括如下步骤:
将当前采样时刻设置为所述开始时刻,将所述第一时域划分为若干子时域;
根据所述第一时域内的道路状况和车辆速度轨迹,通过所述驱动系统模型,获得各个所述子时域内所述电动汽车的所述电机驱动功率;
根据所述第一时域内的外界天气状况,获得各个所述子时域内所述电动汽车的所述外界温度;
通过所述车室内热负荷系统模型获得各个所述子时域内所述电动汽车的所述Q load
进一步地,所述控制决策的获取与刷新步骤还包括:
所述状态变量定义为:
x=T cab
所述输入控制变量定义:
Figure PCTCN2021092653-appb-000014
所述系统输出变量定义为:
Figure PCTCN2021092653-appb-000015
所述外界干扰变量定义为:
Figure PCTCN2021092653-appb-000016
所述目标函数定义为:
Figure PCTCN2021092653-appb-000017
其中,
N p为将所述第一时域划分的所述子时域的数量;
k为第k次采样时刻,
T tar为所述车室内温度的目标值,
Figure PCTCN2021092653-appb-000018
为第k次采样时刻的第i次所述子时域的所述电池系统寿命的衰减,
P bat(k+i|k)为第k次采样时刻的第i次所述子时域的所述电池系统总能耗,
(T cab(k+i|k)-T tar(k+i)) 2为第k次采样时刻的第i次所述子时域的所述车室内温度与所述车室内温度的目标值的偏差。
进一步地,所述算法求解步骤包括:
步骤S1:根据所述暖通空调系统的运行状态将其工作区间划分为L个子空间设置为:Ω={Ω 12,…,Ω L};
每个所述子区间都对应一个平衡状态,第j个所述子空间Ω j对应的所述平衡状态设置为:
Figure PCTCN2021092653-appb-000019
在所述平衡状态附近将所述控制系统模型线性化展开,则获得第j个所述子空间Ω j的线性近似模型Θ j:
x(k+1)=A jx(k)+B ju(k)+C jd(k),
y(k)=D jx(k)+E ju(k)+F jd(k),
j=1,2,…L,
其中,
x(k)为第k次采样时刻的所述状态变量,
u(k)为第k次采样时刻的所述输入控制变量,
d(k)为第k次采样时刻的所述外界干扰变量,
A j、B j、C j、D j、E j和F j为所述Θ j的系统矩阵,
在L个所述子空间的所述平衡状态附近均进行线性化得到L个所述子空间的所述线性近似模型的模型集,所述模型集设置为:
Θ={Θ 12,…,Θ L};
步骤S2:根据采样时刻时的所述控制系统模型的所述状态变量、所述输入控制变量和所述外界干扰变量所属于的所述子空间,在所述模型集中选择所述子空间对应的所述线性近似模型作为计算线性模型以替换所述控制系统模型;
步骤S3:建立所述控制系统模型的约束如下:
Figure PCTCN2021092653-appb-000020
用向量形式表示为:
Figure PCTCN2021092653-appb-000021
其中,
k为采样时刻,
i为第k次采样时刻的所述子时域的序次,
Figure PCTCN2021092653-appb-000022
为所述
Figure PCTCN2021092653-appb-000023
的最小值,
Figure PCTCN2021092653-appb-000024
为所述
Figure PCTCN2021092653-appb-000025
的最大值,
T sup.min为所述T sup的最小值,T sup.max为所述T sup的最大值,
P bat.max为所述电池系统总能耗的最大值,
P em.max为所述电机驱动功率的最大值,
P c.max为所述电动汽车的压缩机能耗的最大值,
P f.min为所述电动汽车的鼓风机能耗的最小值,
P f.max为所述电动汽车的鼓风机能耗的最大值;
步骤S4:将所述状态变量的初始值设置为当前采样时刻的所述车室内温度的测量值,根据所述目标函数求解所述计算线性模型,得到所述第一时域内所述控制系统模型的最优控制输入变量序列,表示为:
Figure PCTCN2021092653-appb-000026
步骤S5:将所述
Figure PCTCN2021092653-appb-000027
的第一个所述输入控制变量设置为所述最优输入控制变量,表 述为:
Figure PCTCN2021092653-appb-000028
与现有技术相比,本申请具有如下有益技术效果:
1、本申请将所述电动汽车的所述驱动系统和所述暖通空调系统综合考虑,根据车辆的所述驱动系统能耗需求,动态调节所述暖通空调系统的性能,实现两个能耗系统之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,也缓解了驾驶人员激进的驾驶行为给所述电池系统带来的放电压力,从而提升所述电池系统的放电性能,延长所述电池系统的寿命;
