CN111542140A - 一种基于碳纳米管膜的便携式电热元件的制备方法 - Google Patents
一种基于碳纳米管膜的便携式电热元件的制备方法 Download PDFInfo
- Publication number
- CN111542140A CN111542140A CN202010514576.5A CN202010514576A CN111542140A CN 111542140 A CN111542140 A CN 111542140A CN 202010514576 A CN202010514576 A CN 202010514576A CN 111542140 A CN111542140 A CN 111542140A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- nanotube film
- heating element
- electric heating
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002238 carbon nanotube film Substances 0.000 title claims abstract description 58
- 238000005485 electric heating Methods 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 39
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 39
- 239000008367 deionised water Substances 0.000 claims abstract description 13
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000004094 surface-active agent Substances 0.000 claims abstract description 9
- 238000001132 ultrasonic dispersion Methods 0.000 claims abstract description 7
- 238000000748 compression moulding Methods 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000001291 vacuum drying Methods 0.000 claims abstract description 4
- 238000003828 vacuum filtration Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 17
- 239000004745 nonwoven fabric Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000005251 gamma ray Effects 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- 239000002023 wood Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- 239000002048 multi walled nanotube Substances 0.000 claims description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 description 13
- 230000005855 radiation Effects 0.000 description 13
- 238000009740 moulding (composite fabrication) Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005411 Van der Waals force Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003733 fiber-reinforced composite Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 electricity Chemical compound 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000012767 functional filler Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/145—Carbon only, e.g. carbon black, graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/03—Electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/18—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/36—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
