CN111548789A - 一种基于荧光法检测氢气的复合传感膜及其使用方法 - Google Patents

一种基于荧光法检测氢气的复合传感膜及其使用方法 Download PDF

Info

Publication number
CN111548789A
CN111548789A CN202010532388.5A CN202010532388A CN111548789A CN 111548789 A CN111548789 A CN 111548789A CN 202010532388 A CN202010532388 A CN 202010532388A CN 111548789 A CN111548789 A CN 111548789A
Authority
CN
China
Prior art keywords
light
coating
product
excitation light
composite sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010532388.5A
Other languages
English (en)
Inventor
赵启涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Haifa Intelligent Technology Co ltd
Original Assignee
Suzhou Haifa Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Haifa Intelligent Technology Co ltd filed Critical Suzhou Haifa Intelligent Technology Co ltd
Priority to CN202010532388.5A priority Critical patent/CN111548789A/zh
Publication of CN111548789A publication Critical patent/CN111548789A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于荧光法检测氢气的复合传感膜及其使用方法,传感膜包括有透明支撑基材层,所述透明支撑基材层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层,采用以下步骤使用传感膜:S1,用紫外线或蓝光作为激发光源辐照外层传感膜,再用与产生的激发光波长相近(±20‑30nm)的绿光、蓝光或红光LED为参比光源,利用荧光淬灭原理,通过氢气分子与荧光分子的相互作用,获得激发光与参比光的光相位差;S2,经光电二极管检测采集激发光与参比光,将光信号转换为电信号,将激发光与参比光通过处理模块对数据进行非线性算法拟合处理,获得最稳定,最敏感的氢气浓度变化。

Description

一种基于荧光法检测氢气的复合传感膜及其使用方法
技术领域
本发明涉及传感器技术领域,具体涉及一种基于荧光法检测氢气的复合传感膜及其使用方法。
背景技术
氢气是最有前途和发展潜力的新能源。由于氢气是一种易燃易爆气体(尤其是在有一定氧气混合存在条件下),因此其检测是安全使用新能源的关键。目前氢检测所用传感器从信号来源上定义有传统的电化学技术,光纤检测技术及荧光检测技术等。电化学传感器由于使用寿命短,需定期维护等缺点逐渐被光学传感器取代。光纤检测技术通过修饰光纤功能涂层,检测由于氢气的吸附或表面化学反应引起的光路系统中吸光度、反射或散射光强等变化来表征被测氢气含量,其缺点在于系统复杂、成本高,传感器受环境因素影响使得稳定性差。
本发明设计了一种基于荧光法检测氢气的复合传感膜及制备方法,通过制备含有过渡金屈或贵金屈纳米富氢薄膜,以及光催化复合薄膜设计,制备低成本、高性能、长寿命的氢气传感膜以解决上述问题。
发明内容
为解决上述技术问题,本发明提出了一种基于荧光法检测氢气的复合传感膜,采用荧光染料分子材料作为基质的复合光学薄膜,该复合光学薄膜可以通过不同波长的光辐照产生荧光;所发射出的荧光对氢气敏感,通过荧光淬灭机制,可以对氢气浓度进行表征和计算,从而使得该光敏感膜成为氢气的一种传感单元。
为达到上述目的,本发明的技术方案如下:一种基于荧光法检测氢气的复合传感膜,包括有透明支撑基层,所述透明支撑基层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层。
本发明进一步设置为:所述散射光镀层与所述黑色镀层之间设置有反光层
本发明进一步设置为:反光层采用Ag或Au金屈镀层材料,所述反光层的厚度在0.0-100μm。
本发明进一步设置为:所述散射光镀层采用钛白粉、氧化锌粉、金屈钯、金屈铂、金屈铪,金、银粉末、氧化钨粉末中至少两种材料的混合物。
本发明进一步设置为:所述荧光材镀层采用一种或多种BODIPY系列染料分子,染料核心分子结构如式(1)所示:
Figure BDA0002534723460000021
通过调节侧链或拓展π-共轭体系的获得如下的荧光染料分子:
如式(2)的产物1:
Figure BDA0002534723460000022
如式(3)的产物2:
Figure BDA0002534723460000023
如式(4)的产物3:
Figure BDA0002534723460000024
如式(5)的产物4:
Figure BDA0002534723460000025
本发明进一步设置为:采用370-500nm激发光源激发敏感传感膜,在不同基质材料中添加一种或多种如产物1、产物2、产物3和产物4中所标记的荧光染料分子,通过旋涂或喷涂制备复合传感膜,可获得发射波长520-780nm的稳定荧光信号。
本发明进一步设置为:所述散射光镀层采用Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒的一种或多种混合形成富氢薄膜层,其中Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒粒径在1nm-5um范围内。
本发明进一步设置为:所述散射光镀层采用具有光催化性能的纳米粉末材料Ti02与金属颗粒物混合,Ti02颗粒浓度控制在0.01mg-100g/L。
本发明进一步设置为:所述黑色镀层选择黑色石墨或黑色碳粉或黑色金屈粉末。
本发明还公开了一种传感膜的使用方法,通过光电二极管对荧光染料分子激发产生的参比光进行采集,并将光信号转换成电信号,经过算法处理后获得氢气的浓度。
为达到上述目的,本发明的技术方案如下:一种传感膜的使用方法,包括有如下步骤:
S1,用紫外线或蓝光作为激发光源辐照外层传感膜,再用与产生的激发光波长相近(±20-30nm)的绿光、蓝光或红光LED为参比光源,利用荧光淬灭原理,通过氢气分子与荧光分子的相互作用,获得激发光与参比光的光相位差;
S2,经光电二极管检测采集激发光与参比光,将光信号转换为电信号,将激发光与参比光通过处理模块对数据进行非线性算法拟合处理,获得最稳定,最敏感的氢气浓度变化。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为传感膜的结构示意图;
图2为传感膜的检测原理示意图;
图3为传感膜使用流程示意图。
图中:1、传感膜;11、透明支撑基材层;12、荧光材料镀层;13、散射光镀层;14、黑色镀层;15、反光层;2、参比光源;3、激发光源;4、光电二极管;5、处理模块。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
如图1所示,一种基于荧光法检测氢气的复合传感膜,包括有透明支撑基层,所述透明支撑基层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层。在所述散射光镀层与所述黑色镀层之间设置有反光层
本方案中,反光层采用Ag或Au金屈镀层材料,所述反光层的厚度在0.0-100μm,通过调节光电二极管检测到的荧光信号不出现过饱和现象为宜;若信号量级稳定,反光层膜厚可以为0um,即无反光层镀层。
本方案中,所述散射光镀层采用钛白粉、氧化锌粉、金屈钯、金屈铂、金屈铪,金、银粉末、氧化钨粉末中至少两种材料的混合物。
本方案中,所述散射光镀层采用Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒的一种或多种混合形成富氢薄膜层,其中Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒粒径在1nm-5um范围内。
本方案中,所述散射光镀层采用具有光催化性能的纳米粉末材料TiO2与金屈颗粒物混合,TiO2颗粒浓度控制在0.01mg-100g/L。
本发明进一步设置为:所述黑色镀层选择黑色石墨或黑色碳粉或黑色金屈粉末。
本方案中,所述荧光材镀层采用一种或多种BODIPY系列染料分子,染料核心分子结构如式(1)所示:
Figure BDA0002534723460000041
通过调节侧链或拓展π-共轭体系的获得如下的荧光染料分子:
如式(2)的产物1:
Figure BDA0002534723460000042
如式(3)的产物2:
Figure BDA0002534723460000043
如式(4)的产物3:
Figure BDA0002534723460000051
如式(5)的产物4:
Figure BDA0002534723460000052
本方案中,采用370-500nm激发光源激发敏感传感膜,在不同基质材料中添加一种或多种如产物1、产物2、产物3和产物4中所标记的荧光染料分子,通过旋涂或喷涂制备复合传感膜,可获得发射波长520-780nm的稳定荧光信号。
本发明还提供了一种使用上述传感膜的使用方法,包括有如下步骤:
S1,用紫外线或蓝光作为激发光源辐照外层传感膜,再用与产生的激发光波长相近(±20-30nm)的绿光、蓝光或红光LED为参比光源,利用荧光淬灭原理,通过氢气分子与荧光分子的相互作用,获得激发光与参比光的光相位差;
S2,经光电二极管检测采集激发光与参比光,将光信号转换为电信号,将激发光与参比光通过处理模块对数据进行非线性算法拟合处理,获得最稳定,最敏感的氢气浓度变化。
应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都屈于本发明的保护范围。

Claims (10)

1.一种基于荧光法检测氢气的复合传感膜,包括有透明支撑基层,其特征在于,所述透明支撑基层表面结合有荧光材料镀层,所述荧光材料镀层表面结合有散射光镀层,所述散射光镀层表面结合有黑色镀层。
2.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述散射光镀层与所述黑色镀层之间设置有反光层。
3.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,反光层采用Ag或Au金屈镀层材料,所述反光层的厚度在0.0-100μm。
4.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述散射光镀层采用钛白粉、氧化锌粉、金屈钯、金属铂、金属铪,金、银粉末、氧化钨粉末中至少两种材料的混合物。
5.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述荧光材镀层采用一种或多种BODIPY系列染料分子,染料核心分子结构如式(1)所示:
Figure FDA0002534723450000011
通过调节侧链或拓展π-共轭体系的获得如下的荧光染料分子:
如式(2)的产物1:
Figure FDA0002534723450000012
如式(3)的产物2:
Figure FDA0002534723450000013
如式(4)的产物3:
Figure FDA0002534723450000021
如式(5)的产物4:
Figure FDA0002534723450000022
6.根据权利要求5所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,采用370-500nm激发光源激发敏感传感膜,在不同基质材料中添加一种或多种如产物1、产物2、产物3和产物4中所标记的荧光染料分子,通过旋涂或喷涂制备复合传感膜,可获得发射波长520-780nm的稳定荧光信号。
7.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述散射光镀层采用Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒的一种或多种混合形成富氢薄膜层,其中Pd-Au二元合金颗粒、金屈Pt颗粒、金屈铪颗粒粒径在1nm-5um范围内。
8.根据权利要求7所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述散射光镀层采用具有光催化性能的纳米粉末材料TiO2与金屈颗粒物混合,TiO2颗粒浓度控制在0.01mg-100g/L。
9.根据权利要求1所述的一种基于荧光法检测氢气的复合传感膜,其特征在于,所述黑色镀层选择黑色石墨或黑色碳粉或黑色金屈粉末。
10.一种使用如权利要求1-9所述传感膜的使用方法,其特征在于,包括有如下步骤:
S1,用紫外线或蓝光作为激发光源辐照外层传感膜,再用与产生的激发光波长相近(±20-30nm)的绿光、蓝光或红光LED为参比光源,利用荧光淬灭原理,通过氢气分子与荧光分子的相互作用,获得激发光与参比光的光相位差;
S2,经光电二极管检测采集激发光与参比光,将光信号转换为电信号,将激发光与参比光通过处理模块对数据进行非线性算法拟合处理,获得最稳定,最敏感的氢气浓度变化。
CN202010532388.5A 2020-06-11 2020-06-11 一种基于荧光法检测氢气的复合传感膜及其使用方法 Withdrawn CN111548789A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010532388.5A CN111548789A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氢气的复合传感膜及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010532388.5A CN111548789A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氢气的复合传感膜及其使用方法

Publications (1)

Publication Number Publication Date
CN111548789A true CN111548789A (zh) 2020-08-18

Family

ID=72000943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010532388.5A Withdrawn CN111548789A (zh) 2020-06-11 2020-06-11 一种基于荧光法检测氢气的复合传感膜及其使用方法

Country Status (1)

Country Link
CN (1) CN111548789A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147120A (zh) * 2020-10-19 2020-12-29 赵启涛 自带超声清洁功能的荧光溶解氧传感膜及制备方法与应用
CN115561217A (zh) * 2022-11-21 2023-01-03 深圳湃诺瓦医疗科技有限公司 生物传感器以及监测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516799A (zh) * 2011-12-12 2012-06-27 安徽师范大学 新型长波长氟硼三吡咯荧光染料及其合成方法
CN105524611A (zh) * 2015-11-30 2016-04-27 陕西师范大学 一种离子液体微阵列单分子层荧光传感薄膜及其制备方法和应用
CN110204564A (zh) * 2019-05-30 2019-09-06 上海应用技术大学 一种检测氰根离子的荧光探针及其制备方法和应用
KR20200049954A (ko) * 2018-10-29 2020-05-11 서울대학교산학협력단 염료 조성물, 형광 복합체 및 이를 포함하는 광전환 필름
CN111208107A (zh) * 2020-02-23 2020-05-29 江苏省农业科学院 一种溶解氧测量装置及传感膜最适激发条件的判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516799A (zh) * 2011-12-12 2012-06-27 安徽师范大学 新型长波长氟硼三吡咯荧光染料及其合成方法
CN105524611A (zh) * 2015-11-30 2016-04-27 陕西师范大学 一种离子液体微阵列单分子层荧光传感薄膜及其制备方法和应用
KR20200049954A (ko) * 2018-10-29 2020-05-11 서울대학교산학협력단 염료 조성물, 형광 복합체 및 이를 포함하는 광전환 필름
CN110204564A (zh) * 2019-05-30 2019-09-06 上海应用技术大学 一种检测氰根离子的荧光探针及其制备方法和应用
CN111208107A (zh) * 2020-02-23 2020-05-29 江苏省农业科学院 一种溶解氧测量装置及传感膜最适激发条件的判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAVLO KOS等: "A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147120A (zh) * 2020-10-19 2020-12-29 赵启涛 自带超声清洁功能的荧光溶解氧传感膜及制备方法与应用
CN115561217A (zh) * 2022-11-21 2023-01-03 深圳湃诺瓦医疗科技有限公司 生物传感器以及监测设备

Similar Documents

Publication Publication Date Title
Ye et al. An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants
Ndaya et al. Recent advances in palladium nanoparticles-based hydrogen sensors for leak detection
Peyser et al. Mechanism of Ag n nanocluster photoproduction from silver oxide films
Chattopadhyay et al. Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips
Saito et al. Site-selective plasmonic etching of silver nanocubes
Dick et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss
Wilson et al. Nanoscale optical imaging in chemistry
Asapu et al. Electron transfer and near-field mechanisms in plasmonic gold-nanoparticle-modified TiO2 photocatalytic systems
CN111548789A (zh) 一种基于荧光法检测氢气的复合传感膜及其使用方法
Gutiérrez et al. Nanoplasmonic photothermal heating and near-field enhancements: a comparative survey of 19 metals
Zhang et al. Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution
Jiang et al. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles
Huang et al. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays
Zha et al. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al 2 O 3
Matsubara et al. Effects of adsorbed water on plasmon-based dissolution, redeposition and resulting spectral changes of Ag nanoparticles on single-crystalline TiO 2
Zhang et al. Substantial enhancement toward the photocatalytic activity of CdS quantum dots by photonic crystal-supporting films
Zhang et al. Photoelectrochemical sensing of dopamine using gold-TiO 2 nanocomposites and visible-light illumination
Sugawa et al. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films
Ye et al. Construction of Sensitive Surface‐Enhanced Raman Spectroscopy Chip with Sub‐Nanometer WO3− x Nanowire‐Based Superstructures for Multicomponent Detection
Zhang et al. SERS and the photo-catalytic performance of Ag/TiO 2/graphene composites
CN106198648A (zh) 一种室温氢气传感器的制备方法
Gao et al. Palladium nanoparticles doped polymer microfiber functioned as a hydrogen probe
CN212894577U (zh) 一种基于荧光法检测氢气的复合传感膜
Tesler et al. Metallic nanoparticle-on-mirror: Multiple-band light harvesting and efficient photocurrent generation under visible light irradiation
Bai et al. In situ irradiated X-ray photoelectron spectroscopy on Ag-WS2 heterostructure for hydrogen production enhancement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200818