2、本申请采用基于多模型预测控制方法,降低了控制算法的复杂度,实现了控制算法的在线求解,具有计算量低,控制精度高的优点。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是本申请的一个较佳实施例的基本步骤流程图。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本申请并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图所示,图1是本申请的一个较佳实施例的基本步骤流程图。
为了便于描述,本申请技术方案中制冷是指暖通空调系统工作在制冷状态,当暖通空调系统工作在制热状态时,对应的制冷应理解为制热。
如图1所示,本申请公开的一种延长电池寿命的方法,针对在行驶过程中的电动汽车暖通空调系统设计基于模型预测控制算法的控制策略,包括以下步骤:
步骤1:系统建模,建立电动汽车的驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
电池系统模型是电动汽车唯一的储能模块和动力来源;电池系统寿命的衰减和老化用电池系统容量的下降
Figure PCTCN2021092653-appb-000029
来表示,与当前电池系统的剩余电量SoC以及车辆所需的电池放电功率即电池系统总能耗P bat有关;驱动系统和暖通空调系统是电动汽车主 要的能耗部分;驱动系统主要通过电动机将电池系统的电能转化为机械能,通过传动装置推动车辆以期望的速度和加速度行驶;暖通空调系统是通过制冷和制热功能来保证车内的热舒适性,满足驾乘人员对于温度、湿度和通风的需求;车室内的温度取决于车辆受到的热负荷Q load和暖通空调系统的制冷量Q hvac
驱动系统模型的建立包括如下步骤:
获得电动汽车的行驶阻力,行驶阻力通过如下方法获得:
Figure PCTCN2021092653-appb-000030
Figure PCTCN2021092653-appb-000031
F gr=mg·sin(α),
其中,
F roll为电动汽车行驶中受到的滚动阻力,
F aero为电动汽车行驶中受到的空气阻力,
F gr为电动汽车行驶中受到的坡度阻力,
m为电动汽车的质量,g为重力加速度,
c 0为滚动阻力系数1,c 1为滚动阻力系数2,
v car为电动汽车的行驶速度,
ρ air为空气密度,C x是为空气阻力系数,
A x为电动汽车的有效受风面积,
v wind为相对于电动汽车行驶方向的风速,α为道路坡度;
获得电动汽车的电机驱动功率,电动机将电能转化为机械能,通过传动装置,推动车辆克服阻力,并按照期望的速度和加速度行驶,电机驱动功率通过如下方法获得:
F tr=F roll+F aero+F gr+ma,
Figure PCTCN2021092653-appb-000032
其中,
F tr为电动汽车的驱动系统提供的驱动力,
a为电动汽车的加速度,
η m为驱动系统电动机的工作效率,P em为电机驱动功率。
车辆在行驶过程中,车室所受到的热负荷包括两大类。第一类是外界环境对车辆 的热负荷,主要通过太阳辐射和热对流、热传导的形式,这部分热负荷主要取决于外部天气和车辆本身的材料和结构;第二类来自于车辆内部的热负荷,主要包括车内驾乘人员产生的热负荷和车内电气设备、座椅、仪表板等由于热惯性产生的热负荷。
车室内热负荷系统模型为:
Q load=Q con+Q rad+Q man+Q int
Figure PCTCN2021092653-appb-000033
其中,
Q con为通过热对流和热传导的形式进入电动汽车的车室内的热负荷,
Q rad为通过热辐射的形式进入车室内的热负荷,
Q man为车室内驾乘人员产生的热负荷,
Q int为车室内电气设备、座椅、仪表板的热惯性产生的热负荷,
Q lodd为车室内热负荷,
Q hvvc为暖通空调系统的制冷量,
V air为通过暖通空调系统制冷后的空气进入车室内的体积,
c p为空气的比热容,T cab为车室内的温度。
由于车舱内部与外界空气的温度差,车舱内外会发生热对流和热传导作用,从而给车室带来热负荷,所以Q con可以通过如下步骤计算:
将电动汽车外表面分为互相独立的外表子部分,外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分;
通过以下等式获得Q con
Figure PCTCN2021092653-appb-000034
其中,
k i为第i个外表子部分的对流换热系数,
A i为第i个外表子部分的有效面积,
T col.i为第i个外表子部分的表面综合温度;
车身外部各部分结构由于受到太阳辐射的影响,其外表面的温度会升高,因此表面综合温度T col通过以下等式获得:
Figure PCTCN2021092653-appb-000035
其中,
T amb为电动汽车的外界温度,
q为车室内外壁受到的太阳辐射强度,
α w为车室内外壁热辐射吸收系数,
μ为车室内外壁的吸热效率。
由于不同位置的玻璃受到的太阳辐射强度有很大差别,所以通过热辐射的形式进入车室内的热负荷Q rad可以通过如下步骤计算:
将电动汽车外表玻璃分为互相独立的外玻璃子部分,外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃;
