CN111551596A - 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法 - Google Patents

一种高效灵敏检测卡那霉素的光电化学传感器的制备方法 Download PDF

Info

Publication number
CN111551596A
CN111551596A CN202010430562.5A CN202010430562A CN111551596A CN 111551596 A CN111551596 A CN 111551596A CN 202010430562 A CN202010430562 A CN 202010430562A CN 111551596 A CN111551596 A CN 111551596A
Authority
CN
China
Prior art keywords
mofs
electrode
kanamycin
solution
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010430562.5A
Other languages
English (en)
Other versions
CN111551596B (zh
Inventor
温广明
董文霞
柴杰
杜意恩
张保柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinzhong University
Original Assignee
Jinzhong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinzhong University filed Critical Jinzhong University
Priority to CN202010430562.5A priority Critical patent/CN111551596B/zh
Publication of CN111551596A publication Critical patent/CN111551596A/zh
Application granted granted Critical
Publication of CN111551596B publication Critical patent/CN111551596B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属纳米领域、光电化学技术领域,提供了一种高效灵敏检测卡那霉素的光电化学传感器的制备方法,先制备石墨相氮化碳g‑C3N4和MOFs(PCN‑222),将g‑C3N4和MOFs的复合物滴涂于掺杂氟的SnO2透明导电玻璃(FTO电极)上,g‑C3N4为具有2.7 eV带隙的片层状结构,MOFs是带隙约为1.65 eV的针状结构,两者复合,g‑C3N4为MOFs提供大的比表面积,MOFs@g‑C3N4电子复合率低可产生较强的光电流。卡那霉素的加入会结合导带上的电子从而产生降低的阴极光电流。具有检测卡那霉素的功能,且灵敏度高,选择性好,不需大型仪器,可实现快速检测,检测结果直观。

Description

一种高效灵敏检测卡那霉素的光电化学传感器的制备方法
技术领域
本发明涉及纳米领域、光电化学技术领域,具体涉及一种高效灵敏检测卡那霉素的光电化学传感器的制备方法,复合物MOFs@g-C3N4制备光电化学传感器,以及所制备的传感器在检测卡那霉素中的应用。
背景技术
卡那霉素作为抑菌化合物广泛用于制备人体或动物体的抗菌药物,并且也作为动物饲料的添加剂。在食品安全,在食品中检测卡那霉素残留量是我们的主要工作。这种物质的检测手段很多,最新的检测方法是利用光电化学方法进行测定。
例如申请号为:CN201910906274.X用于检测卡那霉素的光电化学传感器及其制备方法和应用,采用稳定性良好的贵金属钯(Pd)敏化半导体氧化铜(CuO),制备核壳球状复合材料CuO@Pd修饰导电玻璃(ITO),CuO的电子-空穴对可通过外壳Pd注入热电子,进一步传至外电路产生光电流,同时,CuO@Pd金属粒子间表面价电子的集体振荡可促使局域表面等离子体共振效应(LSPRs)发生,使传感器对可见光也比较敏感。其次,为了进一步提高PEC适配体传感的响应性能,将互补链TGA功能化的CdTe量子点(TGA-CdTe QDs)通过碱基配对方式固定在适配体修饰的CuO@Pd表面,量子点的引入从另一个角度加速电子转移(ET)和LSPRs的进行。
CN201711326650.5公开了一种以TiO2-MoS2-Au三元复合材料为负载支架的光电化学适配体生物传感器的构建方法,该光电化学适配体传感器可用于检测卡那霉素。具体为:先采用溶胶-凝胶法制备出TiO2球模板,接着将其制备成表面粗糙的锐钛矿TiO2球,然后采用水热法将MoS2纳米片紧密负载在TiO2纳米球的表面,形成TiO2/MoS2异质结结构;最后通过柠檬酸三钠还原法将Au纳米颗粒沉积其表面,形成TiO2/MoS2/Au三元复合纳米材料。该三元复合材料具有极大的比表面积和良好的生物相容性,大大增加了生物分子的负载量,其还拥有优良的导电性和较强光电转化效率等,因此适合用来构建生物传感器。将DNA适配体固定在TiO2/MoS2/Au三元复合材料表面,研究证明以此法制备出的光电化学适配体传感器能够快速的检测卡那霉素,且灵敏度较高、线性范围较大、检测限较低。
g-C3N4是一种典型的聚合物半导体,其结构中的CN原子以sp2杂化形成高度离域的π共轭体系。禁带宽度约为2.7 eV,其具有可以吸收太阳能、化学性质和光学性质稳定、有合适的氧化电势等优良性质,因此受到研究工作者越来越广泛的关注。金属有机骨架材料(MOFs)是金属离子和各类有机配体构成的一类具有前景的多孔材料。以其结构和功能的可调控性已经变成化学和材料化学领域的一个热门研究方向,兼有无机材料的刚性和有机材料的柔性特征。使其在现代材料研究方面呈现出巨大的发展潜力和诱人的发展前景。使用单独的g-C3N4或者MOFs (PCN-222) 电子空穴复合率高,将两者复合到一起可有效的解决这一问题。2014年李等人构建了基于可见光活化碳氮化物和氧化石墨烯纳米复合材料的适配体标记的光电化学卡那霉素传感器 (R. Z. Li, Y. Liu, L. Cheng, C.Z. Yang, andJ.D. Zhang.Anal. Chem. 2014, 86, 9372-9375)。
上述现有检测卡那霉素的光电化学传感器技术存在的主要问题是,灵敏度较低以及线性范围较狭窄。
发明内容
本发明目的在于提供一种可灵敏快速检测卡那霉素的方法,该方法操作简单,反应条件温和,所得纳米材料无毒,制备方便。
为实现上述目的,本发明提供了一种高效灵敏检测卡那霉素的光电化学传感器的制备方法,步骤包括:
(一)、复合物MOFs@g-C3N4的制备,
1)取尿素加入带盖的坩埚中,将坩埚放入马弗炉制得黄色粉末状的g-C3N4,避光备用;
2)将DMF、ZrCl4、磷酸三(2-氯丙基)TCPP和苯甲酸超声溶解混合,将混合物放入烘箱制得紫色针状晶体MOFs,备用;
3)分别取步骤1) 得到的g-C3N4粉末和步骤2) 得到的MOFs溶于甲醇中超声,制得g-C3N4和MOFs的溶液;
4)取步骤3)得到的g-C3N4溶液MOFs溶液混合并且超声处理,得到复合物MOFs@g-C3N4
(二)、 电极的制备过程,步骤包括:
5)依次用丙酮,乙醇和水超声洗涤FTO电极,浸泡于乙醇中备用;
6)取步骤4)制得的复合物MOFs@g-C3N4滴涂于FTO电极上,室温下晾干;
(三)、 传感器的构建过程,步骤包括:
7)称取4-羟乙基哌嗪乙磺酸 (HEPES) 溶于二次水,配成HEPES溶液;称取盐酸多巴胺(DA) 溶于二次水,配置成DA溶液;
8)移取HEPES溶液于反应池中,加入DA溶液;
9)以步骤6)制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入步骤8)制备的HEPES溶液中,加入不同量的卡那霉素进行检测,构建卡那霉素传感器。
步骤1)中,将坩埚放入马弗炉中以10℃/min 程序升温到500℃反应3 h,再降温到室温,制得黄色粉末状的g-C3N4
步骤2)中,将混合物在烘箱中加热至120 ℃,保持48 h,冷却至室温后,通过离心收获紫色针状晶体MOFs。
步骤3)中,将0.005 g石墨相氮化碳粉末溶于5mL甲醇中超声8 h,制得g-C3N4溶液;将0.005g MOFs溶于5mL甲醇中超声,制得MOFs的溶液,步骤4)中MOFs溶液、g-C3N4溶液体积比为1:0.75。步骤6)中MOFs@g-C3N4 滴涂于FTO电极上的滴涂量为60µL。步骤8)pH值保持为6.5。
本发明方法制备的传感器应用于检测卡那霉素。
综合来说本发明提供了一种复合纳米材料的制备方法和应用,将石墨相氮化碳(g-C3N4) 和MOFs (PCN-222) 的复合物滴涂于掺杂氟的SnO2透明导电玻璃 (FTO电极) 上,g-C3N4为具有2.7 eV带隙的片层状结构的,MOFs是带隙约为1.65 eV的针状结构,将两者复合到一起,g-C3N4可以为MOFs提供大的比表面积,且复合物MOFs@g-C3N4电子复合率低可产生较强的光电流。卡那霉素的加入会结合导带上的电子从而产生降低的阴极光电流。本发明具有检测卡那霉素的功能,且灵敏度高,选择性好,不需大型仪器,可实现快速检测,检测结果直观。
与现有技术相比,具体地,本发明的优点在于:
本发明提供的传感器可以实现对卡那霉素高灵敏度,高选择性的检测;本发明提供的传感器对卡那霉素的线性范围为1-1000 nM,检出限为0.127 nM;不需要大型仪器,通过对光电流值的观察,即可识别检测结果;本发明所用试剂和操作过程均无毒副作用;本发明方法简单、快速、易操作,可进行现场快速检测;本发明制备的传感器没有使用蛋白(适配体或DNA链),实验成本低;本发明制备的传感器具有良好的稳定性,对于检测卡那霉素有可行性。
本发明是以经典的方法烧制尿素制备g-C3N4,且使用ZrCl4和TCPP来制备所需要的MOFs,将g-C3N4酸和MOFs复合后可降低电子的复合率,提高光电转换效率。与其他现有技术公开的检测卡那霉素类的光电化学传感器相比,本发明制备的传感器没有使用蛋白(适配体或DNA链)且具有较宽的线性范围。
附图说明
图1为本发明制备的传感器的作用机理示意图,以及传感器检测的过程示意图;
图2为本发明所制备的传感器的光电流随复合物的滴涂量、溶液pH、g-C3N4与MOFs的比例的变化测量图;
图3为本发明制备的传感器纳米材料的UV-Vis吸收光谱;
图4为本发明制备的传感器的稳定性示意图;
图5为本发明制备的传感器与不同浓度卡那霉素溶液之间的线性关系;
图6为本发明制备的传感器与不同抗生素之间的选择性关系。
具体实施方式
下面通过具体实施例并结合附图对本发明作进一步详细说明。
实施例1、一种高效灵敏检测卡那霉素的光电化学传感器的制备方法,步骤包括:
石墨相氮化碳/MOFs溶液的制备:
(1) 取10 g尿素加入带盖的坩埚中,将坩埚放入马弗炉中以10℃/min 程序升温到500℃反应3 h,再缓慢降温到室温,制得黄色粉末状的g-C3N4,将0.005 g石墨相氮化碳粉末溶于5mL甲醇中超声8 h,制得g-C3N4溶液;
(2) 将10 mL DMF和ZrCl4 (75 mg),TCPP (30 mg) 和苯甲酸 (1750 mg) 超声溶解在20 mL耐热玻璃小瓶中,将混合物在烘箱中加热至120 ℃,保持48 h,冷却至室温后,通过离心收获紫色针状晶体,将0.005g MOFs溶于5mL甲醇中超声,制得MOFs的溶液;
(3)传感器的制备过程:称取定量的HEPES溶液溶于二次水,配置成10 mM的HEPES溶液;称取定量的盐酸多巴胺 (DA) 溶于二次水,配置成0.1 M的DA溶液;用移液枪移取15 mLHEPES溶液于反应器中,再加入15 µL 0.1 M DA;将3 M的导电胶带中间掏空面积控制在1cm2,粘在洗涤干净的FTO上,将复合物MOFs@g-C3N4 定量滴涂于FTO电极上,室温下晾干;以制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入HEPES溶液中,加入不同量的卡那霉素进行检测,构建卡那霉素传感器。
如图2中c所示意的测试结果,将上述得到的MOFs溶液、g-C3N4溶液按0:1, 1:0.25,1:0.75,2: 1,1:1混合后超声2 h,制得不同比例的MOFs@g-C3N4,当比例为1:0.75时,光电流最高,说明比例条件优选为1:0.75;如图2中b所示意,取最优比例的复合物MOFs@g-C3N4 10-80 µL滴涂于FTO电极上,当滴涂量为60µL时,光电流最高,说明实验最优的滴涂量优化为60µL;取最优比例的复合物MOFs@g-C3N4 60µL滴涂于FTO电极上,如图2中a所示意,改变电解液的pH值,当pH为6.5时光电流最大,说明最优的pH值为6.5;如图2中d所示意,向15 mL的HEPES电解液中分别加入盐酸多巴胺 (DA)、过氧化氢 (H2O2)、L-半胱氨酸、抗环血酸 (AA),当加入盐酸多巴胺 (DA)时光电流最大,说明最优的实验条件是加入盐酸多巴胺。
如图3所示意,将实施例1中制备的g-C3N4溶液、MOFs的溶液和复合物MOFs@g-C3N4进行UV-Vis吸收光谱的测定,实验发现复合物MOFs@g-C3N4的吸收包括了MOFs和g-C3N4的吸收,说明复合物MOFs@g-C3N4的成功制备。
传感器稳定性、线性以及选择性的测定:
(1)以制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入含有DA的HEPES溶液中,开光和避光各60 s,且在开关和避光的情况下各检测60 s,如图4所示意,实验发现制备的传感器在2000 s内光电流基本保持不变,即所制备的传感器具有很好的稳定性。
(2)以制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入含有DA的HEPES溶液中,依次加入硫酸卡那霉素进行检测,本发明制备的MOFs@g-C3N4光电化学传感器的光电流变化与卡那霉素浓度的对数呈线性关系如图5所示,随着卡那霉素浓度的增长,阴极光电流在逐渐降低,线性方程的R2=0.992。
(3)以制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入含有DA的HEPES溶液中,分别加入硫酸卡那霉素、恩诺氟沙星、红霉素、阿莫西林、氯霉素、四环素进行检测,本发明制备的MOFs@g-C3N4光电化学传感器的光电流变化与各种抗生素之间的线性图如图6所示,在加入硫酸卡那霉素时阴极光电流明显降低。

Claims (6)

1.一种高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤包括:
(一)、复合物MOFs@g-C3N4的制备:
1)取尿素加入带盖的坩埚中,将坩埚放入马弗炉制得黄色粉末状的石墨相氮化碳g-C3N4,避光备用;
2)将DMF、ZrCl4、磷酸三(2-氯丙基)酯TCPP和苯甲酸超声溶解混合,将混合物放入烘箱制得紫色针状晶体MOFs,备用;
3)分别取步骤1) 得到的g-C3N4粉末和步骤2) 得到的MOFs溶于甲醇中超声,制得g-C3N4和MOFs的溶液;
4)取步骤3)得到的g-C3N4溶液MOFs溶液混合并且超声处理,得到复合物MOFs@g-C3N4
(二)、 电极的制备过程,步骤包括:
5)依次用丙酮,乙醇和水超声洗涤FTO电极,浸泡于乙醇中备用;
6)取步骤4)制得的复合物MOFs@g-C3N4滴涂于FTO电极上,室温下晾干;
(三)、 传感器的构建过程,步骤包括:
7)称取4-羟乙基哌嗪乙磺酸 即HEPES溶于二次水,配成HEPES溶液;称取盐酸多巴胺即DA溶于二次水,配置成DA溶液;
8)移取HEPES溶液于反应池中,加入DA溶液;
9)以步骤6)制得的FTO电极作为工作电极,铂电极作为对电极,Ag/AgCl电极作为参比电极组成三电极系统,将三电极依次放入步骤8)制备的HEPES溶液中,加入不同量的卡那霉素进行检测,构建卡那霉素传感器。
2.根据权利要求1所述的高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤1)中,将坩埚放入马弗炉中以10℃/min 程序升温到500℃反应3 h,再降温到室温,制得黄色粉末状的g-C3N4
3.根据权利要求1所述的高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤2)中,将混合物在烘箱中加热至120 ℃,保持48 h,冷却至室温后,通过离心收获紫色针状晶体MOFs。
4.根据权利要求1所述的高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤3)中,将0.005 g石墨相氮化碳粉末溶于5mL甲醇中超声8 h,制得g-C3N4溶液;将0.005g MOFs溶于5mL甲醇中超声,制得MOFs的溶液,步骤4)中MOFs溶液、g-C3N4溶液体积比为1:0.75。
5.根据权利要求1所述的高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤6)中MOFs@g-C3N4 滴涂于FTO电极上的滴涂量为60µL。
6.根据权利要求1所述的高效灵敏检测卡那霉素的光电化学传感器的制备方法,其特征在于:步骤8)pH值保持为6.5。
CN202010430562.5A 2020-05-20 2020-05-20 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法 Expired - Fee Related CN111551596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010430562.5A CN111551596B (zh) 2020-05-20 2020-05-20 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010430562.5A CN111551596B (zh) 2020-05-20 2020-05-20 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法

Publications (2)

Publication Number Publication Date
CN111551596A true CN111551596A (zh) 2020-08-18
CN111551596B CN111551596B (zh) 2022-06-03

Family

ID=72004926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010430562.5A Expired - Fee Related CN111551596B (zh) 2020-05-20 2020-05-20 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法

Country Status (1)

Country Link
CN (1) CN111551596B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126073A (zh) * 2020-09-17 2020-12-25 华南农业大学 一种多功能性荧光识别Ag配位聚合物及其制备方法与应用
CN113970583A (zh) * 2021-10-25 2022-01-25 齐齐哈尔大学 一种用于检测卡那霉素的光电化学适配体传感器的制备和使用方法
CN114295587A (zh) * 2021-12-29 2022-04-08 上海大学 一种基于二维金属有机框架的spr传感器及其制备和应用
CN114858875A (zh) * 2022-03-07 2022-08-05 青岛科技大学 一种自增强光电化学检测卡那霉素的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040638A1 (en) * 2013-09-19 2015-03-26 Council Of Scientific & Industrial Research N-doped porous carbon electrocatalyst and process for preparation thereof
CN107576714A (zh) * 2017-09-05 2018-01-12 济南大学 一种石墨相氮化碳@mof纳米晶体的制备方法和应用
CN107589160A (zh) * 2017-09-05 2018-01-16 济南大学 一种基于mof的三元纳米复合材料的制备方法和应用
WO2018045824A1 (zh) * 2016-09-12 2018-03-15 青岛大学 基于同时封装靶物质并合成具有氧化还原活性MOFs的制法
CN110514603A (zh) * 2019-09-24 2019-11-29 广西民族师范学院 用于检测卡那霉素的光电化学传感器及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040638A1 (en) * 2013-09-19 2015-03-26 Council Of Scientific & Industrial Research N-doped porous carbon electrocatalyst and process for preparation thereof
WO2018045824A1 (zh) * 2016-09-12 2018-03-15 青岛大学 基于同时封装靶物质并合成具有氧化还原活性MOFs的制法
CN107576714A (zh) * 2017-09-05 2018-01-12 济南大学 一种石墨相氮化碳@mof纳米晶体的制备方法和应用
CN107589160A (zh) * 2017-09-05 2018-01-16 济南大学 一种基于mof的三元纳米复合材料的制备方法和应用
CN110514603A (zh) * 2019-09-24 2019-11-29 广西民族师范学院 用于检测卡那霉素的光电化学传感器及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TING GUO等: "A novelα-Fe2O3@g-C3N4catalyst: Synthesis derived from Fe-based MOFand its superior photo-Fenton performance", 《APPLIED SURFACE SCIENCE》 *
ZEJIN WANG等: "Efficient hydrogen production over MOFs (ZIF-67)and g-C3N4boosted with MoS2nanoparticles", 《SCIENCE DIRECT》 *
ZHIYUAN XU等: "Selective Sensing of Copper Ions by Mesoporous PorphyrinicMetal−Organic Framework Nanoovals", 《ANALYTICAL CHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126073A (zh) * 2020-09-17 2020-12-25 华南农业大学 一种多功能性荧光识别Ag配位聚合物及其制备方法与应用
CN112126073B (zh) * 2020-09-17 2021-06-08 华南农业大学 一种多功能性荧光识别Ag配位聚合物及其制备方法与应用
CN113970583A (zh) * 2021-10-25 2022-01-25 齐齐哈尔大学 一种用于检测卡那霉素的光电化学适配体传感器的制备和使用方法
CN114295587A (zh) * 2021-12-29 2022-04-08 上海大学 一种基于二维金属有机框架的spr传感器及其制备和应用
CN114295587B (zh) * 2021-12-29 2023-07-21 上海大学 一种基于二维金属有机框架的spr传感器及其制备和应用
CN114858875A (zh) * 2022-03-07 2022-08-05 青岛科技大学 一种自增强光电化学检测卡那霉素的方法

Also Published As

Publication number Publication date
CN111551596B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN111551596B (zh) 一种高效灵敏检测卡那霉素的光电化学传感器的制备方法
Yuan et al. Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C3N4/Ti3C2 composites
Murali et al. Synthesis of CeO2/reduced graphene oxide nanocomposite for electrochemical determination of ascorbic acid and dopamine and for photocatalytic applications
Liu et al. A TiO2 nanosheet-g-C3N4 composite photoelectrochemical enzyme biosensor excitable by visible irradiation
Yu et al. Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor
Liu et al. Three-dimensional porous NiO nanosheets vertically grown on graphite disks for enhanced performance non-enzymatic glucose sensor
Yang et al. Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection
Yang et al. A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode
Chen et al. Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing
Li et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite
Wang et al. Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation
Dai et al. g-C3N4/ITO/Co-BiVO4 Z-scheme composite for solar overall water splitting
Zhou et al. Electrodeposition of gold nanoparticles on ZnO nanorods for improved performance of enzymatic glucose sensors
Asiri et al. Development of highly efficient non-enzymatic nitrite sensor using La2CuO4 nanoparticles
Yuan et al. B, N co-doped graphene synergistic catalyzed ZnO quantum dots with amplified cathodic electrochemiluminescence for fabricating microcystin-LR aptasensor
Yan et al. Plasmonic Bi microspheres doped carbon nitride heterojunction: Intensive photoelectrochemical aptasensor for bisphenol A
Wang et al. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide
Hu et al. Plasmon-activated NO2 sensor based on Au@ MoS2 core-shell nanoparticles with heightened sensitivity and full recoverability
Liu et al. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ ReS2
Chen et al. An enhanced photoelectrochemical ofloxacin aptasensor using NiFe layered double hydroxide/graphitic carbon nitride heterojunction
Ujwal et al. Gadolinium ortho-ferrite interfaced polyaniline: Bi-functional catalyst for electrochemical detection and photocatalytic degradation of acetaminophen
Qi et al. Simultaneous detection of Cd2+ and Pb2+ in food based on sensing electrode prepared by conductive carbon paper, rGO and CoZn· MOF (CP-rGO-CoZn· MOF)
Yang et al. Bi/BiVO4/NiFe-LDH heterostructures with enhanced photoelectrochemical performance for streptomycin detection
Zhang et al. Detection of Cr (VI) in agricultural products by photoelectrochemical sensor based on SnS/Bi2MoO6
Wang et al. Constructing and electrochemical performance of AuNPs decorated MIL-53 (Fe, Ni) MOFs–derived nanostructures for highly sensitive hydrazine detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220603