CN111545222B - 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用 - Google Patents

一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用 Download PDF

Info

Publication number
CN111545222B
CN111545222B CN202010404734.1A CN202010404734A CN111545222B CN 111545222 B CN111545222 B CN 111545222B CN 202010404734 A CN202010404734 A CN 202010404734A CN 111545222 B CN111545222 B CN 111545222B
Authority
CN
China
Prior art keywords
composite material
dithio
core
cobalt complex
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010404734.1A
Other languages
English (en)
Other versions
CN111545222A (zh
Inventor
刘国成
高越
张艳萍
张益嘉
常之晗
徐娜
李爽
钟宝琦
刘滨秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN202010404734.1A priority Critical patent/CN111545222B/zh
Publication of CN111545222A publication Critical patent/CN111545222A/zh
Application granted granted Critical
Publication of CN111545222B publication Critical patent/CN111545222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用,该复合材料表达式如下:Co/S/N/C‑1;Co/S/N/C为核壳碳化纳米复合材料,1为联硫基钴配合物;合成方法是:以CoCl2·6H2O、N,N'‑双(4‑亚甲基吡啶)苯‑1,4‑二甲酰胺和3,3'‑二硫二苯甲酸水热法合成获得联硫基钴配合物,经研磨微晶态配合物材料,置于管式炉中,在甲烷、氨气和氩气气氛下中升温并烧结,获得复合材料Co/S/N/C‑1。优点是:合成工艺简单,原料成本低廉,获得的复合材料在提高催化活性的同时可以有效保护内层活性位点,使该材料具有电催化氧还原和电催化析氧能力,可作为OER和ORR双功能电催化剂。

Description

一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方 法和应用
技术领域
本发明属于电池电极材料合成领域,特别涉及一种联硫基钴配合物衍生的Co9S8、S、N 共掺杂核壳结构碳化纳米复合材料及其合成方法和应用。
背景技术
随着以化石燃料为能源的枯竭和全球能源需求的增加,开发绿色、可持续的能源储存和转换技术,以替代目前使用的化石燃料具有重要的研究意义。在众多的替代能源中,燃料电池、金属空气电池等是前景巨大的能源形式。电催化氧还原反应(ORR)和氧析出反应(OER) 是新型电池能源技术领域的关键因素。开发具有双功能的电催化剂是其中的核心技术。
目前,Pt/C和RuO2是衡量ORR和OER催化剂性能的标志物。然而,这两种催化剂都存在着一个问题,就是价格昂贵。这导致无法实现大规模的产业化。因此,迫切需要找到一种与贵金属催化剂催化效果相当的,但是成本低的非贵金属电活性材料。然而,普通的非贵金属衍生的电催化剂的催化效果不理想。通过将硫、氮、硼等元素修饰到包裹在非贵金属表面的碳材料里,可大大提高催化剂的ORR和OER性能。但是,如果采用不同试剂混合添加的方式来引入硫、氮等元素,一来容易造成二次污染,二来无法实现均匀混合掺杂,导致电催化效果不理想。因此,制备催化性能好,价格低,活性组分分布均匀、综合性能优异的新型电催化材料是当前该技术领域科研工作的热点和难点。
因此,制备一种催化性能好,价格低,活性组分分布均匀、综合性能优异的新型电催化材料具有十分重要的意义。
发明内容
本发明要解决的技术问题是提供一种联硫基钴配合物衍生的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用,合成工艺简单,原料成本低廉,通过含S和N的配合物前驱体来制备纳米复合材料,实现了硫的原位引入,使材料中,活性位点分布均匀,外层碳壳中含有硫和氮掺杂形成缺陷效应,在提高催化活性的同时可以有效保护内层活性位点,使该材料具有电催化氧还原和电催化析氧能力,可作为在作为OER和ORR双功能电催化剂使用。
本发明的技术解决方案是:
一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料,表达式如下:
Co/S/N/C-1;
其中,Co/S/N/C为核壳碳化纳米复合材料,1为联硫基钴配合物;
1的分子式为[Co(L)(3,3-DTSA)],
L为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,3,3-DTSA为3,3'-二硫二苯甲酸根。