Abstract
本发明公开了一种基于碳纳米管膜的便携式电热元件的制备方法,包括以下步骤:S1、以50~150mg碳纳米管/100ml去离子水的比例,将碳纳米管和去离子水混合,加入表面活性剂,进行超声分散、真空抽滤和干燥,得到碳纳米管膜;S2、对所得碳纳米管膜进行辐照处理,辐射剂量为50~500kGy;S3、将碳纳米管膜夹于面板层和支撑基底层中间,压缩成型得到夹层结构的电热元件。本发明中采用辐照处理改性后的碳纳米管膜制备电热元件,整体制备工艺简单、清洁环保,提高了所得电热元件的热效率和表面温度,并且所得电热元件仅需较低的外加电压,携带、使用方便。
Description
技术领域
本发明涉及碳纳米管发热元件领域,具体涉及一种基于碳纳米管膜的便携式电热元件的制备方法。
背景技术
碳材料优良的力学、导电、热辐射性能,使其不仅在航空航天的热防护材料中应用广泛,在民用、工业用电热体研究中逐渐得到关注。目前电热设备的发热组件主要有碳和金属丝两类发热材料。与金属电热元件相比,碳材料热匹配性好、热效率高、使用寿命长。现在的电热产品,主要是采用碳纤维作为发热组件,碳素材料已成为新一代节能环保型发热材料。
作为下一代高科技材料,碳纳米管(CNT)具有优异的电学、磁学和力学性能,应用前景广泛。但碳纳米管之间存在较强的范德华力,易缠绕、团聚,作为增强型或功能型填料在聚合物基体中分散困难,实际应用受限。将碳管制备成碳纳米管纸或碳纳米管膜,避免了碳管在聚合物基体中的分散问题。随碳纳米管制备方法的日臻完善,其性价比优势日趋明显,但关于碳纳米管基电热元件在民用领域的研究还不多见。
碳纳米管具有高长径比、高韧性和极强的导电、导热性能,电导率可达铜的10000倍,强度比钢高100倍,质量只有钢的1/6,场发射性能卓越,兼具金属性和半导体性,电热转化率达99.8%,还是理想的远红外集波物质。碳纳米管纸或碳纳米管膜是由碳纳米管通过范德华力紧密聚集在一起形成的具有三维网络微孔结构的片状材料。它兼具碳纳米管的电学、热学和磁学等物理化学性能,是一种具有碳纳米管属性的功能性面状电热材料。利用碳纳米管导电性能好、传热性能优越、远红外功能突出、机械强度大、韧性好等方面的突出优势,将碳纳米管膜用于电热材料必将大放异彩。
由于碳管之间的弱范德华力连接或物理缠结节点,缺乏有效的应力传递和电流流通及热传导通道,导致碳纳米管膜的力学、电学和热导性能远低于碳纳米管。因此,人们主要致力于提高碳纳米管膜的力学和导电性能,常采用在碳纳米管膜中渗透浸渍树脂,制备高碳管含量的传统的纤维增强复合材料;对碳纳米管膜的应用研究主要集中于电磁屏蔽和雷达吸波隐身方面。尽管有将碳管用于地暖材料的报道,目前仅利用了碳纳米管较低的电热性能。
发明内容
本发明针对以上问题的提出,而研究设计一种基于碳纳米管膜的便携式电热元件的制备方法,来解决碳纳米管膜应用领域受限的缺点,本发明将碳纳米管膜用于恒温发热元件领域。本发明采用的技术手段如下:
一种基于碳纳米管膜的便携式电热元件的制备方法,包括以下步骤:
S1、以50~150mg碳纳米管/100ml去离子水的比例,将碳纳米管和去离子水混合,加入表面活性剂,进行超声分散、真空抽滤和干燥,得到碳纳米管膜;
S2、对所得碳纳米管膜进行辐照处理,辐射剂量为50~500kGy;
S3、将碳纳米管膜夹于面板层和支撑基底层中间,压缩成型得到夹层结构的电热元件。
优选地,步骤S1中,碳纳米管为多壁碳纳米管,超声分散的功率为50~500W,时间为0.5~6h。
优选地,步骤S2中,室温下对所得碳纳米管膜进行伽马射线辐照处理。
优选地,步骤S3中,面板层和支撑基底层的材质均为PET、PP、PE材质塑料、无纺布、木板、陶瓷或金属。
优选地,步骤S3中,面板层和支撑基底层的材质均为PET、PP、PE材质塑料或无纺布时,采用热压成型法制得三层结构的电热元件。
优选地,步骤S3中,面板层的材质为木板、陶瓷或金属时,在碳纳米管膜和面板层之间添加导热介质。
优选地,所述导热介质为MgO。
优选地,所得电热元件适用的外加电压为1~10V。
与现有技术比较,本发明所述的一种基于碳纳米管膜的便携式电热元件的制备方法的有益效果如下:
1、本发明中采用伽马射线辐照处理改性后的碳纳米管膜制备电热元件,提高了所得电热元件的热效率和表面温度,并且整体制备工艺简单、清洁环保,扩大了碳纳米管膜的应用领域。
2、本发明中制备的电热元件仅需较低的外加电压,利用充电宝或电脑USB接口等即可使用,携带、使用方便,而且该电热元件表面温度可达50~100℃,发热效果较好。
3、本发明中的保护支撑层和面板层可为PET、PP、陶瓷、金属等材料,可根据使用场景不同选择不同的材质,使得所得电热元件的应用领域较广泛。
附图说明
图1是本发明实施例中不同辐射剂量的样品的电阻率~外加电压变化曲线。
图2是本发明实施例2中碳纸表面温度随时间变化曲线。
图3是本发明对比例中碳纸表面温度随时间变化曲线。
具体实施方式
一种基于碳纳米管膜的便携式电热元件的制备方法,包括以下步骤:
S1、以50~150mg碳纳米管/100ml去离子水的比例,将多壁碳纳米管粉末加入到去离子水中,加入表面活性剂,进行超声分散,超声分散的功率为50~500W,时间为0.5~6h,真空抽滤,干燥,得到厚度为4~15微米的碳纳米管膜(直径优选为小于10厘米);
S2、在空气中对所得碳纳米管膜进行室温伽马射线辐照处理,辐射剂量为50~500kGy;