通过以下等式获得Q rad
Figure PCTCN2021092653-appb-000036
其中,
η i为太阳辐射穿过第i块外玻璃子部分的透入系数,
q i为第i块外玻璃子部分受到的太阳辐射强度,
F i为第i块外玻璃子部分在太阳直射方向的有效面积。
汽车中暖通空调系统的作用是通过制冷、制热等功能来保证车内的热舒适性,满足驾乘人员对于温度、湿度和通风的需求,所以暖通空调系统模型为:
Figure PCTCN2021092653-appb-000037
P hvac=P c+P f
Figure PCTCN2021092653-appb-000038
Figure PCTCN2021092653-appb-000039
其中,
Figure PCTCN2021092653-appb-000040
为通过暖通空调系统制冷后的空气进入车室内的质量,
T sup为暖通空调系统所能达到的制冷温度,
P hvac为暖通空调系统总能耗,
P c为电动汽车的压缩机能耗,
P f为电动汽车的鼓风机能耗,
β 1,β 2和β 3分别是所述鼓风机的能耗系数,与所述暖通空调系统的参数有关,
η cop为暖通空调系统的能效系数,
电动汽车电池模型为:
P bat=P em+P hvac+P aux
Figure PCTCN2021092653-appb-000041
其中,
P bat为电池系统总能耗,
P aux为电动汽车的车内其他电气设备的附属能耗,车内其他电气设备的附属能耗在电池系统模型中为定值,
SoH为电池系统的健康状态,
SoC为电池系统的剩余电量,
Figure PCTCN2021092653-appb-000042
为电池系统寿命的衰减。
步骤2:获取决策参数:获取第一时域内电动汽车的决策参数,第一时域是指电动汽车由开始时刻至以后某一时刻之间的时间段,决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
将当前采样时刻设置为开始时刻,将第一时域划分为若干子时域,子时域的数量为N p,标记为1,2,3,…N p
通过车车通信(V2V)和车与基站通信(V2I)得到的道路交通信息中得到第一时域内的道路状况和车辆速度轨迹,通过驱动系统模型,获得各个子时域内电动汽车的电机驱动功率:
{P e(k+1|k),P e(k+2|k),P e(k+3|k),…,P e(k+N p|k)};
根据第一时域内的外界天气状况或者车外的传感器,获得各个子时域内电动汽车的外界温度:
{T amb(k+1|k),T amb(k+2|k),T amb(k+3|k),…,T amb(k+N p|k)};
通过车室内的传感器获得车室内的空气温度,通过车室内热负荷系统模型获得各个子时域内电动汽车的Q load
{Q load(k+1|k),Q load(k+2|k),Q load(k+3|k),…,Q load(k+N p|k)}。
步骤3:控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将最优控制决策作用于暖通空调系统,具体包括如下步骤:
变量定义:定义控制系统的系统控制模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
车室内的温度为系统的状态变量,其定义为:
x=T cab
暖通空调系统的制冷温度和制冷空气流量为控制系统模型的控制输入变量,其定义为:
Figure PCTCN2021092653-appb-000043
暖通空调系统的能耗即压缩机和鼓风机的能耗为系统输出变量其,其定义为:
Figure PCTCN2021092653-appb-000044
电机驱动功率、外界温度、车室内热负荷为控制系统模型的外部可测干扰,其定义为:
Figure PCTCN2021092653-appb-000045
建立目标函数:目标函数包括最小化电池系统的寿命衰退、最小化电池系统总能耗、电动汽车的车室内温度最接近于目标设定值;
目标函数定义为:
Figure PCTCN2021092653-appb-000046
其中,
N p为将第一时域划分的子时域的数量;
k为第k次采样时刻,
T tar为车室内温度的目标值,
Figure PCTCN2021092653-appb-000047
为第k次采样时刻的第i次子时域的电池系统寿命的衰减,
P bat(k+i|k)为第k次采样时刻的第i次子时域的电池系统总能耗,
(T cab(k+i|k)-T tar(k+i)) 2为第k次采样时刻的第i次子时域的电动汽车的车室内温度与车室内温度的目标值的偏差;
算法求解:根据目标函数求解控制系统的控制系统模型,以当前采样时刻的初始数据作为控制系统模型的初始状态,初始数据包括车室内温度的目标值、当前时刻的车室内温度的测量值和暖通空调系统的运行状态,采用基于多模型的预测控制算法求解控制系统模型;具体包括如下步骤:
步骤S1:根据暖通空调系统的运行状态将其工作区间划分为L个子空间设置为:Ω={Ω 12,…,Ω L};
每个子区间都对应一个平衡状态,第j个子空间Ω j对应的平衡状态设置为:
Figure PCTCN2021092653-appb-000048
在平衡状态附近将控制系统模型线性化展开,则获得第j个子空间Ω j的线性近似模型Θ j:
x(k+1)=A jx(k)+B ju(k)+C jd(k),
y(k)=D jx(k)+E ju(k)+F jd(k),
j=1,2,…L,
其中,
x(k)为第k次采样时刻的所述状态变量,
u(k)为第k次采样时刻的所述输入控制变量,
d(k)为第k次采样时刻的所述外界干扰变量,
A j、B j、C j、D j、E j和F j为所述Θ j的系统矩阵,
在L个子空间的平衡状态附近均进行线性化得到L个子空间的线性近似模型的模型集,模型集设置为:
Θ={Θ 12,…,Θ L};
步骤S2:根据采样时刻时的控制系统模型的状态变量、输入控制变量和外界干扰变量所属于的子空间,在模型集中选择子空间对应的线性近似模型作为计算线性模型以替换控制系统模型;
例如,如果
Figure PCTCN2021092653-appb-000049
那么采样时刻k的计算线性模型为Θ j,通过上述转化,将上述非线性模型预测控制问题转化为线性模型预测控制问题求解;
步骤S3:考虑现有暖通空调系统实际运行过程中对最小通风量和制冷温度的约束以及执行机构的物理约束,建立控制系统模型的约束如下:
Figure PCTCN2021092653-appb-000050
用向量形式表示为:
Figure PCTCN2021092653-appb-000051
其中,
k为采样时刻,
i为第k次采样时刻的子时域的序次,
Figure PCTCN2021092653-appb-000052
为所述
Figure PCTCN2021092653-appb-000053
的最小值,由所述暖通空调系统需满足车室最小通风量需求决定,
Figure PCTCN2021092653-appb-000054
为所述
Figure PCTCN2021092653-appb-000055
的最大值,由所述电动汽车的鼓风机最大功率决定,
T sup.min为所述T sup的最小值,由所述电动汽车的蒸发器能力决定,
T sup.max为所述T sup的最大值,由所述电动汽车的蒸发器能力决定,
P bat.max为所述电池系统总能耗的最大值,
P em.max为所述电机驱动功率的最大值,
P c.max为所述电动汽车的压缩机能耗的最大值,
P f.min为所述电动汽车的鼓风机能耗的最小值,
P f.max为所述电动汽车的鼓风机能耗的最大值;
在每个采样时刻k,获取当前时刻车室内温度的真实测量值T cab(k)为系统的初始状态变量,根据目标函数来求解线性模型预测控制问题,线性模型预测控制问题具体形式为:
目标函数定义为:
Figure PCTCN2021092653-appb-000056
系统预测方程和输出方程:
x(k+1)=A jx(k)+B ju(k)+C jd(k),
y(k)=D jx(k)+E ju(k)+F jd(k),
j=1,2,…L,
系统约束为:
Figure PCTCN2021092653-appb-000057
步骤S4:将状态变量的初始值设置为当前采样时刻的车室内温度的测量值,根据目标函数求解计算线性模型,得到第一时域内控制系统模型的最优控制输入变量序列, 表示为:
Figure PCTCN2021092653-appb-000058
步骤S5:将
Figure PCTCN2021092653-appb-000059
的第一个输入控制变量设置为最优输入控制变量,表述为:
Figure PCTCN2021092653-appb-000060
实现最优控制:将通过算法求解步骤获得的最优输入控制变量作用于暖通空调系统;在当前采样时刻的下一个采样时刻即k+1采样时刻,获取新的外界干扰变量和状态变量,重复步骤2和步骤3。
相对于传统的电池寿命延长方法,本实施例针对电动汽车暖通空调系统设计模型预测控制算法,根据车辆的驱动系统能耗需求来调节暖通空调系统的动态性能,实现能耗系统之间的协同优化控制,在保证车室内驾乘人员舒适性的同时,也缓解了驾驶人员激进的驾驶行为给电池带来的放电压力,从而提升电池的放电性能,延长电池寿命。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种延长电动汽车电池寿命的方法,包括以下步骤:
    系统建模:建立电动汽车的驱动系统模型、车室内热负荷系统模型、暖通空调系统模型、电池系统模型;
    获取决策参数:获取第一时域内所述电动汽车的决策参数,所述第一时域包括所述电动汽车由开始时刻至以后某一时刻之间的时间段,所述决策参数包括电机驱动功率、车室内热负荷、暖通空调系统总能耗、车内其他电气设备的附属能耗;
    控制决策的获取与刷新:基于模型预测控制方法,获取暖通空调系统的最优控制决策,将所述最优控制决策作用于所述暖通空调系统;
    其中,所述控制决策的获取与刷新步骤包括:
    变量定义:定义控制系统模型的状态变量、输入控制变量、系统输出变量和外界干扰变量;
    建立目标函数:所述目标函数的目标包括最小化电池系统的寿命衰减、最小化所述电池系统总能耗,以及使所述电动汽车的车室内温度最接近于目标设定值;
    求解所述控制系统模型:根据所述目标函数求解所述控制系统模型,以当前采样时刻的初始数据作为所述控制系统模型的初始状态,所述初始数据包括所述车室内温度的目标值、当前时刻的所述车室内温度的测量值和所述暖通空调系统的运行状态,采用基于多模型的预测控制方法求解所述控制系统模型;
    实现最优控制:将通过所述求解所述控制系统模型步骤获得的最优输入控制变量作用于所述暖通空调系统;在当前采样时刻的下一个采样时刻,获取新的所述外界干扰变量和所述状态变量,重复所述获取决策参数步骤和所述控制决策的获取与刷新步骤。
  2. 如权利要求1所述的延长电动汽车电池寿命的方法,其中,所述驱动系统模型的建立包括:
    基于所述电动汽车的质量、重力加速度、滚动阻力系数,以及所述电动汽车的行驶速度,获得所述电动汽车在行驶中受到的滚动阻力;
    基于所述电动汽车的行驶速度、所述电动汽车的有效受风面积、相对于所述电动汽车行驶方向的风速、空气密度以及空气阻力系数,获得所述电动汽车在行驶中受到的空气阻力;
    基于道路坡度获得获得所述电动汽车在行驶中受到的坡度阻力。
  3. 如权利要求2所述的延长电动汽车电池寿命的方法,其中,所述驱动系统模型 的建立还包括:
    基于所述电动汽车在行驶中受到的所述滚动阻力、所述空气阻力和所述坡度阻力,以及所述电动汽车的质量和加速度,获得所述电动汽车的驱动系统提供的驱动力;
    基于所述驱动力、所述驱动系统的电机的工作效率,以及所述电动汽车的所述行驶速度,获得所述电机的驱动功率。
  4. 如权利要求3所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立包括:
    基于外界温度、车室内外壁受到的太阳辐射强度、所述车室内外壁的热辐射吸收系数,以及所述车室内外壁的吸热效率,获得表面综合温度。
  5. 如权利要求4所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立还包括:
    将所述电动汽车的外表面分为互相独立的外表子部分,所述外表子部分包括车顶子部分、前面车壁子部分、后面车壁子部分、地面子部分和侧面车壁子部分。
  6. 如权利要求5所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立还包括:
    基于所述外表子部分的对流换热系数、所述外表子部分的有效面积,以及所述外表子部分的所述表面综合温度,获得通过热对流和热传导的形式进入所述电动汽车的车室内的热负荷。
  7. 如权利要求6所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立还包括:
    将所述电动汽车外表玻璃分为互相独立的外玻璃子部分,所述外玻璃子部分包括前挡风玻璃、后窗玻璃、左侧玻璃、右侧玻璃。
  8. 如权利要求7所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立还包括:
    基于太阳辐射穿过所述外玻璃子部分的透入系数、所述外玻璃子部分受到的太阳辐射强度,以及所述外玻璃子部分在太阳直射方向的有效面积,获得通过热辐射的形式进入所述车室内的热负荷。
  9. 如权利要求8所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷 系统模型的建立还包括:
    基于所述通过热对流和热传导的形式进入所述电动汽车的车室内的热负荷、所述通过热辐射的形式进入所述车室内的热负荷、车室内驾乘人员产生的热负荷,以及车室内电气设备、座椅、仪表板的热惯性产生的热负荷,获得所述车室内热负荷。
  10. 如权利要求9所述的延长电动汽车电池寿命的方法,其中,所述车室内热负荷系统模型的建立还包括:
    基于所述车室内热负荷、所述暖通空调系统的制冷量、通过所述暖通空调系统制冷后的空气进入所述车室内的体积,以及空气比热容,获得所述车室内的温度随时间变化的速率。
  11. 如权利要求9所述的延长电动汽车电池寿命的方法,其中,所述暖通空调系统模型的建立包括:
    基于通过所述暖通空调系统制冷后的空气进入所述车室内的质量、所述暖通空调系统所能达到的制冷温度、所述车室内的温度,以及所述空气比热容,获得所述暖通空调系统的所述制冷量。
  12. 如权利要求10所述的延长电动汽车电池寿命的方法,其中,所述暖通空调系统模型的建立还包括:
    基于通过所述暖通空调系统制冷后的空气进入所述车室内的所述质量、所述暖通空调系统所能达到的制冷温度、所述车室内的温度、所述空气比热容,以及所述暖通空调系统的能效系数,获得所述电动汽车的压缩机能耗;
    基于通过所述暖通空调系统制冷后的空气进入所述车室内的所述质量,以及所述鼓风机的能耗系数获得所述电动汽车的鼓风机能耗;
    基于所述压缩机能耗和所述鼓风机能耗,获得所述暖通空调系统总能耗。
  13. 如权利要求12所述的延长电动汽车电池寿命的方法,其中,所述电池系统模型的建立包括:
    基于所述电机的所述驱动功率、所述暖通空调系统总能耗,以及所述车内其他电气设备的所述附属能耗,获得所述电池系统总能耗;其中,所述车内其他电气设备的所述附属能耗在所述电池系统模型中为定值。
  14. 如权利要求13所述的延长电动汽车电池寿命的方法,其中,所述电池系统模型的建立还包括:
    建立所述电池系统的健康状态与所述电池系统的剩余电量、所述电池系统寿命的衰减、所述电池系统总能耗之间的函数关系。
  15. 如权利要求14所述的延长电动汽车电池寿命的方法,其中,所述获取决策参数步骤包括:
    将当前采样时刻设置为所述开始时刻,将所述第一时域划分为若干子时域;
    根据所述第一时域内的道路状况和车辆速度轨迹,通过所述驱动系统模型,获得各个所述子时域内所述电动汽车的所述电机驱动功率;
    根据所述第一时域内的外界天气状况,获得各个所述子时域内所述电动汽车的所述外界温度;
    通过所述车室内热负荷系统模型获得各个所述子时域内所述电动汽车的所述车室内热负荷。
  16. 如权利要求15所述的延长电动汽车电池寿命的方法,其中,所述控制决策的获取与刷新步骤中的所述目标函数被定义为:
    Figure PCTCN2021092653-appb-100001
    其中,
    N p为将所述第一时域划分的所述子时域的数量,
    k为第k次采样时刻,
    T tar为所述车室内温度的目标值,
    Figure PCTCN2021092653-appb-100002
    为第k次采样时刻的第i次所述子时域的所述电池系统寿命的衰减,
    P bat(k+i|k)为第k次采样时刻的第i次所述子时域的所述电池系统总能耗,
    (T cab(k+i|k)-T tar(k+i)) 2为第k次采样时刻的第i次所述子时域的所述车室内温度与所述车室内温度的目标值的偏差。
  17. 如权利要求16所述的延长电动汽车电池寿命的方法,其中,所述求解所述控制系统模型步骤包括:
    根据所述暖通空调系统的运行状态将工作区间划分为L个子空间;使每个所述子区间都对应一个平衡状态;
    在所述平衡状态附近将所述控制系统模型线性化展开,获得所述子空间的线性近似模型;
    在L个所述子空间的所述平衡状态附近均进行线性化得到L个所述子空间的所述线性近似模型的模型集。
  18. 如权利要求17所述的延长电动汽车电池寿命的方法,其中,所述求解所述控制系统模型步骤还包括:
    根据采样时刻时的所述控制系统模型的所述状态变量、所述输入控制变量和所述外界干扰变量所属于的所述子空间,在所述模型集中选择所述子空间对应的所述线性近似模型作为计算线性模型以替换所述控制系统模型。
  19. 如权利要求18所述的延长电动汽车电池寿命的方法,其中,所述求解所述控制系统模型步骤还包括:建立所述控制系统模型的约束条件;
    其中,所述约束条件包括:
    通过所述暖通空调系统制冷后的空气进入所述车室内的所述质量的最小值、通过所述暖通空调系统制冷后的空气进入所述车室内的所述质量的最大值、所述暖通空调系统所能达到的所述制冷温度的最小值、所述暖通空调系统所能达到的所述制冷温度的最大值、所述电池系统总能耗的最大值、所述电机驱动功率的最大值、所述电动汽车的压缩机能耗的最大值、所述电动汽车的鼓风机能耗的最小值、所述电动汽车的鼓风机能耗的最大值。
  20. 如权利要求19所述的延长电动汽车电池寿命的方法,其中,所述求解所述控制系统模型步骤还包括:将所述状态变量的初始值设置为当前采样时刻的所述车室内温度的测量值,根据所述目标函数求解所述计算线性模型,得到所述第一时域内所述控制系统模型的最优控制输入变量序列;将所述最优控制输入变量序列的第一个所述输入控制变量设置为所述最优输入控制变量。
PCT/CN2021/092653 2020-05-09 2021-05-10 一种延长电动汽车电池寿命的方法 WO2021228019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010387808.5A CN111562741A (zh) 2020-05-09 2020-05-09 一种延长电动汽车电池寿命的方法
CN202010387808.5 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021228019A1 true WO2021228019A1 (zh) 2021-11-18

Family

ID=72070955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092653 WO2021228019A1 (zh) 2020-05-09 2021-05-10 一种延长电动汽车电池寿命的方法

Country Status (2)

Country Link
CN (1) CN111562741A (zh)
WO (1) WO2021228019A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562741A (zh) * 2020-05-09 2020-08-21 上海交通大学 一种延长电动汽车电池寿命的方法
CN113147321B (zh) * 2021-04-29 2022-09-09 重庆大学 一种车载空调与可再生制动协调控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033752A (zh) * 2011-09-30 2013-04-10 吴昌旭 电动车电池寿命预测方法以及延长方法
CN104298191A (zh) * 2014-08-21 2015-01-21 上海交通大学 智能建筑中基于热量预测管理的能耗控制方法
US20150148973A1 (en) * 2013-11-26 2015-05-28 Nec Laboratories America, Inc. Fuzzy logic based integrated power coordination system for hybrid energy storage system
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN105082937A (zh) * 2015-07-23 2015-11-25 北汽福田汽车股份有限公司 纯电动汽车的空调控制方法、系统及纯电动汽车
CN110254174A (zh) * 2019-07-08 2019-09-20 华南理工大学 一种基于信息融合的电动汽车热管理系统
CN111562741A (zh) * 2020-05-09 2020-08-21 上海交通大学 一种延长电动汽车电池寿命的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110103775A (zh) * 2019-06-03 2019-08-09 江阴市辉龙电热电器有限公司 一种电动汽车动力电池温度控制装置及方法
CN111261973B (zh) * 2020-01-19 2022-09-23 重庆大学 基于模型预测控制的电动汽车整车电池热管理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033752A (zh) * 2011-09-30 2013-04-10 吴昌旭 电动车电池寿命预测方法以及延长方法
US20150148973A1 (en) * 2013-11-26 2015-05-28 Nec Laboratories America, Inc. Fuzzy logic based integrated power coordination system for hybrid energy storage system
CN104298191A (zh) * 2014-08-21 2015-01-21 上海交通大学 智能建筑中基于热量预测管理的能耗控制方法
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN105082937A (zh) * 2015-07-23 2015-11-25 北汽福田汽车股份有限公司 纯电动汽车的空调控制方法、系统及纯电动汽车
CN110254174A (zh) * 2019-07-08 2019-09-20 华南理工大学 一种基于信息融合的电动汽车热管理系统
CN111562741A (zh) * 2020-05-09 2020-08-21 上海交通大学 一种延长电动汽车电池寿命的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Compilation of Code and Standards of Chinese Registered Utility Engineer for Survey and Design: Heating Ventilation and Air Conditioning Exam", vol. GB 50019-2003, 31 May 2004, ISBN: 978-7-80177-328-9, article MANAGEMENT COMMITTEE OF CHINESE REGISTERED UTILITY ENGINEERING SURVEY AND DESIGN: "GB 50019-2003 Code for Design of Heating Ventilation and Air Conditioning", pages: 1 - 162, XP009531904 *
RONG DANDAN; YANG BO; CHEN CAILIAN: "Model Predictive Climate Control of Electric Vehicles for Improved Battery Lifetime", 2019 CHINESE AUTOMATION CONGRESS (CAC), IEEE, 22 November 2019 (2019-11-22), pages 5457 - 5462, XP033711483, DOI: 10.1109/CAC48633.2019.8996173 *

Also Published As

Publication number Publication date
CN111562741A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021228019A1 (zh) 一种延长电动汽车电池寿命的方法
Xie et al. A Self-learning intelligent passenger vehicle comfort cooling system control strategy
CN113071506B (zh) 考虑座舱温度的燃料电池汽车能耗优化系统
US10696136B2 (en) Method for motor vehicle interior climate control
Xie et al. An improved intelligent model predictive controller for cooling system of electric vehicle
Khayyam et al. Intelligent energy management control of vehicle air conditioning via look-ahead system
Jeffers et al. Climate control load reduction strategies for electric drive vehicles in warm weather
CN113246805B (zh) 考虑汽车驾驶舱温度的燃料电池功率管理控制方法
CN105522932A (zh) 车用动力电池组主动风冷散热系统及其控制方法
CN111597723A (zh) 基于改进的智能模型预测控制的电动汽车空调系统智能控制方法
CN113147321B (zh) 一种车载空调与可再生制动协调控制方法
CN111716989B (zh) 一种汽车车内温度补偿控制方法及系统
Xie et al. A two-layered eco-cooling control strategy for electric car air conditioning systems with integration of dynamic programming and fuzzy PID
CN115503559B (zh) 考虑空调系统的燃料电池汽车学习型协同能量管理方法
Zhao et al. A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion
CN104589951A (zh) 汽车空调循环风门的控制方法及其控制系统
Wang et al. MPC-based precision cooling strategy (PCS) for efficient thermal management of automotive air conditioning system
Zhang et al. Regenerative braking-based hierarchical model predictive cabin thermal management for battery life extension of autonomous electric vehicles
Cho et al. Optimization of active grille shutters operation for improved fuel economy
CN107584984B (zh) 基于前端路面不平度的电磁混合悬架模式切换方法
Doshi et al. Modeling of thermal dynamics of a connected hybrid electric vehicle for integrated HVAC and powertrain optimal operation
Zhang et al. A novel online prediction method for vehicle cabin temperature and passenger thermal sensation
CN105678024A (zh) 一种汽车乘客舱降温速率的获取方法
Liebers et al. Using air walls for the reduction of open-door heat losses in buses
US20230304811A1 (en) Solar-load prediction for vehicle range estimation and eco-routing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803606

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21803606

Country of ref document: EP

Kind code of ref document: A1