一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料的合成方法,步骤如下:
(1)联硫基钴配合物合成
将CoCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和3,3'-二硫二苯甲酸,加入去离子水;在室温下采用振荡器振荡混合30min~60min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与3,3'-二硫二苯甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶) 苯-1,4-二甲酰胺与CoCl2·6H2O的摩尔比为1:1~1:3,NaOH溶液调pH为5.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至125℃~165℃,水热条件下保温72h~144h,以5℃/h的降温速率降温到室温得到紫色块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到联硫基钴配合物。
(2)微晶态联硫基钴配合物材料制备
将联硫基钴配合物称取0.2克,采用玛瑙研钵研磨1小时~3小时,然后分散到1毫升~ 3毫升的乙醇中,用球磨机研磨30min~90min,离心分离,在70℃下干燥24小时,得到微晶态联硫基钴配合物材料;
(3)Co/S/N/C-联硫基钴配合物复合材料制备
将0.1克微晶态联硫基钴配合物放置于石英瓷舟,然后置于管式炉中氮气保护下的管式炉中,在氮气流中保持15min~45min,氮气流流速80mL·min-1~120mL·min-1,然后在甲烷、氨气和氩气的混合气体气流中将温度上高到800℃,升温速率2℃·min-1~10℃·min-1,混合气体气流流速100mL·min-1~140mL·min-1,氨气与甲烷的体积比1:1~1:3、氨气与氩气的体积比为1:6~1:8;升温至800℃后,继续通入所述混合气体,并在800℃下保温1小时~3小时;在氩气条件下自然冷却至室温,氩气流流速100mL·min-1,得到黑色固体纳米级复合材料Co/S/N/C-1。
进一步的,所述振荡幅度为20mm~30mm。
进一步的,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~ 1:8300。
进一步的,所述管式炉的石英管内径为80mm,长1000mm;步骤(3)通入气体时,氮气的纯度为99.999%;甲烷的纯度为99.999%;氨气的纯度为99.999%。
进一步的,NaOH溶液的浓度为0.1mol/L。
一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为OER和ORR双功能电催化剂中的应用。
一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为OER电催化剂中的应用。
一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为ORR电池阴极材料中的应用。
本发明的有益效果是:
(1)钴配合物[Co(L)(3,3-DTSA)]具有二维→三维互穿结构;
(2)N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺有机胺配体中间的苯环基团,不仅增加了配体的长度和刚性,而且对构筑高维开放骨架起到空间拓展作用;两个亚甲基的引入有效的提高了配体的灵活性和配位适应性,有利于复杂配位骨架的产生;联硫二羧酸3,3'-二硫二苯甲酸不仅能够拓展配合物骨架,其联硫基团可以在制备复合材料时,原位转化成钴的硫化物,是电催化剂材料的重要有效组分,配合物中联硫基团具有规则的分布,原位的转化到电催化剂材料中提高了钴的硫化物的高分散性,提高了电催化效果;原位的硫的引入不仅提高了硫元素的利用率,而且不用额外使用含硫试剂,有效的降低了污染。Co/S/N/C-1的起始电位为 0.84V,半波电位为0.76V。相应参数与Pt/C相近,说明Co/S/N/C-1是一种性能较好的ORR 电催化剂。而Co/S/N/C-1的成本比Pt/C更低。说明Co/S/N/C-1具有较好的应用前景。经过 1000次循环催化测试之后,Co/S/N/C-1仍然保持着很好的电化学活性。证明Co/S/N/C-1具有长期稳定性。是一种很好的ORR电催化剂材料。OER测试结果表明,当电流密度为1mA cm–2时,起始电位为1.61V。达到电流密度10mA cm–2所需要的电位为1.81V。表明Co/S/N/C-1 具有较好的OER电催化性能。性能与OER的基准物质RuO2相近。如图26所示,在碱性环境下,1000次循环催化后,线扫伏安结果表明,Co/S/N/C-1的OER催化性能几乎没变,说明Co/S/N/C-1是一种稳定的OER电催化剂材料。上述研究表明Co/S/N/C-1是一种具有ORR 和OER双重电催化性能的电极材料。
(3)联硫基钴配合物衍生的核壳碳化纳米复合材料可以作为电池阴极材料,实现了双功能的 OER和ORR。
附图说明
图1是本发明的[Co(L)(3,3-DTSA)]的XRD衍射图;
图2是本发明的[Co(L)(3,3-DTSA)]的红外光谱图;
图3是本发明的[Co(L)(3,3-DTSA)]的配位环境图;
图4是本发明的[Co(L)(3,3-DTSA)]的二维结构图;
图5是本发明的[Co(L)(3,3-DTSA)]的二维→三维互穿结构拓扑图;