S3、将碳纳米管膜夹于面板层和支撑基底层中间,压缩成型得到夹层结构的电热元件。
步骤S3中,面板层和支撑基底层的材质为PET、PP、PE材质塑料或无纺布、木板、陶瓷或金属。为了降低碳纳米管膜发热层的热量损失,当面板层和支撑层为PET、PP、PE等热塑性材质时,直接采用热压成型法制得三层结构的电热元件;当面板层为木板、陶瓷、金属等板材时,发热层和面板层之间需添加导热介质层,导热介质层可为MgO等导热性能较好的材质。所得电热元件直径不大于10cm,适用的外加电压为1~10V。
实施例1:
根据需要称取一定量的碳纳米管粉末,研磨,转移到去离子水中,加入少量表面活性剂,配置成碳管溶液,超声分散,真空抽滤,干燥,成碳纳米管膜。对所得碳纳米管膜进行伽马射线辐照处理,辐射剂量为50kGy。将辐照后的碳纳米管膜夹于涤纶无纺布中间,采用热压成型方法,温度为160℃,压力为10MPa,制备得到三层结构的电热元件。
实施例2:
根据需要称取一定量的碳纳米管粉末,研磨,转移到去离子水中,加入少量表面活性剂,配置成碳管溶液,超声分散,真空抽滤,干燥,成碳纳米管膜。对所得碳纳米管膜进行伽马射线辐照处理,辐射剂量为100kGy。将辐照后的碳纳米管膜夹于涤纶无纺布中间,采用热压成型方法,温度为160℃,压力为10MPa,制备得到三层结构的电热元件。
实施例3:
根据需要称取一定量的碳纳米管粉末,研磨,转移到去离子水中,加入少量表面活性剂,配置成碳管溶液,超声分散,真空抽滤,干燥,成碳纳米管膜。对所得碳纳米管膜进行伽马射线辐射处理,辐射剂量为150kGy。将辐照后的碳纳米管膜夹于涤纶无纺布中间,采用热压成型方法,温度为160℃,压力为10MPa,制备得到三层结构的电热元件。
实施例4:
根据需要称取一定量的碳纳米管粉末,研磨,转移到去离子水中,加入少量表面活性剂,配置成碳管溶液,超声分散,真空抽滤,干燥,成碳纳米管膜。对所得碳纳米管膜进行伽马射线辐射处理,辐射剂量为150kGy。将辐照后的碳纳米管膜夹于PE膜片中间,采用热压成型方法,温度为100℃,压力为10MPa,制备得到三层结构的电热元件。
对比例:
根据需要称取一定量的碳纳米管粉末,研磨,转移到去离子水中,加入少量表面活性剂,配置成碳管溶液,超声分散,真空抽滤,干燥,成碳纳米管膜。将所得碳纳米管膜夹于涤纶无纺布中间,采用热压成型方法,温度为160℃,压力为10MPa,制备得到三层结构的电热元件。
将本发明的实施例1~3和对比例中制备的电热元件分别进行导电性能测试,具体操作为:首先将所得电热元件制成长4cm,宽1cm的样条,再分别用游标卡尺测量其精细尺寸(长、宽、厚)并记录,测试过程按照GB/T1410~2006体积表面电阻率测试方法。将制备好的样条两端固定,接通一定的外加电压,测量经过样条的电流值,再通过计算可得样条的体积电阻率。
导电性能测试结果如图1所示。由图可见,随外加电压从0增加至6V,电阻率值呈下降趋势。而随伽马射线辐射剂量的提高,样条的电阻率也呈现下降趋势。在辐射剂量50kGy时,样条电阻率明显降低;在辐射剂量100kGy时,电阻率值约0.075Ω·cm。而且,辐射剂量超过100kGy后,样条的电阻率不随电压而变化,可能随碳纳米管膜中共价键的增多,样条中导电通路稳定,不再随温度发生变化。
将本发明的实施例2和对比例中制备的电热元件分别进行电热性能测试,具体操作为:首先将所得电热元件制成样条,将样条两端粘贴铜箔,作为导电电极,将温度热电偶粘附于样条表面中央位置。采用直流电源作为外加电压,由温度热电偶传感器测试样条表面温度(Ts),并连接电脑进行数据采集。
电热性能测试如图2和图3所示。由图可见,当施加不同的外加电压时,样条的表面温度都呈相同的变化趋势,即先快速增长,然后趋于一平衡值;表面温度随外加电压的增加而增大,达到平衡温度的时间稍有增加。在外加电压5V时,未辐射样条达到最大值76.5℃;而经100kGy辐射后,样条的表面温度,在外加电压4.5V时已达87.5℃,说明辐射可增强该样条的发热性能。
本发明实施例1~3中采用PET非织造布作为碳纳米管膜的面板层和支撑基底层,利用CNT的石墨层π电子与PET分子中苯环之间的π~π相互作用,以及辐射后产生的CNT接枝羧基与PET分子链中酯基之间的强偶极相互作用,可有效改善CNT与PET的界面问题,提高碳纳米管膜与非织造布支撑层的键合力,从而提高发热元件的表面温度。与碳纳米管膜渗透浸渍树脂法及熔融混合制备纤维增强复合材料相比,制备工艺简单、高效。PET熔点和使用温度较高,保证了复合样品的发热使用寿命。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (8)
1.一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:包括以下步骤:
S1、以50~150mg碳纳米管/100ml去离子水的比例,将碳纳米管和去离子水混合,加入表面活性剂,进行超声分散、真空抽滤和干燥,得到碳纳米管膜;
S2、对所得碳纳米管膜进行辐照处理,辐射剂量为50~500kGy;
S3、将碳纳米管膜夹于面板层和支撑基底层中间,压缩成型得到夹层结构的电热元件。
2.根据权利要求1所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:步骤S1中,碳纳米管为多壁碳纳米管,超声分散的功率为50~500W,时间为0.5~6h。
3.根据权利要求1所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:步骤S2中,室温下对所得碳纳米管膜进行伽马射线辐照处理。
4.根据权利要求1所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:步骤S3中,面板层和支撑基底层的材质为PET、PP、PE材质塑料、无纺布、木板、陶瓷或金属。
5.根据权利要求4所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:步骤S3中,面板层和支撑基底层的材质均为PET、PP、PE材质塑料或无纺布时,采用热压成型法制得三层结构的电热元件。
6.根据权利要求4所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:步骤S3中,面板层的材质为木板、陶瓷或金属时,在碳纳米管膜和面板层之间添加导热介质。
7.根据权利要求6所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:所述导热介质为MgO。
8.根据权利要求1所述的一种基于碳纳米管膜的便携式电热元件的制备方法,其特征在于:所得电热元件适用的外加电压为1~10V。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010514576.5A CN111542140B (zh) | 2020-06-08 | 2020-06-08 | 一种基于碳纳米管膜的便携式电热元件的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010514576.5A CN111542140B (zh) | 2020-06-08 | 2020-06-08 | 一种基于碳纳米管膜的便携式电热元件的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111542140A true CN111542140A (zh) | 2020-08-14 |
CN111542140B CN111542140B (zh) | 2022-09-09 |
Family
ID=71980816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010514576.5A Active CN111542140B (zh) | 2020-06-08 | 2020-06-08 | 一种基于碳纳米管膜的便携式电热元件的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111542140B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022133305A1 (en) * | 2020-12-17 | 2022-06-23 | Thinnovations, LLC | Thin film heater and method of making |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006008978A1 (ja) * | 2004-07-16 | 2006-01-26 | Konica Minolta Holdings, Inc. | カーボンナノチューブ含有体の製造方法 |
CN101552052A (zh) * | 2008-04-01 | 2009-10-07 | 索尼株式会社 | 导电膜及其制造方法、电子装置及其制造方法 |
CN101654784A (zh) * | 2008-08-22 | 2010-02-24 | 中国科学院金属研究所 | 柔性碳纳米管透明导电薄膜材料的制备方法和电沉积装置 |
US20100301278A1 (en) * | 2007-11-30 | 2010-12-02 | Toray Industries, Inc. | Carbon nanotube assembly and process for producing the same |
US20110036829A1 (en) * | 2007-12-26 | 2011-02-17 | Hodogaya Chemical Co., Ltd. | Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element |
CN107454691A (zh) * | 2017-08-08 | 2017-12-08 | 湖南源创高科工业技术有限公司 | 一种发热体 |
-
2020
- 2020-06-08 CN CN202010514576.5A patent/CN111542140B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006008978A1 (ja) * | 2004-07-16 | 2006-01-26 | Konica Minolta Holdings, Inc. | カーボンナノチューブ含有体の製造方法 |
US20100301278A1 (en) * | 2007-11-30 | 2010-12-02 | Toray Industries, Inc. | Carbon nanotube assembly and process for producing the same |
US20110036829A1 (en) * | 2007-12-26 | 2011-02-17 | Hodogaya Chemical Co., Ltd. | Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element |
CN101552052A (zh) * | 2008-04-01 | 2009-10-07 | 索尼株式会社 | 导电膜及其制造方法、电子装置及其制造方法 |
CN101654784A (zh) * | 2008-08-22 | 2010-02-24 | 中国科学院金属研究所 | 柔性碳纳米管透明导电薄膜材料的制备方法和电沉积装置 |
CN107454691A (zh) * | 2017-08-08 | 2017-12-08 | 湖南源创高科工业技术有限公司 | 一种发热体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022133305A1 (en) * | 2020-12-17 | 2022-06-23 | Thinnovations, LLC | Thin film heater and method of making |
Also Published As
Publication number | Publication date |
---|---|
CN111542140B (zh) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wan et al. | Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness | |
US11086421B2 (en) | Touch panel | |
Lu et al. | Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite | |
CN107592688B (zh) | 一种电热膜及其制备方法与应用 | |
CN103269528B (zh) | 高分子复合电热材料、其制备方法、以及其用途 | |
CN101913130B (zh) | 电致动夹持器 | |
US8318295B2 (en) | Carbon nanotube composite structure | |
CN106671451B (zh) | 纤维增强复合材料、其制备方法与应用 | |
CN107592685B (zh) | 一种制备双发热层石墨烯电热膜的方法 | |
CN104893601A (zh) | 一种具有两种导电结构的导电胶膜及其制备方法 | |
CN105491695A (zh) | 一种二维纳米碳发热体、柔性电加热模组及其制备方法 | |
CN109068412A (zh) | 一种含石墨烯和碳纳米管的水性纳米发热膜及其制备方法 | |
CN111542140B (zh) | 一种基于碳纳米管膜的便携式电热元件的制备方法 | |
Liang et al. | Experimental and analytical investigation of epoxy/MWCNT nanocomposites: electrical, thermal properties, and electric heating behavior | |
CN110534766A (zh) | 一种树脂膜法制备燃料电池双极板的材料 | |
Xiao et al. | Polybenzimidazole/conductive carbon black composite driven at low voltage for high-temperature heaters | |
CN110602934A (zh) | 电磁屏蔽散热膜及其制备方法和应用 | |
Xu et al. | Flexible, high temperature resistant and highly efficient E-heating graphene/polyimide film | |
Ranabhat et al. | Improve the through-thickness electrical conductivity of CFRP laminate using flow-aligned carbon nanofiber z-threads | |
CN111017908A (zh) | 一种条带状氧化石墨烯作为粘结剂制备生物质基膜的方法 | |
KR20160033857A (ko) | 연료전지용 분리판 및 그의 제조방법 | |
KR102259236B1 (ko) | 탄소나노튜브를 포함하는 면상 발열체 페이스트 조성물, 이를 포함하는 면상 발열체 및 탄소나노튜브 기반 동파방지용 필름히터 | |
US8533885B2 (en) | Cleaning device incorporating carbon nanotubes | |
TW200923991A (en) | Super capacitor and method for making the same | |
KR20200142287A (ko) | 발열기능을 구비한 그래핀 코팅 탄소섬유 방석 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |