CN111548788A - 一种基于荧光法检测氧气的复合传感膜及其使用方法 - Google Patents

一种基于荧光法检测氧气的复合传感膜及其使用方法 Download PDF

Info

Publication number
CN111548788A
CN111548788A CN202010532387.0A CN202010532387A CN111548788A CN 111548788 A CN111548788 A CN 111548788A CN 202010532387 A CN202010532387 A CN 202010532387A CN 111548788 A CN111548788 A CN 111548788A
Authority
CN
China
Prior art keywords
coating
layer
light
fluorescence
oxygen based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010532387.0A
Other languages
English (en)
Inventor
赵启涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Haifa Intelligent Technology Co ltd
Original Assignee
Suzhou Haifa Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Haifa Intelligent Technology Co ltd filed Critical Suzhou Haifa Intelligent Technology Co ltd
Priority to CN202010532387.0A priority Critical patent/CN111548788A/zh
Publication of CN111548788A publication Critical patent/CN111548788A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种基于荧光法检测氧气的复合传感膜及其使用方法,传感膜包括有透明支撑基材层,所述透明支撑基材层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层,采用以下步骤使用传感膜:S1、用红光作为参比光源,用绿光或蓝光作为激发光源,辐照传感膜的透明支撑层,利用荧光淬灭原理,通过氧气分子与荧光染料分子的相互作用,产生激发红光;S2、经光电二极管检测采集,将光信号转换为电信号,通过处理模块对数据进行非线性算法拟合处理,获得氧气浓度的变化。

Description

一种基于荧光法检测氧气的复合传感膜及其使用方法
技术领域
本发明涉及传感器技术领域,具体涉及一种基于荧光法检测氧气的复合传感膜及其使用方法。
背景技术
水中溶解的氧气含量是衡量水质好坏重要指标之一,溶解氧对于水生动植物存活环境的重要性及水体健康程度的重要性犹如空气中的氧对人类的重要性一样。国际上水中溶解氧的检测技术到目前为止经历了三代(注:水中溶解氧的检测本质上仍然是检测氧分子浓度)。
第一代即传统的比色法和Winkler滴定法(1956年之前):比色法精度和测量范围有限,尤其是在检测低浓度时引入的误差较大;Winkler滴定法虽然精度有保证但操作复杂,人为引入的误差不可避免。
第二代即电化学检测方法(1956-2003年):通常检测系统由两部分组成,一是前端探头部分或传感单元,二是后端数字显示部分。电化学溶解氧传感器的传感单元通常由阴极和阳极构成,在一定的电解质溶液中当被检测样品中的氧气扩散到电极表面后,经由电化学反应产生对应的电流信号,溶解氧浓度经数据经处理后通过表端显示。电化学传感器性能不仅受制于流速的影响,而且此类传感器在废水和污水处理应用中,由于探头部分容易受污染而降低灵敏度从而影响传感器长期稳定性,且需定期添加化学试剂,因而维护成本高。
第三代即光学传感技术(2003-现在):采用荧光淬灭原理,通过氧气分子与荧光分子的相互作用,获得溶解氧浓度随荧光淬灭的变化曲线,通过一定算法来计算被测氧分子浓度。与电化学溶解氧传感器相比,安装维护非常简单,无需添加任何电解质溶液或化学试剂,不受制于流速的影响且可实现即插即用。
基于荧光检测技术的第三代氧气传感器,其检测精度和灵敏度取决于传感单元核心部件,也就是传感膜对荧光信号产生的光化反应感知灵敏度,因而功能化传感膜单元成为传感器核心部件。高性能传感单元能将环境被测信号转换为可定量表征的稳定的原始数据,从而使得传感膜对荧光信号产生的光化反应感知灵敏度十分重要,现有技术存在改进之处。
发明内容
为解决上述技术问题,本发明提出了一种基于荧光法检测氧气的复合传感膜,依次设置的透明支撑基材层、荧光材料镀层、散射光镀层、黑色镀层保证传感膜对光化反应感知灵敏度,从而保证对溶解氧浓度检测的精度。
为达到上述目的,本发明的技术方案如下:一种基于荧光法检测氧气的复合传感膜,其特征在于,包括有透明支撑基材层,所述透明支撑基材层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层。
本发明进一步设置为:所述散射光镀层与所述黑色镀层之间设置有反光层。
本发明进一步设置为:反光层采用Ag或Pt或Pd金屈材料制成,所述反光层的厚度在0.0-100μm。
本发明进一步设置为:所述透明支撑基材层采用玻璃或塑料材质制成。
本发明进一步设置为:所述散射光镀层采用钛白粉、SiO2、六方氮化硼、ZrO2、TiO2、MgF2、Al2O3、MgO、ZnO中的多种纳米颗粒混合物制成,纳米颗粒的粒径在1nm-500nm范围.
本发明进一步设置为:所述荧光材镀层采用如式(1)所示卟吩系列的荧光染料分子:
Figure BDA0002534719900000021
包括有金属离子M以及侧链基R,其中金属离子M为Zn、Cu、Cd、Fe、Pt、Pd、Ru中的一种,其中共轭侧链基R相同或不同,染料分子浓度控制在0.1μg-10g/L。
本发明进一步设置为:所述侧链基R还包括有相同或不同R1、R2、R3、R4,通过调节侧链基R获得拓展的π-共轭体系,获得发射波长570-780nm的稳定的荧光信号。
本发明进一步设置为:黑色镀层采用黑色石墨、碳粉、黑色金屈纳米颗粒中的一种或多种制成,黑色颗粒浓度控制在1-100g/L。
本发明还公开了一种传感膜的使用方法,通过光电二极管对荧光染料分子激发产生的红光进行采集,并将光信号转换成电信号,经过算法处理后获得氧气浓度。
为达到上述目的,本发明的技术方案如下:一种传感膜的使用方法,包括以下步骤:
S1、用红光作为参比光源,用绿光或蓝光作为激发光源,辐照传感膜的透明支撑层,利用荧光淬灭原理,通过氧气分子与荧光染料分子的相互作用,产生激发红光;
S2、经光电二极管检测采集,将光信号转换为电信号,通过处理模块对数据进行非线性算法拟合处理,获得氧气浓度的变化。
综上所述,本发明具有以下效果:
1、选用一种或多种上述荧光染料分子组合制造的荧光传感膜,可以获得荧光寿命为1nS-200uS的荧光淬灭时间,荧光寿命可调。
2、选用一种或多种上述荧光染料分子组合制造的荧光传感膜,可以获得稳定性高,响应时间快,如T90(达到最终读数的90%所用时间)可根据需要调节从1uS到60S。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为传感膜的结构示意图;
图2为传感膜的检测原理示意图;
图3为传感膜使用流程示意图。
图中:1、传感膜;11、透明支撑基材层;12、荧光材料镀层;13、散射光镀层;14、黑色镀层;15、反光层;2、参比光源;3、激发光源;4、光电二极管;5、处理模块。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
如图1所示,一种基于荧光法检测氧气的复合传感膜,传感膜包括有透明支撑基材层,所述透明支撑基材层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层,所述散射光镀层与所述黑色镀层之间设置有反光层。
本方案中,反光层采用Ag或Pt或Pd金屈材料制成,所述反光层的厚度在0.0-100μm,通过调节光电二极管检测到的荧光信号不出现过饱和现象为宜。
本方案中,所述透明支撑基材层采用玻璃或塑料材质制成。
本方案中,所述散射光镀层采用钛白粉(TiO2)、SiO2、六方氮化硼、ZrO2、TiO2、MgF2、Al2O3、MgO、ZnO中的多种纳米颗粒混合物制成,其中纳米颗粒的粒径在1nm-500nm范围,其中配方一:SiO2、ZrO2、TiO2颗粒物总浓度控制但不仅限于在0.1mg-5g/L;配方二:MgF2、Al2O3、MgO、ZnO纳米颗粒浓度控制但不仅限于在1-100g/L之间。
本方案中,黑色镀层采用黑色石墨、碳粉、黑色金屈纳米颗粒中的一种或多种制成,黑色颗粒浓度控制在1-100g/L,黑色镀层可以有效防止外部光透过使得荧光材料镀层寿命的衰减以及荧光材料镀层内荧光信号的干扰影响检测灵敏度和稳定性。
本方案中,所述荧光材镀层采用如式(1)所示卟吩系列的荧光染料分子:
Figure BDA0002534719900000041
包括有金属离子M以及侧链基R,其中金屈离子M为Zn、Cu、Cd、Fe、Pt、Pd、Ru中的一种,其中共轭侧链基R相同或不同,染料分子浓度控制在0.1μg-10g/L。
进一步的,所述侧链基R还包括有相同或不同R1、R2、R3、R4,通过调节侧链基R获得拓展的π-共轭体系,获得发射波长570-780nm的稳定的荧光信号,根据不同的侧链基R形成有以下产物:
经苯磺酸基取代、苯基取代形成有如式(2)的产物:
Figure BDA0002534719900000042
如式(3)的产物:
Figure BDA0002534719900000043
如式(4)的产物:
Figure BDA0002534719900000051
如式(5)的产物:
Figure BDA0002534719900000052
如式(6)的产物:
Figure BDA0002534719900000053
如式(7)的产物:
Figure BDA0002534719900000061
如式(8)的产物:
Figure BDA0002534719900000062
如式(9)的产物:
Figure BDA0002534719900000063
如式(10)的产物:
Figure BDA0002534719900000071
如式(11)的产物:
Figure BDA0002534719900000072
如式(12)的产物:
Figure BDA0002534719900000073
如式(13)的产物:
Figure BDA0002534719900000074
如图2和图3所示,一种传感膜的使用方法,包括以下步骤:
S1、用红光作为参比光源,用绿光或蓝光作为激发光源的辐照传感膜的透明支撑层,利用荧光淬灭原理,通过氧气分子与荧光染料分子的相互作用,产生激发红光;
S2、经光电二极管检测采集,将光信号转换为电信号,通过处理模块对数据进行非线性算法拟合处理,获得氧气浓度的变化。
水中溶解氧的氧气含量根据亨利定律取决于水中氧分压;在一定浓度的氧气存在条件下,荧光染料分子受激后荧光淬灭效应可以根据Stern-Volmer方程计算对应产生荧光淬灭效应的氧气浓度(或氧分压):
Figure BDA0002534719900000081
其中:I0和I分别表示无氧和有氧条件下荧光光强;τ0和τ分别表示无氧和有氧条件下荧光寿命;kq表示荧光分子反应速率常数;Ksv表示荧光淬灭反应常数;p02表示被测氧分压或对应的氧分子浓度。
应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

1.一种基于荧光法检测氧气的复合传感膜,其特征在于,包括有透明支撑基材层,所述透明支撑基材层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层。
2.根据权利要求1所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,所述散射光镀层与所述黑色镀层之间设置有反光层。
3.根据权利要求2所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,反光层采用Ag或Pt或Pd金屈材料制成,所述反光层的厚度在0.0-100μm。
4.根据权利要求1所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,所述透明支撑基材层采用玻璃或塑料材质制成。
5.根据权利要求1所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,所述散射光镀层采用钛白粉(TiO2)、SiO2、六方氮化硼、ZrO2、TiO2、MgF2、Al2O3、MgO、ZnO中的多种纳米颗粒混合物制成,纳米颗粒的粒径在1nm-500nm范围。
6.根据权利要求1所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,所述荧光材镀层采用如式(1)所示卟吩系列的荧光染料分子:
Figure FDA0002534719890000011
包括有金屈离子M以及侧链基R,其中金屈离子M为Zn、Cu、Cd、Fe、Pt、Pd、Ru中的一种,其中共轭侧链基R相同或不同,染料分子浓度控制在0.1μg-10g/L。
7.根据权利要求6所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,所述侧链基R还包括有相同或不同R1、R2、R3、R4,通过调节侧链基R获得拓展的π-共轭体系,获得发射波长570-780nm的稳定的荧光信号。
8.根据权利要求1所述的一种基于荧光法检测氧气的复合传感膜,其特征在于,黑色镀层采用黑色石墨、碳粉、黑色金屈纳米颗粒中的一种或多种制成,黑色颗粒浓度控制在1-100g/L。
9.一种如权利要求1至8任一所述传感膜的使用方法,其特征在于,包括以下步骤:
S1、用红光作为参比光源,用绿光或蓝光作为激发光源,辐照传感膜的透明支撑层,利用荧光淬灭原理,通过氧气分子与荧光染料分子的相互作用,产生激发红光;
S2、经光电二极管检测采集,将光信号转换为电信号,通过处理模块对数据进行非线性算法拟合处理,获得氧气浓度的变化。
CN202010532387.0A 2020-06-11 2020-06-11 一种基于荧光法检测氧气的复合传感膜及其使用方法 Pending CN111548788A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010532387.0A CN111548788A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氧气的复合传感膜及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010532387.0A CN111548788A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氧气的复合传感膜及其使用方法

Publications (1)

Publication Number Publication Date
CN111548788A true CN111548788A (zh) 2020-08-18

Family

ID=72006957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010532387.0A Pending CN111548788A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氧气的复合传感膜及其使用方法

Country Status (1)

Country Link
CN (1) CN111548788A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147120A (zh) * 2020-10-19 2020-12-29 赵启涛 自带超声清洁功能的荧光溶解氧传感膜及制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868904A (zh) * 2014-04-09 2014-06-18 西南石油大学 一种双光纤氧传感器
CN105263412A (zh) * 2013-06-06 2016-01-20 皇家飞利浦有限公司 在化学-光学传感器场所中校正渗透压变化
CN109060733A (zh) * 2018-04-25 2018-12-21 苏州首通科技发展有限公司 铁离子分子荧光传感器及其制备方法
CN110987894A (zh) * 2020-03-02 2020-04-10 南京智感环境科技有限公司 一种检测沉积物溶解氧二维分布的光学传感膜制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263412A (zh) * 2013-06-06 2016-01-20 皇家飞利浦有限公司 在化学-光学传感器场所中校正渗透压变化
CN103868904A (zh) * 2014-04-09 2014-06-18 西南石油大学 一种双光纤氧传感器
CN109060733A (zh) * 2018-04-25 2018-12-21 苏州首通科技发展有限公司 铁离子分子荧光传感器及其制备方法
CN110987894A (zh) * 2020-03-02 2020-04-10 南京智感环境科技有限公司 一种检测沉积物溶解氧二维分布的光学传感膜制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZAITSEV N. K等: "A Dissolved Oxygen Analyzer with an Optical Sensor" *
陈旸等: "聚乙烯醇 - 八乙基铂卟啉测定有机溶剂中溶解氧" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147120A (zh) * 2020-10-19 2020-12-29 赵启涛 自带超声清洁功能的荧光溶解氧传感膜及制备方法与应用

Similar Documents

Publication Publication Date Title
Wei et al. Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection
Li et al. Detection methods of ammonia nitrogen in water: A review
Yilong et al. Electrochemical and other methods for detection and determination of dissolved nitrite: A review
US5440927A (en) Fiber optic moisture sensor
Wang et al. Minreview: Recent advances in the development of gaseous and dissolved oxygen sensors
CN111337473B (zh) 一种基于拉曼光谱的水中游离氯的检测方法
Wolfbeis Materials for fluorescence-based optical chemical sensors
KR101004450B1 (ko) 소수성 졸-겔로 개질된 고분자막을 갖는 탁도 측정용 프로브
CN111678899A (zh) 一种荧光法溶解氧传感器
US20110091916A1 (en) Luciferin-luciferase based microdevice for biosensing
CN111548788A (zh) 一种基于荧光法检测氧气的复合传感膜及其使用方法
CN217277875U (zh) 一种基于荧光猝灭原理的溶解氧实时监测传感器装置
JPH10512668A (ja) 液体中に溶解したガスの分圧を測定する装置
KR100977067B1 (ko) 탁도 측정용 프로브와 이를 이용한 탁도 측정장치
KR100972454B1 (ko) 미생물 형광특성을 이용한 수질 내 미생물 측정용 프로브
US20060228804A1 (en) Modified ruthenium complex luminescence dye for oxygen sensing
CN212894576U (zh) 一种基于荧光法检测氧气的复合传感膜
CN208270429U (zh) 沉积物-水界面溶解氧含量测量装置
CN111548789A (zh) 一种基于荧光法检测氢气的复合传感膜及其使用方法
Ishiji et al. Microenvironmental studies of an Ru (bpy) 32+ luminescent probe incorporated into Nafion film and its application to an oxygen sensor
CN213302014U (zh) 一种荧光法溶解氧传感器
Xu et al. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode
CN114264637A (zh) 溶解氧实时在线监测传感器装置、控制方法及使用方法
Akrema et al. Metal nanoparticles as glucose sensor
CN210294065U (zh) 一种水下分层溶解氧测定仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200818