图6是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的SEM形貌图;
图7是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中C元素分布图;
图8是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中N元素分布图;
图9是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中O元素分布图;
图10是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中S元素分布图;
图11是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中Co元素分布图;
图12是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的EDS图;
图13是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的不同放大倍数的TEM形貌图,a:20nm,b:5nm,c:高分辨TEM图;
图14是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的XRD图;
图15是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的XPS图;
图16是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中的S 2p高分辨XPS图;
图17是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中的C1s高分辨XPS图;
图18是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中的N1s高分辨XPS图;
图19是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中的O1s高分辨XPS图;
图20是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1中的Co 2p高分辨XPS图;
图21是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的线扫伏安图展示出ORR性能,测试环境O2-饱和的0.1M KOH溶液,扫速为5mV s-1,旋转圆盘电极的旋转速度分别为100、400、900、1600rpm;
图22是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的Koutecky-Levich图;
图23是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的由RDE数据获得的电子转移数;
图24是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1的作为ORR电催化剂在第1次和第1000次循环伏安的LSV曲线图;
图25是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1作为OER电催化剂的线扫伏安图;
图26是本发明的[Co(L)(3,3-DTSA)]制备的核壳碳化纳米复合材料Co/S/N/C-1作为OER电催化剂在第1次和第1000次循环的稳定性,测试环境O2-饱和0.1M KOH。
具体实施方式
实施例1合成[Co(L)(3,3-DTSA)],其中,L为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,结构式为:
Figure BDA0002490866990000051
3,3-DTSA为3,3'-二硫二苯甲酸根
将0.1mmol CoCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.1mmol 3, 3'-二硫二苯甲酸和5mL H2O依次加入到25mL烧杯中,在室温、采用振荡幅度为30mm振荡混合30min,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至5.2后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至125℃,水热条件下保温144h,以 5℃/h的降温速率将温度降至室温,得到紫色块状晶体,用去离子水和乙醇交替清洗3次,室温下自然晾干,得[Co(L)(3,3-DTSA)],产率为35%,配合物1[Co(L)(3,3-DTSA)]的XRD衍射图谱如图1所示,其配位环境图如图3所示,其二维结构图如图4所示,其二维→三维互穿结构拓扑图如图5所示。
实施例2合成[Co(L)(3,3-DTSA)],其中,L为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,3,3-DTSA 为3,3'-二硫二苯甲酸根
将0.15mmol CoCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.15mmol 3, 3'-二硫二苯甲酸和15mL H2O依次加入到25mL烧杯中,在室温、采用振荡幅度为25mm振荡混合60min,转速1200rpm,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至6.8后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至165℃,水热条件下保温72h,以5℃/h的降温速率将温度降至室温,得到紫色块状晶体,用去离子水和乙醇交替清洗3次,室温下自然晾干,得[Co(L)(3,3-DTSA)],产率为75%,配合物1 [Co(L)(3,3-DTSA)]的XRD衍射图谱如图1所示,其配位环境图如图3所示,其二维结构图如图4所示,其二维→三维互穿结构拓扑图如图5所示。
实施例3合成[Co(L)(3,3-DTSA)],其中,L为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,3,3-DTSA 为3,3'-二硫二苯甲酸根
将0.3mmol CoCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.3mmol 3, 3'-二硫二苯甲酸和18mL H2O依次加入到25mL烧杯中,在室温、采用振荡幅度为20mm振荡混合90min,转速1500rpm,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至7.2后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至140℃,水热条件下保温96h,以5℃/h的降温速率将温度降至室温,得到紫色块状晶体,用去离子水和乙醇交替清洗5次,室温下自然晾干,得[Co(L)(3,3-DTSA)],产率为55%,配合物1 [Co(L)(3,3-DTSA)]的XRD衍射图谱如图1所示,其配位环境图如图3所示,其二维结构图如图4所示,其二维→三维互穿结构拓扑图如图5所示。
一、基于本发明实施例1~实施例3的联硫基钴配合物的表征
粉末衍射表征[Co(L)(3,3-DTSA)]相纯度
在Rigaku Ultima IV粉末X射线衍射仪上收集完成粉末衍射数据,操作电流为40mA,电压为40kV。采用铜靶X射线。固定扫描,接收狭缝宽为0.1mm。密度数据收集使用2θ/θ扫描模式,扫描范围5°到50°,扫描速度为5°/s,跨度为0.02°/次。数据拟合使用Cerius2程序,单晶结构粉末衍射谱模拟转化使用Mercury 1.4.1。如图1所示,基于有机配体的镍配合物的粉末X射线衍射谱图与拟合的XRD谱图基本吻合,表明配合物均为纯相。
[Co(L)(3,3-DTSA)]红外表征
如图2所示[Co(L)(3,3-DTSA)]中存在来自N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和3,3'- 二硫二苯甲酸根的羧基、酰胺基、吡啶基、联硫基等明显的特征吸收峰。
二、晶体结构测定
用显微镜选取合适大小的单晶,室温下采用Bruker SMART APEX II衍射仪(石墨单色器, Mo-Ka)收集衍射数据。扫描方式
Figure BDA0002490866990000062
衍射数据使用SADABS程序进行吸收校正。数据还原和结构解析分别使用SAINT和SHELXTL程序完成。最小二乘法确定全部非氢原子坐标,并用理论加氢法得到氢原子位置。采用最小二乘法对晶体结构进行精修。图3~图5展示出实施例1~实施例3中合成的联硫基钴配合物的基本配位情况和扩展结构。其晶体学衍射点数据收集与结构精修的部分参数如表1所示:
表1
Figure BDA0002490866990000061
Figure BDA0002490866990000071
实施例4合成Co/S/N/C-1材料
将上述实施例2合成的联硫基钴配合物[Co(L)(3,3-DTSA)]称取0.2克,采用玛瑙研钵研磨1小时,然后分散到1毫升的乙醇中,用球磨机研磨30min,离心分离出微晶态联硫基钴配合物材料,在70℃下干燥24小时,得到微晶态联硫基钴配合物;
将0.1克微晶态联硫基钴配合物放置于石英瓷舟,置于氮气保护下的管式炉中,管式炉的石英管内径为80mm,长1000mm,在氮气流中保持15min,氮气流速80mL·min-1,然后在甲烷、氨气和氩气的混合气流中将温度上高到800℃,升温速率10℃·min-1,混合气体流速100mL·min-1,甲烷、氨气和氩气的体积比为1:1:8;上述管式炉氩气纯度为99.999%, 甲烷纯度99.999%,氨气纯度99.999%,氮气纯度99.999%。在800℃甲烷、氨气和氩气混合气体环境下加热1小时;在氩气条件下自然冷却至室温,氩气流流速100mL·min-1,得到50mg 黑色固体纳米级复合材料Co/S/N/C-1。
实施例5合成Co/S/N/C-1材料
将上述实施例2合成的联硫基钴配合物[Co(L)(3,3-DTSA)]称取0.2克,采用玛瑙研钵研磨2小时,然后分散到1.5毫升的乙醇中,用球磨机研磨60min,离心分离出微晶态联硫基钴配合物材料,在70℃下干燥24小时,得到微晶态联硫基钴配合物;
将0.1克微晶态联硫基钴配合物放置于石英瓷舟,置于管式炉内在氮气流中保持30min,管式炉的石英管内径为80mm,长1000mm,氮气流速100mL·min-1,然后在甲烷、氨气和氩气的混合气流中将温度上高到800℃,升温速率5℃·min-1,混合气体流速120mL·min-1,甲烷、氨气和氩气的体积比为2:1:7。置于氮气保护下的管式炉中。氩气纯度为99.999%,甲烷纯度99.999%,氨气纯度99.99%,氮气纯度99.99%。在800℃甲烷、氨气和氩气混合气体环境下加热2小时;在氩气条件下自然冷却至室温,氩气流流速100mL·min-1,得到75mg 黑色固体纳米级复合材料Co/S/N/C-1。
实施例6合成Co/S/N/C-1材料
将上述实施例2合成的联硫基钴配合物[Co(L)(3,3-DTSA)]称取0.2克,采用玛瑙研钵研磨3小时,然后分散到3毫升的乙醇中,用球磨机研磨90min,离心分离出微晶态联硫基钴配合物材料,在70℃下干燥24小时,得到微晶态联硫基钴配合物;
将0.1克微晶态联硫基钴配合物放置于石英瓷舟,置于管式炉内在氮气流中保持45min,管式炉的石英管内径为80mm,长1000mm。氮气流速120mL·min-1,然后在甲烷、氨气和氩气的混合气流中将温度上高到800℃,升温速率2℃·min-1,混合气体流速140mL·min-1,甲烷、氨气和氩气的体积比为3:1:6。氩气纯度为99.999%,甲烷纯度99.999%,氨气纯度99.999%,氮气纯度99.999%。在800℃甲烷、氨气和氩气混合气体环境下加热3小时;在氩气条件下自然冷却至室温,氩气流流速100mL·min-1,得到65mg黑色固体纳米级复合材料Co/S/N/C-1。
三、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的形貌
如图6所示,在2.5μm标尺下采用扫描电镜观察到复合材料Co/S/N/C-1的形貌。表明该材料为无规则颗粒形状材料。
四、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的元素分布表征
如图7~图11所示,复合材料Co/S/N/C-1中含有均匀分布的Co、S、N、O、C元素。其中,从图10~图11可以看到,S、Co两种元素的分布具有明显的相关性,证明钴元素主要以硫化物形式存在。
五、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的EDS表征
如图12所示,复合材料Co/S/N/C-1中含有不同数量的Co、S、N、O、C元素。
六、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的不同放大倍数的TEM 形貌表征
如图13所示,复合材料Co/S/N/C-1中的钴的硫化物主要以无规则但是边缘平滑的多边形态存在,尺寸10nm~100nm,在其周围包裹着不同厚度的C-S-N材料,这样形成以钴的化合物为核,以C的化合物为壳的核壳结构。碳的存在形式主要以石墨态形式存在,可清晰观察到其对应的晶格条纹。
七、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的相纯度
如图14所示,复合材料Co/S/N/C-1中的钴主要以硫化物形式存在,碳主要以硫和氮掺杂的石墨态形式存在。在15.41°、29.81°、31.21°、47.51°、52.01°出现的衍射峰可归属于Co9S8的(111)、(311)、(222)、(511)、(440)的衍射峰。
八、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的XPS表征
如图15所示,复合材料Co/S/N/C-1的XPS测试结果可明显的观察到Co、S、N、O、C 的特征峰证明了材料中的元素的存在形式。Co·2p3/2和Co·2p1/2分别在777.7·eV和794.4·eV 出现特征峰,表明材料中的钴主要以正二价形式存在。
九、联硫基钴配合物衍生的核壳碳化纳米复合材料Co/S/N/C-1的高分辨XPS表征
如图16~图20所示,复合材料Co/S/N/C-1的高分辨XPS测试结果可明显的观察到Co2p、S2p、N1s、O1s、C1s的特征峰证明了材料中的元素的存在形式。
十、实施例4~实施例6合成的核壳碳化纳米复合材料Co/S/N/C-1的ORR性能测试实验的具体步骤及结果如下:
Co/S/N/C-1的电化学性能测试采用典型的三电极体系,测试环境为0.1M KOH溶液,测试仪器为CHI 760E电化学工作站。催化剂被修饰到旋转圆盘玻碳电极表面,A=0.196cm2作为工作电极,Ag/AgCl/KCl(3M)作为参比电极,Pt丝作为对电极。测试前,旋转圆盘玻碳电极先后用不同粒径Al2O3粉末负载的抛光布进行抛光。Al2O3粉末粒径0.3μm和0.05μm,然后用去离子水冲洗。催化剂涂膜液的制备如下。将1mL去离子水、乙醇、萘酚混合溶液与 5mg复合材料Co/S/N/C-1超声混合30min获得混合物,混合溶液中去离子水、乙醇、萘酚的体积比为49:49:2。将8.3μL上述混合物滴涂到旋转圆盘玻碳电极表面,催化剂有效成分的负载量为0.21mg·cm–2。室温环境下自然干燥30min得到工作电极。线扫伏安测试电位范围0.1~–1.0V,扫速5mV·s–1,旋转速度分别为100,400,900and 1600rpm,测试环境O2饱和的0.1M KOH溶液。如图21所示,随着转速的增加氧气流快速到达工作电极表面,在电流密度-0.1mA·cm-2、转速1600rpm条件下,Co/S/N/C-1的起始电位为0.84V,半波电位为 0.76V。ORR的基准电催化剂Pt/C的起始电位和半波电位分别为0.96V和0.86V。Co/S/N/C-1 的相应参数与Pt/C相近,说明Co/S/N/C-1是一种性能较好的ORR电催化剂。而Co/S/N/C-1 的成本比Pt/C更低。说明Co/S/N/C-1具有较好的应用前景。如图22所示,K-L方程曲线显示出较好的线性度,表明Co/S/N/C-1催化剂对ORR的催化效果为一级动力学反应过程。如图23所示,在ORR过程中,在0.2至0.7V的扩散控制区间内,电子转移数在3.4至3.9之间,证明该ORR过程为4电子转移过程。如图24所示,经过1000次循环伏安测试之后, Co/S/N/C-1仍然保持着很好的电化学活性。证明Co/S/N/C-1具有长期稳定性。是一种很好的 ORR电催化剂材料。
十一、实施例4~实施例6合成的核壳碳化纳米复合材料Co/S/N/C-1的OER性能测试实验的具体步骤和结果如下:
Co/S/N/C-1的OER性能测试采用的电位范围1.2~2.0V,扫速5mV·s–1,旋转圆盘电极的转速1600rpm,测试环境为O2饱和的0.1M KOH溶液。如图25所示,当电流密度为1 mA·cm–2时,起始电位为1.61V。达到电流密度10mA·cm–2所需要的电位为1.81V。表明 Co/S/N/C-1具有较好的OER电催化性能。性能与OER的基准物质RuO2相近。如图26所示,在碱性环境下,1000次循环催化后,线扫伏安结果表明,Co/S/N/C-1的OER催化性能几乎没变,说明Co/S/N/C-1是一种稳定的OER电催化剂材料。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料,其特征是:
所述Co9S8、S、N共掺杂核壳结构碳化纳米复合材料表达式如下:Co/S/N/C-1;
其中,Co/S/N/C为核壳碳化纳米复合材料,1为联硫基钴配合物;
1的分子式为[Co(L)(3,3-DTSA)],L为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,3,3-DTSA为3,3'-二硫代二苯甲酸根;
其具体合成步骤如下:
(1)联硫基钴配合物合成
将CoCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和3,3'-二硫代二苯甲酸,加入去离子水;在室温下采用振荡器振荡混合30min~60min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与3,3'-二硫代二苯甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与CoCl2·6H2O的摩尔比为1:1~1:3,NaOH溶液调pH为5.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至125℃~165℃,水热条件下保温72h~144h,以5℃/h的降温速率降温到室温得到块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到联硫基钴配合物;
(2)微晶态联硫基钴配合物材料制备
将联硫基钴配合物称取0.2克,采用玛瑙研钵研磨1小时~3小时,然后分散到1毫升~3毫升的乙醇中,用球磨机研磨30min~90min,离心分离,在70℃下干燥24小时,得到微晶态联硫基钴配合物材料;
(3)Co/S/N/C-联硫基钴配合物复合材料制备
将0.1克微晶态联硫基钴配合物放置于石英瓷舟,然后置于管式炉中氮气保护下的管式炉中,在氮气流中保持15min~45min,氮气流流速80 mL·min−1~120 mL·min−1,然后在甲烷、氨气和氩气的混合气体气流中将温度上高到800 ℃,升温速率2℃·min−1~10 ℃·min−1,混合气体气流流速100 mL·min−1~140 mL·min−1,氨气与甲烷的体积比1:1~1:3、氨气与氩气的体积比为1:6~1:8;升温至800℃后,继续通入所述混合气体,并在800℃下保温1小时~3小时;在氩气条件下自然冷却至室温,氩气流流速100 mL·min−1,得到纳米级复合材料Co/S/N/C-1。
2.根据权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料的合成方法,其特征是:振荡幅度为20mm~30mm。
3.根据权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料的合成方法,其特征是:所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~1:8300。
4.根据权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料的合成方法,其特征是:所述管式炉的石英管内径为80mm,长1000mm;步骤(3)通入气体时,氮气的纯度为99.999%;甲烷的纯度为99.999%;氨气的纯度为99.999%。
5.根据权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料的合成方法,其特征是:NaOH溶液的浓度为0.1mol/L。
6.一种如权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为ORR电催化剂中的应用。
7.一种如权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为OER电催化剂中的应用。
8.一种如权利要求1所述的Co9S8、S、N共掺杂核壳结构碳化纳米复合材料在作为ORR电池阴极材料中的应用。
CN202010404734.1A 2020-05-14 2020-05-14 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用 Active CN111545222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010404734.1A CN111545222B (zh) 2020-05-14 2020-05-14 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010404734.1A CN111545222B (zh) 2020-05-14 2020-05-14 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN111545222A CN111545222A (zh) 2020-08-18
CN111545222B true CN111545222B (zh) 2022-09-27

Family

ID=72006361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010404734.1A Active CN111545222B (zh) 2020-05-14 2020-05-14 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN111545222B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224319B (zh) * 2021-03-31 2022-08-09 广西大学 一种氮硫共掺杂碳包覆过渡金属纳米硫化物电化学氧催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936796A (zh) * 2014-03-21 2014-07-23 渤海大学 一种基于柔性双吡啶双酰胺配体和苯二羧酸的钴配合物及其合成方法和应用
CN105140535A (zh) * 2015-08-05 2015-12-09 北京化工大学 硫化钴/氮硫共掺杂碳空心球复合材料及其制备方法
CN106391122A (zh) * 2016-08-16 2017-02-15 渤海大学 一种聚吡咯功能化的钴配合物复合材料的合成方法及其应用
CN107983385A (zh) * 2017-11-28 2018-05-04 渤海大学 一种镍基磁性复合物材料及其合成方法和应用
CN109794278A (zh) * 2019-02-11 2019-05-24 河南理工大学 氮氧硫三掺杂多孔碳包覆八硫化九钴复合型催化剂及其制备方法
CN110085879A (zh) * 2019-05-22 2019-08-02 中国科学院山西煤炭化学研究所 一种Co9S8/硫氮共掺碳复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936796A (zh) * 2014-03-21 2014-07-23 渤海大学 一种基于柔性双吡啶双酰胺配体和苯二羧酸的钴配合物及其合成方法和应用
CN105140535A (zh) * 2015-08-05 2015-12-09 北京化工大学 硫化钴/氮硫共掺杂碳空心球复合材料及其制备方法
CN106391122A (zh) * 2016-08-16 2017-02-15 渤海大学 一种聚吡咯功能化的钴配合物复合材料的合成方法及其应用
CN107983385A (zh) * 2017-11-28 2018-05-04 渤海大学 一种镍基磁性复合物材料及其合成方法和应用
CN109794278A (zh) * 2019-02-11 2019-05-24 河南理工大学 氮氧硫三掺杂多孔碳包覆八硫化九钴复合型催化剂及其制备方法
CN110085879A (zh) * 2019-05-22 2019-08-02 中国科学院山西煤炭化学研究所 一种Co9S8/硫氮共掺碳复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Metal-induced various properties and structures of complexes based on methylene-derived diamide and S2-bridged carboxylate";Guo-Cheng Liu等;《Polyhedron》;20190524;第170卷;294–302 *

Also Published As

Publication number Publication date
CN111545222A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Hao et al. Nickel–cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst
Chae et al. Templated fabrication of perfectly aligned metal-organic framework-supported iron-doped copper-cobalt selenide nanostructure on hollow carbon nanofibers for an efficient trifunctional electrode material
Meng et al. In situ coupling of Co 0.85 Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries
Lu et al. Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M 0.1 Ni 0.9 Co 2 O 4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc–air batteries
Feng et al. Facile synthesis of Co9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction
Saad et al. Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis
Liu et al. Soybean straw biomass-derived Fe–N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media
Liu et al. An efficient ternary CoP 2x Se 2 (1− x) nanowire array for overall water splitting
Li et al. Hierarchical 3D macrosheets composed of interconnected in situ cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries
Zhang et al. Mesoporous NiCo2O4 micro/nanospheres with hierarchical structures for supercapacitors and methanol electro–oxidation
He et al. Architecture of CoN x single clusters on nanocarbon as excellent oxygen reduction catalysts with high-efficient atomic utilization
Lv et al. Carbon-quantum-dots-involved Fe/Co/Ni phosphide open nanotubes for high effective seawater electrocatalytic decomposition
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
Chang et al. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts
Qiu et al. Cobalt sulfides nanoparticles encapsulated in N, S co-doped carbon substrate for highly efficient oxygen reduction
Yuan et al. Self‐Supported 3 D Ultrathin Cobalt–Nickel–Boron Nanoflakes as an Efficient Electrocatalyst for the Oxygen Evolution Reaction
He et al. High-quality vanadium-doped MoS 2 ultrathin nanosheets as an efficient ORR catalyst
Lv et al. Introduction of Mn (III) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation
Kumar et al. Probing into the effect of heterojunctions between Cu/Mo 2 C/Mo 2 N on HER performance
Cai et al. Hierarchical tubular architecture constructed by vertically aligned CoS2‐MoS2 nanosheets for hydrogen evolution electrocatalysis
Xu et al. NiRu nanoparticles encapsulated in a nitrogen-doped carbon matrix as a highly efficient electrocatalyst for the hydrogen evolution reaction
Lin et al. Fe doped skutterudite-type CoP3 nanoneedles as efficient electrocatalysts for hydrogen and oxygen evolution in alkaline media
Chen et al. Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting
Du et al. Controllable synthesis of Ni 3 S 2@ MOOH/NF (M= Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction
Li et al. Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant