CN111536342B - A civil engineering seismic structure - Google Patents
A civil engineering seismic structure Download PDFInfo
- Publication number
- CN111536342B CN111536342B CN202010418697.XA CN202010418697A CN111536342B CN 111536342 B CN111536342 B CN 111536342B CN 202010418697 A CN202010418697 A CN 202010418697A CN 111536342 B CN111536342 B CN 111536342B
- Authority
- CN
- China
- Prior art keywords
- plate
- gear
- base plate
- bearing plate
- positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims description 39
- 238000001514 detection method Methods 0.000 claims description 21
- 230000000670 limiting effect Effects 0.000 claims description 16
- 230000007704 transition Effects 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims 6
- 238000009413 insulation Methods 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract description 16
- 238000006073 displacement reaction Methods 0.000 abstract description 5
- 230000001681 protective effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 20
- 230000000875 corresponding effect Effects 0.000 description 18
- 230000033001 locomotion Effects 0.000 description 17
- 230000003139 buffering effect Effects 0.000 description 9
- 238000003825 pressing Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 230000001066 destructive effect Effects 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 208000005123 swayback Diseases 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L27/00—Adjustable joints; Joints allowing movement
- F16L27/10—Adjustable joints; Joints allowing movement comprising a flexible connection only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L3/00—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
- F16L3/16—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe
- F16L3/20—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe allowing movement in transverse direction
- F16L3/205—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe allowing movement in transverse direction having supporting springs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/06—Multidirectional test stands
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及土木过程抗震技术领域,尤其涉及一种土木工程抗震结构。The invention relates to the technical field of earthquake resistance in civil engineering, in particular to an earthquake resistance structure for civil engineering.
背景技术Background technique
现有技术中的管道连接,多通过卡箍实现,然而现有技术中的通过卡箍实现管道刚性连接的结构,虽能够实现两分离管道的密封连接,但连接处在受到地震等外界应力的作用下,会发生不同程度的扭曲变形,甚至断裂,进而导致两分离管道之间的密封性受到影响,导致输送液体或气体等的泄露,不但影响继续工作使用,还会造成较大的环境污染问题,无法满足管道连接的抗震功能的使用需求;The pipeline connection in the prior art is mostly realized by clamps. However, the structure of rigid connection of pipelines through clamps in the prior art can realize the sealed connection of two separate pipelines, but the connection is subject to external stress such as earthquakes. Under the action, it will be twisted and deformed to different degrees, or even broken, which will affect the sealing between the two separation pipes, resulting in the leakage of conveying liquid or gas, which will not only affect the continued work and use, but also cause greater environmental pollution. The problem is that it cannot meet the use requirements of the seismic function of the pipeline connection;
因此,管道抗震就变得十分重要,在管道连接的关键部位上提出特殊的变形要求,是实现管道抗震连接的有效解决方式;Therefore, the seismic resistance of the pipeline becomes very important, and special deformation requirements are put forward on the key parts of the pipeline connection, which is an effective solution to realize the seismic connection of the pipeline;
但是,我们在针对管道抗震设计相应的抗震结构时,并没有建立一套完善且科学的试验,使得所设计出来的抗震结构未充分经过科学、试验论证便投入使用,缺乏完善、科学的试验意味着不能对抗震结构进行优化、改进,进而完善其功能并且提高对管道连接部位的抗震防护性能,导致日后投入生产使用时,因不同地区所发生的地震等级大小具有较大的不确定性,而无法针对不同地区情况的不同对输送管产生最优的抗震防护;However, we did not establish a set of complete and scientific tests when designing the corresponding seismic structure for the pipeline earthquake, so that the designed seismic structure was put into use without sufficient scientific and experimental demonstration, lacking the perfect and scientific test meaning. Due to the inability to optimize and improve the seismic structure, and then improve its function and improve the seismic protection performance of the pipeline connection parts, when it is put into production and use in the future, there will be great uncertainty in the magnitude of the earthquake that occurs in different regions, and It is impossible to produce optimal seismic protection for the pipeline according to the different conditions in different regions;
鉴于以上,我们提供一种土木工程抗震结构用于解决上述问题。In view of the above, we provide a civil engineering seismic structure for solving the above problems.
发明内容SUMMARY OF THE INVENTION
针对上述情况,为克服现有技术之缺陷,本发明提供一种土木工程抗震结构,该土木工程抗震结构通过在相邻两输送管之间设置可收缩的软管连接并且当遭遇地震时相邻两输送管之间沿地震波方向可产生一定的位移,即,使得两输送管连接部位可产生一定程度的形变,由刚性连接转变为软性连接,大大提高了应对地震的防护能力,从而更好的实现对管道连接部位的防护。In view of the above situation, in order to overcome the defects of the prior art, the present invention provides a civil engineering earthquake-resistant structure, the civil engineering earthquake-resistant structure is connected by arranging a retractable hose between two adjacent conveying pipes, and when an earthquake is encountered, the adjacent A certain displacement can be generated between the two conveying pipes along the direction of the seismic wave, that is, the connection part of the two conveying pipes can be deformed to a certain extent, and the rigid connection is transformed into a soft connection, which greatly improves the protection ability to deal with earthquakes, so as to better The realization of the protection of pipeline connection parts.
一种土木工程抗震结构,包括基板,其特征在于,所述基板内纵向滑动安装有承载板且承载板上经第一弹簧连接有与之竖向滑动配合的连接箱,所述连接箱横向两端分别横向滑动安装有移动筒且移动筒内纵向两侧转动安装有竖向调节环,所述移动筒与连接箱之间连接有第二弹簧,所述竖向调节环内上下两侧转动安装有纵向调节环,所述纵向调节环内同轴心固定有输送管,两所述输送管置于连接箱内一端经软管连通有固定于连接箱内的过渡管,所述连接箱内设置有用于对移动筒定位的定位装置,所述基板内设置有用于解除定位装置对移动筒定位的触发装置;An earthquake-resistant structure for civil engineering, comprising a base plate, characterized in that a bearing plate is installed longitudinally in the base plate, and a connecting box is connected to the bearing plate through a first spring for vertical sliding matching with it, and the connecting box is two horizontal A moving cylinder is installed laterally at the two ends respectively, and a vertical adjusting ring is installed on both sides of the moving cylinder in rotation. A second spring is connected between the moving cylinder and the connection box. There is a longitudinal adjustment ring, and a conveying pipe is fixed coaxially in the longitudinal adjusting ring, and one end of the two conveying pipes is placed in the connecting box and is connected with a transition pipe fixed in the connecting box through a hose. There is a positioning device for positioning the moving cylinder, and a triggering device for releasing the positioning device for positioning the moving cylinder is arranged in the base plate;
所述承载板分别与基板内纵向两侧壁之间连接有伸缩弹簧且基板内设置有用于对承载板锁定的锁定装置,所述连接箱内设置有用于解除锁定装置对承载板锁定的解锁装置,所述承载板内转动安装有检测齿轮且检测齿轮啮合有安装在基板内的检测齿条,所述检测齿轮驱动有设置于承载板上的控制装置,该控制装置可实现当承载板在基板内进行纵向移动时实现对锁定装置的定位并且当承载板停止移动时,控制锁定装置再次实现对承载板的锁定;A telescopic spring is connected between the carrying plate and the inner longitudinal side walls of the base plate, a locking device for locking the carrying plate is arranged in the base plate, and an unlocking device for unlocking the locking device to the carrying plate is arranged in the connection box. , a detection gear is rotatably installed in the carrier plate, and the detection gear is engaged with a detection rack installed in the base plate. The detection gear drives a control device arranged on the carrier plate. The positioning of the locking device is realized when the longitudinal movement is performed inside, and when the bearing plate stops moving, the locking device is controlled to realize the locking of the bearing plate again;
所述基板内经复位弹簧连接有与基板横向一侧壁横向滑动配合的弧形板,所述承载板上固定有与弧形板相配合的触发板,所述弧形板连接有记录装置且该记录装置可实现对承载板在基板内进行纵向移动的频率进行记录。The inside of the base plate is connected with an arc-shaped plate which is slidingly matched with a lateral side wall of the base plate through a return spring, a trigger plate matched with the arc-shaped plate is fixed on the carrying plate, the arc-shaped plate is connected with a recording device and the The recording device can record the frequency of the longitudinal movement of the carrier plate in the substrate.
优选的,所述承载板经与之一体连接的圆柱纵向滑动安装于基板底壁上且基板底壁上固定安装有与圆柱纵向滑动配合的滑轨,所述锁定装置包括与圆柱同轴心设置且竖向滑动安装于圆柱的锁定柱且锁定柱与圆柱之间连接有锁定弹簧,所述滑轨上设有与锁定柱相配合的锁定孔,所述锁定柱向上穿出承载板且穿出一端横向两侧固定有斜块,所述斜块与解锁装置相配合。Preferably, the carrier plate is longitudinally slidably mounted on the bottom wall of the base plate via a cylinder integrally connected to it, and a slide rail that is slidably matched with the cylinder longitudinally is fixedly mounted on the bottom wall of the base plate, and the locking device comprises a cylinder arranged concentrically with the support plate. And the locking column is vertically slidably installed on the column, and a locking spring is connected between the locking column and the column, the sliding rail is provided with a locking hole matched with the locking column, and the locking column upwardly penetrates the bearing plate and penetrates An oblique block is fixed on both lateral sides of one end, and the oblique block is matched with the unlocking device.
优选的,所述解锁装置包括与移动筒固定连接的L形齿条且L形齿条啮合有解锁齿轮,所述解锁齿轮经解锁传动装置驱动有横向滑动安装于承载板上且与斜块相配合的三角块。Preferably, the unlocking device includes an L-shaped rack fixedly connected with the moving cylinder, and the L-shaped rack is engaged with an unlocking gear, and the unlocking gear is driven by the unlocking transmission device to be laterally slidably installed on the carrier plate and is in phase with the inclined block. Matching triangles.
优选的,所述检测齿条固定安装于滑轨横向一侧壁上且检测齿轮转动安装于圆柱内,所述控制装置包括转动安装于承载板上且与检测齿轮同轴转动的绝缘板,所述绝缘板上固定有矩形导电框,所述矩形导电框分别经与之连接且竖向间隔设置的弧形导电板配合有固定安装在承载板上的导电环,所述承载板上位于绝缘板纵向两侧分别固定有磁铁且两磁铁N级和S级相向设置,所述导电环、弧形导电板、矩形导电框经导线串联在一起并且构成电性回路,该所述电性回路中串联有电流表,所述电流表电性连接有微控制器,所述微控制器控制锁定装置动作并且再次实现对承载板的定位。Preferably, the detection rack is fixedly installed on a lateral side wall of the slide rail and the detection gear is rotatably installed in the cylinder. A rectangular conductive frame is fixed on the insulating plate, and the rectangular conductive frame is respectively connected with the arc-shaped conductive plate and arranged at a vertical interval with a conductive ring that is fixedly installed on the bearing plate, and the bearing plate is located on the insulating plate. Magnets are respectively fixed on both sides of the longitudinal direction, and the N-level and S-level magnets are arranged opposite to each other. The conductive ring, the arc-shaped conductive plate, and the rectangular conductive frame are connected in series by wires to form an electrical circuit. The electrical circuit is connected in series. There is an ammeter, and the ammeter is electrically connected with a microcontroller, and the microcontroller controls the action of the locking device and realizes the positioning of the carrier plate again.
优选的,所述锁定柱底部横向两侧分别经定位弹簧连接有与之横向滑动配合安装的定位柱,所述圆柱内设置有与两定位柱相配合的定位孔且当锁定柱在解锁装置的作用下从锁定孔中完全退出时,定位柱在定位弹簧的作用下刚好滑入至与之对应的定位孔中,所述圆柱内固定有电磁铁且电磁铁串联于第一稳压回路中,所述定位柱面向电磁铁一侧固定有导电片,所述微控制器控制第一稳压回路的接通、断开。Preferably, the lateral sides of the bottom of the locking column are respectively connected with positioning columns that are installed in a lateral sliding fit with the positioning springs. When fully withdrawing from the locking hole under the action, the positioning column just slides into the corresponding positioning hole under the action of the positioning spring, the electromagnet is fixed in the column, and the electromagnet is connected in series in the first voltage stabilization circuit, A conductive sheet is fixed on the side of the positioning column facing the electromagnet, and the microcontroller controls the connection and disconnection of the first voltage-stabilizing circuit.
优选的,所述弧形板经第一齿轮齿条传动装置驱动有转动安装于基板内的第一单向齿轮且第一单向齿轮同轴转动有第二单向齿轮,所述第一单向齿轮与第二单向齿轮反向配合安装,所述第一单向齿轮啮合有转动安装于基板内的惰轮且惰轮啮合有转动安装于基板内的传动齿轮,所述传动齿轮与第二单向齿轮啮合且传动齿轮同轴转动有驱动齿轮,所述驱动齿轮与记录装置连接。Preferably, the arc-shaped plate is driven by a first rack-and-pinion transmission device with a first one-way gear rotatably installed in the base plate, and the first one-way gear is coaxially rotated with a second one-way gear, and the first one-way gear is rotated coaxially. The direction gear and the second one-way gear are installed in reverse cooperation, the first one-way gear is meshed with an idler gear rotatably installed in the base plate, and the idler gear is meshed with a transmission gear rotatably installed in the base plate, the transmission gear and the The two one-way gears are meshed and the transmission gear rotates coaxially with a drive gear, which is connected with the recording device.
优选的,所述记录装置包括与驱动齿轮啮合且转动安装于基板内的内齿圈,所述内齿圈外圆面沿其径向固定有划线笔,所述基板内设置有记录环且记录环内圆面上安装有与划线笔相配合的记录纸。Preferably, the recording device includes an inner gear that meshes with the driving gear and is rotatably installed in the base plate, the outer surface of the inner gear is fixed with a scribing pen along its radial direction, and the base plate is provided with a recording ring and The recording paper matched with the marking pen is installed on the inner circular surface of the recording ring.
优选的,所述基板底壁上固定有承载环且记录环竖向滑动安装于承载环内,所述划线笔底部固定有L形挤压板且L形挤压板配合有纵向滑动安装于承载环上的U形架,所述U形架与承载环之间连接有升降弹簧且U形架通过第二齿轮齿条传动装置驱动有转动安装于承载环上的第三单向齿轮,所述第三单向齿轮啮合有与记录环一体连接的升降齿条,所述承载环上设有用于对升降齿条限位的限位装置。Preferably, a bearing ring is fixed on the bottom wall of the base plate and the recording ring is vertically slidably installed in the bearing ring, an L-shaped pressing plate is fixed on the bottom of the scriber, and the L-shaped pressing plate is matched with a longitudinally slidably installed in the bearing ring. A U-shaped frame on the bearing ring, a lifting spring is connected between the U-shaped frame and the bearing ring, and the U-shaped frame is driven by a second gear rack and pinion transmission device with a third one-way gear rotatably installed on the bearing ring, so The third one-way gear is meshed with a lifting rack integrally connected with the recording ring, and a limiting device for limiting the position of the lifting rack is provided on the bearing ring.
优选的,所述限位装置包括:升降齿条背离第二齿轮齿条传动装置一侧经限位弹簧连接有与升降齿条纵向滑动配合的限位柱,所述承载环上固定有限位板且限位板上竖向间隔设置有若干与限位柱相配合的限位孔。Preferably, the limiting device includes: a limiting column that is longitudinally slidingly matched with the lifting rack is connected to the side of the lifting rack facing away from the second rack and pinion transmission device through a limiting spring, and a limiting plate is fixed on the bearing ring. And a plurality of limit holes matched with the limit posts are arranged at vertical intervals on the limit plate.
优选的,所述定位装置包括固定安装于连接箱纵向两侧壁上的液压杆且液压杆上固定有与移动筒相配合的弧形定位板,所述触发装置包括设置于基板内的矩形筒且矩形筒横向两侧壁上安装有电阻片,两所述电阻片串联于第二稳压回路中,其中一个电阻片与第二稳压回路电源负极连接,另一电阻片与第二稳压回路电源正极连接,所述矩形筒底壁上经触发弹簧连接有竖向滑动安装于矩形筒内的滑移板且滑移板横向两侧与电阻片滑动配合部位安装有导电片,所述第二稳压回路中串联有电流表且电流表电性连接有控制系统,所述控制系统控制液压杆动作。Preferably, the positioning device includes a hydraulic rod fixedly installed on the longitudinal two side walls of the connection box, and an arc-shaped positioning plate matched with the moving cylinder is fixed on the hydraulic rod, and the triggering device includes a rectangular cylinder arranged in the base plate. And there are resistor sheets installed on the lateral two side walls of the rectangular tube, and the two resistor sheets are connected in series in the second voltage regulator loop, one of the resistor sheets is connected to the negative pole of the power supply of the second voltage regulator loop, and the other resistor sheet is connected to the second voltage regulator. The positive pole of the loop power supply is connected, the bottom wall of the rectangular cylinder is connected with a sliding plate that is vertically slidably installed in the rectangular cylinder through a trigger spring, and a conductive sheet is installed on the lateral sides of the sliding plate and the sliding matching parts of the resistance sheet. An ammeter is connected in series in the second voltage stabilization circuit, and the ammeter is electrically connected with a control system, and the control system controls the action of the hydraulic rod.
上述技术方案有益效果在于:The beneficial effects of the above technical solutions are:
(1)该土木工程抗震结构通过在相邻两输送管之间设置可收缩的软管连接并且当遭遇地震时相邻两输送管之间沿地震波方向可产生一定的位移,即,使得两输送管连接部位可产生一定程度的形变,由刚性连接转变为软性连接,大大提高了应对地震的防护能力,从而更好的实现对管道连接部位的防护;(1) The earthquake-resistant structure of civil engineering is connected by arranging a retractable hose between two adjacent conveying pipes, and when an earthquake occurs, a certain displacement can be generated between the two adjacent conveying pipes along the direction of the seismic wave, that is, the two conveying pipes are The connection part of the pipe can be deformed to a certain degree, and the rigid connection is transformed into a soft connection, which greatly improves the protection ability to deal with earthquakes, so as to better protect the connection part of the pipeline;
(2)在本方案中,我们通过将两基板放置于地震模拟台上,并且施加纵向、横向的地震波(模拟地震来临时的情况),在施加一定等级的地震波的情况下,通过记录装置,可实现对连接箱因受到沿垂直于输送管方向的地震波而产生晃动的次数进行记录,晃动次数太少(说明选用的伸缩弹簧较硬,无法实现对连接箱的缓冲效果)或者晃动次数太多(说明选用的伸缩弹簧较软,导致连接箱晃动次数较多,同样不利于管道连接部位的防护),根据记录数据,进而设置不同弹性系数的弹簧,通过多次试验,寻求最优的弹簧,使得连接箱的晃动频率在一定合理范围内(即实现了对连接箱较好的缓冲也不会导致连接箱遭遇地震时晃动频率过大);(2) In this scheme, by placing the two substrates on the earthquake simulation platform, and applying longitudinal and transverse seismic waves (simulating the situation when an earthquake occurs), in the case of applying a certain level of seismic waves, through the recording device, It can record the times of shaking of the connection box due to the seismic wave perpendicular to the direction of the conveying pipe. The shaking times are too small (indicating that the selected telescopic spring is too hard to achieve the buffering effect on the connection box) or the shaking times are too many. (It means that the selected telescopic spring is soft, which causes the connection box to shake more times, which is also not conducive to the protection of the pipe connection part.) According to the recorded data, springs with different elastic coefficients are set up, and the optimal spring is found through many tests. Make the shaking frequency of the connection box within a certain reasonable range (that is, to achieve better buffering for the connection box, it will not cause the connection box to shake too much when it encounters an earthquake);
(3)在本方案中我们可以通过地震模拟台对基板施加不同等级的地震,进而通过试验得出,在遭遇不同等级地震的情况时,选出相应的最优的伸缩弹簧,用于适配不同等级地震发生时,对输送管产生最优的抗震防护效果。(3) In this scheme, we can apply different levels of earthquakes to the base plate through the earthquake simulation platform, and then through experiments, we can find that when encountering earthquakes of different levels, the corresponding optimal expansion springs are selected for adaptation. When earthquakes of different grades occur, the optimal anti-seismic protection effect is produced for the pipeline.
附图说明Description of drawings
图1为本发明整体结构装配示意图;Fig. 1 is the overall structure assembly schematic diagram of the present invention;
图2为本发明单个连接箱与输送管安装关系示意图;2 is a schematic diagram of the installation relationship between a single connection box and a conveying pipe of the present invention;
图3为本发明连接箱纵向一侧剖视后示意图;Fig. 3 is a schematic diagram after a cross-sectional view of one longitudinal side of the connection box of the present invention;
图4为本发明移动筒、连接箱剖视后内部结构示意图;4 is a schematic diagram of the internal structure of the moving cylinder and the connecting box of the present invention after cross-section;
图5为本发明软管、过渡管、输送管与移动筒配合关系示意图;5 is a schematic diagram of the cooperation relationship between the hose, the transition pipe, the conveying pipe and the moving cylinder according to the present invention;
图6为本发明输送管与竖向调节环、纵向调节环安装关系示意图;6 is a schematic diagram of the installation relationship between the conveying pipe, the vertical adjustment ring and the longitudinal adjustment ring according to the present invention;
图7为本发明连接箱与承载板竖向滑动安装关系示意图;7 is a schematic diagram of the vertical sliding installation relationship between the connection box and the bearing plate of the present invention;
图8为本发明解锁齿轮传动装置结构示意图;8 is a schematic structural diagram of the unlocking gear transmission device of the present invention;
图9为本发明基板、承载板、圆柱剖视后结构示意图;9 is a schematic diagram of the structure of the substrate, the carrier plate, and the cylindrical section of the present invention;
图10为本发明承载板沿滑轨进行纵向滑动时示意图;Figure 10 is a schematic diagram of the present invention when the carrying plate slides longitudinally along the slide rail;
图11为本发明承载板与基板分离示意图;11 is a schematic diagram of the separation of the carrier plate and the substrate according to the present invention;
图12为本发明控制装置结构示意图;12 is a schematic structural diagram of the control device of the present invention;
图13为本发明控制装置另一视角结构示意图;13 is a schematic structural diagram of the control device of the present invention from another perspective;
图14为本发明弧形板与触发板配合关系示意图;14 is a schematic diagram of the cooperation relationship between the arc plate and the trigger plate according to the present invention;
图15为本发明记录装置结构示意图;15 is a schematic structural diagram of a recording device of the present invention;
图16为本发明记录装置另一视角结构示意图;16 is a schematic structural diagram of another viewing angle of the recording device of the present invention;
图17为本发明划线笔与记录环配合关系示意图;17 is a schematic diagram of the cooperation relationship between the marking pen and the recording ring of the present invention;
图18为本发明L形挤压板与U形架配合关系示意图;Figure 18 is a schematic diagram of the cooperation relationship between the L-shaped extrusion plate and the U-shaped frame of the present invention;
图19为本发明限位装置结构示意图;19 is a schematic structural diagram of the limiting device of the present invention;
图20为本发明中单向齿轮结构示意图。FIG. 20 is a schematic diagram of the structure of the one-way gear in the present invention.
具体实施方式Detailed ways
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考附图1至图20对实施例的详细说明中,将可清楚的呈现,以下实施例中所提到的结构内容,均是以说明书附图为参考。The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the embodiments with reference to FIGS. 1 to 20 . The structural contents mentioned in the following embodiments are all Reference is made to the drawings in the description.
实施例1,本实施例提供一种土木工程抗震结构,参照附图2所示,包括基板1,其特征在于,所述基板1内纵向滑动安装有承载板2且承载板2上经第一弹簧3连接有与之竖向滑动配合的连接箱4(第一弹簧3的设置用于实现对连接箱4在受到地震纵波时对其进行缓冲的效果),参照附图3所示,连接箱4横向两端分别横向滑动安装有移动筒5,参照附图6所示,移动筒5内纵向两侧转动安装有竖向调节环6且移动筒5与连接箱4之间连接有第二弹簧7(当移动筒5在连接箱4内移动时带动第二弹簧7拉伸,进而实现对地震波一定的缓冲效果),所述竖向调节环6内上下两侧转动安装有纵向调节环8,所述纵向调节环8内同轴心固定有输送管9,当地震产生时(地震产生会引起地震波并且地震波分为纵波和横波,纵泼会迫使输送管9在竖向进行晃动,横波会迫使输送管9在水平方向进行晃动,并且在此需要提醒的是,一般地震发生时,由于纵波的传播速度比横波要快,因此纵波会首先传到地面并且地震产生的纵波对地面的破坏力小于地震横波的破坏力);Embodiment 1, this embodiment provides a civil engineering earthquake-resistant structure, as shown in FIG. 2 , including a base plate 1 , which is characterized in that a
由于处于不同地震带上的输送管9其受到纵波的影响不同(不同区域的地震所产生的纵波大小不同),因此,处于不同地震区域的基板1其受到纵波的作用时,在竖向的晃动幅度也不相同,即,会出现输送管9一端在竖向晃动幅度较大(基板1竖向晃动进而带动与该基板1相配合的输送管9在竖向晃动)而另一端(与另一基板1相配合)在竖向晃动幅度较小,此时,参照附图6中所示,此时连接于同一输送管9两端的竖向调节环6会产生转动,以配合两端晃动幅度的不同,由于相邻两基板1之间的距离不变,伴随着相邻两基板1竖向晃动幅度的不同,则导致两基板1之间的连线变大,此时,我们通过输送管9经软管10与固定安装在连接箱4内的过渡管11连接,可实现增加相邻两基板1输送管9长度的效果,用于配合基板1在竖向晃动幅度的不同,在此需要注意的是,当地震纵波传到地面上时,我们通过设置于基板1内的触发装置首先解除定位装置对移动筒5的定位,只有移动筒5解除定位后,才能使得当输送管9两端在受到不同大小的纵波影响时,能够在竖向进行晃动并且带动与之连接的软管10伸长,定位装置与移动筒5相配合,使得在没有地震发生时,实现对移动筒5的可靠定位,防止移动筒5产生晃动,进而影响管道之间的连接;Because the conveying
同样,地震所产生的的横波会后于纵波到达地面,此时相邻两基板1受到横波的影响会带动输送管9沿如附图1中所示的纵向进行来回晃动,处于不同区域的基板1,受到的横波影响大小不同,进而其移动的幅度也不同,此时同一输送管9的两端受地震横波的影响其晃动幅度也不同,进而导致转动安装于竖向调节环6内的纵向调节环8产生转动,以配合输送管9在纵向晃动幅度的不同,无论输送管9受到纵波、还是横波影响均会带动移动筒5在连接箱4内滑动(输送管9两端在竖向或者纵向晃动幅度不同,会使得输送管9两端与软管10连接部位处产生扭转,若移动筒5向外滑动的距离过大,会导致输送管9与软管10连接部位产生撕裂)并且使得相应软管10伸长,参照附图3、4所示,我们在移动筒5上横向间隔固定有环形挡板12,通过相互配合的两环形挡板12使得当移动筒5向外滑动一定距离时,在环形挡板12的作用下,不再滑动, 避免输送管9晃动幅度过大导致输送管9与软管10连接部位扭转过大,而产生撕裂;Similarly, the shear wave generated by the earthquake will reach the ground after the longitudinal wave. At this time, the two adjacent substrates 1 are affected by the shear wave and will drive the conveying
当位于连接箱4内的环形挡板12还未抵触于连接箱4侧壁之前,连接箱4在锁定装置的作用下一直和基板1保持固定在一起,即,连接箱4和与之对应的基板1之间不会产生相对位置移动,较好的,我们在连接箱4内设置有用于解除锁定装置对承载板2锁定的解锁装置,当位于连接箱4内的环形挡板12抵触于连接箱4侧壁时,此时移动筒5向外移动至最大距离,此时相邻两连接箱4之间连线的距离也处于最大数值,此时解锁装置解除锁定装置对承载板2的锁定,即,此时连接箱4伴随着承载板2在基板1内进行纵向移动,我们设定初始时(未遭遇地震)连接于承载板2与基板1之间的伸缩弹簧13均处于被压缩状态,当承载板2在基板1内进行移动时,需要克服伸缩弹簧13的弹性势能进而用于实现对承载板2的缓冲,伴随着地震的持续进行,此时受地震影响晃动幅度较小的承载板2在受到相邻的另一承载板2的带动下,沿着各自相对应的基板1进行纵向移动,此时,输送管9和与之两端连接的软管10已经处于最大伸长范围,受到地震影响晃动幅度较大的承载板2通过输送管9带动受到地震影响晃动幅度较小的承载板2在纵向进行移动,进而通过克服伸缩弹簧13的弹性势能来实现对地震波的缓冲;Before the
当承载板2与基板1之间产生相对移动时,我们通过转动安装于承载板2内的检测齿轮14与检测齿条15相配合进而驱动设置于承载板2上的控制装置,该控制装置可实现当承载板2在基板1内进行纵向移动时实现对锁定装置的定位(使得承载板2在基板1内进行移动的过程中,锁定装置不会妨碍承载板2的移动),当地震波消失后,承载板2在伸缩弹簧13的作用下(伸缩弹簧13初始设置时具有一定的弹性势能),移动至初始位置后停止移动,并且此时控制装置控制锁定装置再次实现对承载板2的锁定;When there is relative movement between the
具体的在进行试验时,参照附图1中所示,我们将相邻两基板1分别放置在不同的地震模拟震动台上,通过地震模拟震动台模拟地震发生时产生的纵波与横波,并且两个地震模拟震动台向与之对应的基板1施加不同等级的地震波,用来模拟在遇到真实地震时,处于不同地震带上的基板1所受到的地震波大小的不同,使得基板1的晃动幅度大小不同,进而模拟地震中的真实场景,由于地震模拟震动台为现有技术,在本方案中不再对其进行详细介绍,通过地震模拟震动台首先对基板1施加纵向震动(纵波在地震中首先到达地面),使得触发装置解除定位装置对移动筒5的定位,进而使得移动筒5能够在连接箱4内移动,以实现输送管9移动的效果,随后间隔一定时间再向基板1施加横向震动(沿着垂直于输送管9延伸方向的震动),进而模拟地震横波对输送管9的影响;Specifically, when carrying out the test, referring to Figure 1, we placed two adjacent substrates 1 on different seismic simulation shaking tables, and simulated longitudinal waves and transverse waves generated when an earthquake occurred through the earthquake simulation shaking table, and the two Each earthquake simulation shaking table applies different levels of seismic waves to the corresponding substrate 1 to simulate the difference in the magnitude of the seismic waves received by the substrate 1 in different seismic zones when encountering a real earthquake, which makes the shaking amplitude of the substrate 1 Different sizes are used to simulate the real scene in the earthquake. Since the earthquake simulation shaking table is an existing technology, it will not be introduced in detail in this scheme. First reach the ground), so that the trigger device releases the positioning of the positioning device to the moving
输送管9在震动的作用下在竖向和沿着垂直于输送管9延伸的方向进行晃动,以至于当移动筒5移动至最大距离后,此时解锁装置解除锁定装置对相应承载板2的锁定,进而承载板2和与之对应的基板1之间产生相对移动,由于地震所产生的的纵波破坏力较小,横波产生的破坏力较大,因此,在试验中我们重点研究地震横波对输送管9的影响,同样我们在设置抗震结构的时候,也重点针对输送管9在其受到地震横波时(输送管9受到沿垂直于其延伸方向的震动)进行抗震防护,因此,我们将承载板2沿着垂直于输送管9延伸的方向滑动安装于基板1内,较好的,当承载板2在基板1内进行往复移动时(受到地震横波的影响),承载板2受到地震横波的影响,使得位于相邻两基板1内的承载板2在与之对应的基板1内进行往复移动(受地震横波影响大的承载板2通过输送管9、移动筒5、竖向调节环6、纵向调节环8带动另一相邻且受地震横波影响较小的承载板2移动),我们通过固定安装于承载板2上的触发板18与横向滑动安装于基板1侧壁上的弧形板17(所述弧形板17设置在基板1中心分界线位置上)相配合,使得承载板2在进行往复移动的过程中,当触发板18移动至与弧形板17相对应位置时,迫使弧形板17朝着远离触发板18的方向移动并且压缩复位弹簧16,进而通过记录装置记录承载板2往复移动的频率、次数,而后通过对试验数据进行收集整理,来研究在施加相同等级大小的地震波时,通过改变连接于基板1与承载板2之间伸缩弹簧13的弹性系数,进而改变承载板2受到震动时的往复移动频率,从而寻找一个最优的方案,使得承载板2在受到相应等级的地震时,在伸缩弹簧13的作用下,使得承载板2的往复运动频率在合理范围内;The conveying
我们可以通过该装置,根据地域情况的不同(不同地区其地震产生的大小等级也不同),通过试验设计出符合相应不同地区的针对管道连接部位的抗震结构。Through this device, we can design the seismic structure for pipeline connection parts according to different regions according to different geographical conditions (the magnitude of earthquakes in different regions is also different).
实施例2,在实施例1的基础上,参照附图9所示,承载板2经与之一体连接的圆柱19纵向滑动安装于基板1底壁上且基板1底壁上固定安装有与圆柱19纵向滑动配合的滑轨20,所述锁定装置包括与圆柱19同轴心设置且竖向滑动安装于圆柱19的锁定柱21且锁定柱21与圆柱19之间连接有锁定弹簧22,所述滑轨20上设有与锁定柱21相配合的锁定孔23;
初始时,当移动筒5位于连接箱4内一端的环形挡板12未抵触于连接箱4侧壁上时,锁定柱21在锁定弹簧22的作用下插入至设置在滑轨20上的锁定孔23中,实现对承载板2的锁定效果,此时输送管9受地震的影响,只是带动与之对应的移动筒5在连接箱4内进行移动并且通过第二弹簧7实现对地震的初步缓冲,以至于移动筒5在环形挡板12的限位下不能继续向外移动时,此时解锁装置刚好通过作用于斜块24并且带动锁定柱21向上移动,使得锁定柱21向上移动并且压缩锁定弹簧22,进而锁定柱21从锁定孔23中退出,解除对承载板2的锁定,此时在地震横波的作用下承载板2在基板1内进行往复移动并且通过伸缩弹簧13实现对承载板2(连接箱4)的缓冲效果,并且此时控制装置实现对从锁定孔23中退出的锁定柱21进行定位的效果。Initially, when the
实施例3,在实施例1的基础上,参照附图7所示,解锁装置包括与移动筒5固定连接的L形齿条25且L形齿条25啮合有解锁齿轮26,伴随着移动筒5的移动同步带动与之固定连接的L形齿条25移动, L形齿条25通过与之啮合的解锁齿轮26带动解锁齿轮26传动装置,参照附图8所示,解锁齿轮26传动装置带动横向滑动安装在承载板2上的两个三角块28进行相向移动,并且通过三角块28与斜块24相互配合,迫使锁定柱21向上移动,以至于移动筒5位于连接箱4内一端的环形挡板12触碰到连接箱4侧壁上时,此时刚好通过相配合的斜块24、三角块28带动锁定柱21向上完全从锁定孔23中退出,如附图10中所示;
所述解锁齿轮26传动装置包括与解锁齿轮26同轴转动的蜗杆29且蜗杆29驱动有转动安装于连接箱4内的蜗轮27,所述蜗轮27经伸缩杆30(伸缩杆30的设置用于配合连接箱4与承载板2之间的竖向位移变化)驱动有第三齿轮齿条传动装置31,并且经第三齿轮齿条传动装置31驱动两三角块28进行相向或者相背移动。The transmission device of the unlocking
实施例4,在实施例2基础上,参照附图14所示,检测齿条15固定安装于滑轨20横向一侧壁上,参照附图10所示,检测齿轮14转动安装于圆柱19内,参照附图12所示,控制装置包括转动安装于承载板2上且与检测齿轮14同轴转动的绝缘板32,所述绝缘板32上固定有矩形导电框33,参照附图13所示,所述矩形导电框33分别经与之连接且竖向间隔设置的弧形导电板34配合有固定安装在承载板2上的导电环35,所述承载板2上端面固定有圆筒37且两导电环35竖向间隔安装在圆筒37内壁上,参照附图11所示,我们在承载板2上位于绝缘板32纵向两侧分别固定有磁铁36且两磁铁36N级和S级相向设置;
当承载板2在地震波的作用下在基板1内沿着滑轨20的方向做往复移动时,参照附图10所示,同步带动转动安装于圆柱19内的检测齿轮14沿着检测齿条15进行转动,进而同步带动与检测齿轮14同轴转动的绝缘板32转动,绝缘板32转动进而带动矩形导电框33在两磁铁36之间进行转动,从而矩形导电框33切割磁感线产生电流,矩形导电框33、弧形导电板34、导电环35构成闭合电路(如果闭合电路中的一部分导体在磁场中做切割磁感线运动的话,导体中的电子就会受到洛伦兹力,洛伦兹力属于非静电力,能引起电势差,从而产生电流,该电流称为感应电流),只要承载板2沿着滑轨20进行移动,则检测齿轮14通过与之同轴转动的绝缘板32就带动矩形导电框33做切割磁感线运动,电流表检测到回路中产生电流,当地震波缓缓减弱以至消失后,承载板2在伸缩弹簧13的作用下移动至初始位置处板并且不再沿滑轨20移动,此时检测齿轮14也同步停止转动,此时矩形导电框33不再做切割磁感线运动,进而电流表检测到回路中电流消失,此时电流表经过与之电性连接的微控制器控制锁定柱21向下移动,进而使得锁定柱21在锁定弹簧22的作用下向下移动并且重新插入至锁定孔23中,实现对承载板2的再次定位的效果。When the
实施例5,在实施例4的基础上,关于控制装置是如何实现对从锁定孔23中撤出的锁定柱21进行定位的,将在本实施例进行详细的描述,参照附图10所示,我们在锁定柱21底部横向两侧经定位弹簧38连接有与之横向滑动配合安装的定位柱39(初始时,定位弹簧38处于被压缩状态),参照附图9所示,我们在位于滑轨20上方的圆柱19内设有与定位柱39相配合的定位孔40,当锁定柱21从锁定孔23中完全撤出时,定位柱39刚好移动至定位孔40位置处并且定位柱39在定位弹簧38弹力作用下,插入至定位孔40中,实现对锁定柱21的定位效果;
我们在圆柱19内固定有电磁铁且电磁铁串联于第一稳压回路中,并且我们在定位柱39面向电磁铁一侧固定有导电片,当电流表检测到回路中电流消失时,微控制器控制第一稳压回路接通并且此时电磁铁得电产生电磁力,将位于定位孔40中的定位柱39从定位孔40内通过电磁力吸出, 并且重新收缩至锁定柱21内,此时锁定柱21在锁定弹簧22的作用下向下插入至锁定孔23中,实现对承载板2的锁定效果,但电流表检测到回路中电流产生时,微控制器控制第一稳压回路断开,此时电磁铁不具有电磁力,进而在当锁定柱21刚好从锁定孔23中完全退出时(此时承载板2还未开始移动),在定位弹簧38的作用下将定位柱39弹入至定位孔40中,实现对锁定柱21的定位。We fix an electromagnet in the
实施例6,在实施例1基础上,参照附图15所示,所述弧形板17经第一齿轮齿条传动装置41驱动有转动安装于基板1内的第一单向齿轮42,所述第一单向齿轮42同轴转动有第二单向齿轮43,第一单向齿轮42啮合有转动安装于基板1内的惰轮44,惰轮44啮合有转动安装于基板1内的传动齿轮45,参照附图16所示,所述传动齿轮45与第二单向齿轮43啮合,参照附图15所示,传动齿轮45同轴转动有驱动齿轮46,参照附图14所示,当圆柱19未受到地震波时,触发板18处于基板1内中间位置且和弧形板17相互抵触在一起,此时复位弹簧16处于被压缩状态,当圆柱19受到来自沿垂直于输送管9方向产生的地震波时,进而带动触发板18在基板1内进行往复移动,伴随着触发板18的往复运动,当触发板18与弧形板17不接触时,弧形板17在复位弹簧16作用下朝着靠近圆柱19的方向移动并且通过第一齿轮齿条传动装置41带动第一单向齿轮42转动,参照附图15所示,第一单向齿轮42通过与之啮合的惰轮44驱动传动齿轮45转动并且带动传动齿轮45沿着所设定方向进行转动(此时第二单向齿轮43进行空转,即,此时第二单向齿轮43不能驱动传动齿轮45转动),传动齿轮45通过与之同轴转动的驱动齿轮46进而带动记录装置开始工作,当触发板18再次移动至与弧形板17相对应位置时,迫使弧形板17朝着远离圆柱19的方向移动并且使得复位弹簧16被压缩,并且通过第一齿轮齿条传动装置41带动第二单向齿轮43转动(此时第一单向齿轮42并不能驱动惰轮44转动并且此时第一单向齿轮42进行空转),进而第二单向齿轮43通过与之啮合的传动齿轮45(第二单向齿轮43驱动传动齿轮45沿着所设定的方向转动)带动驱动齿轮46转动,驱动齿轮46带动记录装置工作;
第一单向齿轮42与第二单向齿轮43反向配合安装,是为了,无论弧形板17朝着靠近圆柱19的方向移动还是朝着远离圆柱19的方向移动,通过第一单向齿轮42、第二单向齿轮43、惰轮44、传动齿轮45的配合,均能使得驱动齿轮46朝着固定的方向进行转动,进而驱动齿轮46通过与之连接的记录装置实现对圆柱19(承载板2)在基板1内进行往复移动的频率(即,从圆柱19受到沿垂直于输送管9方向的地震波开始计时,到地震波消失时,圆柱19在基板1内进行往复移动的次数),若圆柱19在基板1内进行往复运动的次数越多,则表明伸缩弹簧13偏软(即,该伸缩弹簧13无法对圆柱19提供足够的弹性势能用于阻止圆柱19在受到地震波时,使得圆柱19在较短的时间内停止移动,在受到沿垂直于输送管9方向的地震波时,圆柱19在基板1内进行往复移动的次数越多,则会使得输送管9与软管10连接部位产生破损的可能性大大增加),若圆柱19在基板1内进行往复移动的次数越少,则表明伸缩弹簧13偏硬(在当圆柱19受到沿垂直于输送管9方向的地震波时,若相邻两基板1所受到的地震波的大小不同,则两基板1在沿着垂直于输送管9方向的振幅也不同,振幅较大的基板1通过连接于两基板1之间的输送管9带动另一振幅较小的基板1移动,此时过多的作用力作用在输送管9上,大大增加了输送管9破损的可能性),即,过硬的伸缩弹簧13或者过软的伸缩弹簧13均不能使得当输送管9受到沿垂直于其方向的地震波时受到较好的防护效果;The first one-
我们通过每次对两基板1施加不同等级的地震波,并且通过设置不同规格的伸缩弹簧13,当相邻两基板1从受到地震波开始到地震波消失时,通过记录装置记录两基板1内圆柱19进行往复移动的次数,从而研究伸缩弹簧13的选用与受到地震波大小的关系,进而通过试验总结得出,当发生不同的地震等级时,选用最优的伸缩弹簧13,来实现对输送管9的最佳抗震防护效果(适用于不同地区所发生的地震等级不同,用于适配不同地区的输送管9的抗震)。By applying different levels of seismic waves to the two substrates 1 each time, and by setting different specifications of the expansion springs 13, when the two adjacent substrates 1 receive the seismic waves from the start of the seismic waves to the disappearance of the seismic waves, the recording device records the
实施例7,在实施例6基础上,参照附图17所示,记录装置包括与驱动齿轮46啮合且转动安装于基板1内的内齿圈47,当驱动齿轮46沿着所设定方向进行转动时,进而带动内齿圈47同样沿着固定方向进行转动,并且我们在内齿圈47外圆面沿其径向固定有划线笔48,所述基板1内设置有记录环67且记录环67内圆面上安装有与划线笔48相配合的记录纸,即,触发板18每次经过弧形板17时(此时弧形板17有两个动作,即,触发板18迫使弧形板17朝着远离圆柱19的方向移动,当弧形板17与触发板18脱离后,在复位弹簧16作用下,使得弧形板17朝着靠近圆柱19的方向移动),弧形板17的每个动作均能通过驱动齿轮46带动内齿圈47沿固定方向转动相同角度,即,带动划线笔48在记录纸上滑出相同弧度的轨迹,当地震波消失,并且待圆柱19不再移动时,通过测量划线笔48在记录纸上所画出的弧长(通过测量得到的总的弧长除于每次弧形板17动作时带动划线笔48所画处的弧长,所得到的数值的一半即为圆柱19往复移动的次数),进而得出圆柱19进行往复移动的次数。
实施例8,在实施例7基础上,参照附图17、18所示,基板1底壁上固定有承载环49且记录环67竖向滑动安装于承载环49内,所述划线笔48底部固定有L形挤压板50且L形挤压板50配合有纵向滑动安装于承载环49上的U形架51,所述U形架51与承载环49之间连接有升降弹簧52且U形架51通过第二齿轮齿条传动装置53驱动有转动安装于承载环49上的第三单向齿轮54,我们设定初始时升降弹簧52处于自然伸长状态并且U形架51与L形挤压板50相互接触,伴随着内齿圈47的转动,以至使得L形挤压板50再次移动至与U形架51接触位置时,此时内齿圈47已经转动一圈,并且伴随着内齿圈47的继续转动,则通过L形挤压板50作用于U形架51,进而迫使U形架51朝着远离承载环49的方向移动并且使得升降弹簧52被拉伸,U形架51通过第二齿轮齿条传动装置53带动第三单向齿轮54转动,第三单向齿轮54进而带动与之啮合的升降齿条55向上移动一定距离,进而同步带动记录环67向上移动一定距离(待L形挤压板50与U形架51再次脱离接触时,U形架51在升降弹簧52的作用下朝着靠近承载环49的方向移动,此时第二齿轮齿条传动装置53并不能筒第三单向齿轮54驱动升降齿条55移动,此时第三单向齿轮54空转),我们在承载环49上设置有限位装置并且该限位装置能够实现每当升降齿条55上移一定距离后实现对升降齿条55的限位效果;Example 8, on the basis of Example 7, referring to Figures 17 and 18, a
当记录环67向上移动一定距离后,伴随着内齿圈47的继续转动,则划线笔48在记录纸上的另一高度位置继续进行划线。When the
实施例9,在实施例8的基础上,参照附图19所示,限位装置包括:升降齿条55背离第二齿轮齿条传动装置53一侧经限位弹簧56连接有与升降齿条55纵向滑动配合的限位柱57,参照附图17所示,承载环49上固定有限位板58且限位板58上竖向间隔设置有若干与限位柱57相配合的限位孔59,所述限位孔59与限位柱57相互配合,使得当U形架51通过第二齿轮齿条传动装置53驱动升降齿条55每上升一定距离后,限位柱57刚好在限位弹簧56的作用下插入至限位孔59中,并且实现对升降齿条55的限位效果。
实施例10,在实施例1的基础上,参照附图7所示,定位装置包括固定安装于连接箱4纵向两侧壁上的液压杆60且液压杆60上固定有与移动筒5相配合的弧形定位板61,初始在未受到地震时,移动筒5在液压杆60、弧形定位板61的作用下,处于被定位状态,在本方案中的土木工程抗震结构虽然只是用于试验,但是各部分结构、功能的设置均是为了使得在投入实际生产应用时,能够对输送管9产生最大程度的防护作用,在当未发生地震时,通过液压杆60、弧形定位板61使得移动筒5处于被定位状态,使得输送管9受到除地震以外的作用力时,尽可能的不会产生晃动,影响输送管9的稳定性;
参照附图9所示,触发装置包括设置于基板1内的矩形筒62且矩形筒62横向两侧壁上安装有电阻片,两所述电阻片串联于第二稳压回路中,其中一个电阻片与第二稳压回路电源负极连接,另一电阻片与第二稳压回路电源正极连接,所述矩形筒62底壁上经触发弹簧65连接有竖向滑动安装于矩形筒62内的滑移板64且滑移板64横向两侧与电阻片滑动配合部位安装有导电片,所述第二稳压回路中串联有电流表,当地震产生时,由于地震纵波的传播速度大于地震横波,地震纵波首先到达地面时,会使得滑移板64因受到地震纵波的影响而在竖向产生晃动,进而改变两电阻片串入第二稳压回路中的电阻值,当第二稳压回路中电阻发生变化时,电流表检测到回路中的电流产生波动,此时与电流表电性连接的控制系统(所述控制系统可为微控制器,用于监测电流的波动并且控制液压杆60产生相应动作)控制液压杆60动作并且带动弧形定位板61与移动筒5脱离,使得移动筒5由定位状态转变为自由状态,紧接着地震横波到达地面,并且当输送管9两端在受到沿垂直其方向且不同大小的地震横波时,带动位于其两端的移动筒5移动(使得第二弹簧7被拉伸,实现一定的缓冲效果);Referring to FIG. 9 , the triggering device includes a
以至于当地震消失后,竖向滑动安装在矩形筒62内的滑移板64不再在竖向晃动并且第二稳压回路中的电流也趋于稳定,此时控制系统控制液压杆60动作并且带动弧形定位板61重新实现对移动筒5的定位效果。So that when the earthquake disappears, the sliding
参照附图20所示,在本方案中的第一单向齿轮42、第二单向齿轮43、第三单向齿轮54的结构相同,均包括外齿圈69且外齿圈69转动安装于相应齿轮轴68上,所述外齿圈69内圆面设置有若干棘齿70且与之对应的齿轮轴68上转动安装有与棘齿70相配合的棘爪71,所述齿轮轴68上固定有与棘爪71相配合的弹性橡胶块63,弹性橡胶块63用于实现将棘爪71的复位,当外齿圈69受到沿如附图20所示中的逆时针方向转动时,则外齿圈69无法驱动齿轮46轴转动,此时外齿圈69进行空转,当外齿圈69受到沿如附图20所示中的顺时针方向转动时,则外齿圈69驱动齿轮46轴进行转动并且实现动力的传递。Referring to FIG. 20 , the first one-
该土木工程抗震结构通过在相邻两输送管9之间设置可收缩的软管10连接并且当遭遇地震时相邻两输送管9之间沿地震波方向可产生一定的位移,即,使得两输送管9连接部位可产生一定程度的形变,由刚性连接转变为软性连接,大大提高了应对地震的防护能力,从而更好的实现对管道连接部位的防护;The civil engineering earthquake-resistant structure is connected by arranging a
在本方案中,我们通过将两基板1放置于地震模拟台上,并且施加纵向、横向的地震波(模拟地震来临时的情况),在施加一定等级的地震波的情况下,通过记录装置,可实现对连接箱因受到沿垂直于输送管9方向的地震波而产生晃动的次数进行记录,晃动次数太少(说明选用的伸缩弹簧较硬,无法实现对连接箱4的缓冲效果)或者晃动次数太多(说明选用的伸缩弹簧较软,导致连接箱4晃动次数较多,同样不利于管道连接部位的防护),根据记录数据,进而设置不同弹性系数的弹簧,通过多次试验,寻求最优的弹簧,使得连接箱4的晃动频率在一定合理范围内(即实现了对连接箱4较好的缓冲也不会导致连接箱遭遇地震时晃动频率过大);In this scheme, by placing the two substrates 1 on the earthquake simulation platform, and applying longitudinal and transverse seismic waves (simulating the situation when an earthquake occurs), in the case of applying a certain level of seismic waves, through the recording device, it is possible to achieve Record the number of times that the connection box shakes due to the seismic wave in the direction perpendicular to the conveying
在本方案中我们可以通过地震模拟台对基板1施加不同等级的地震,进而通过试验得出,在遭遇不同等级地震的情况时,选出相应的最优的伸缩弹簧13,用于适配不同等级地震发生时,对输送管9产生最优的抗震防护效果。In this scheme, we can apply different levels of earthquakes to the base plate 1 through the earthquake simulation platform, and then through experiments, it is found that when encountering earthquakes of different levels, the corresponding optimal expansion springs 13 are selected to adapt to different levels of earthquakes. When a grade earthquake occurs, the optimal anti-seismic protection effect is produced for the conveying
上面所述只是为了说明本发明,应该理解为本发明并不局限于以上实施例,符合本发明思想的各种变通形式均在本发明的保护范围之内。The above description is only to illustrate the present invention, and it should be understood that the present invention is not limited to the above embodiments, and various modifications conforming to the idea of the present invention are all within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010418697.XA CN111536342B (en) | 2020-05-18 | 2020-05-18 | A civil engineering seismic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010418697.XA CN111536342B (en) | 2020-05-18 | 2020-05-18 | A civil engineering seismic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111536342A CN111536342A (en) | 2020-08-14 |
CN111536342B true CN111536342B (en) | 2020-12-11 |
Family
ID=71980545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010418697.XA Active CN111536342B (en) | 2020-05-18 | 2020-05-18 | A civil engineering seismic structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111536342B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113202988B (en) * | 2021-05-06 | 2023-07-21 | 宁夏大学新华学院 | Civil engineering shock-resistant structure |
CN113551083B (en) * | 2021-07-21 | 2022-10-14 | 东莞粤惠建筑科技有限公司 | Anti-seismic connecting support for water delivery pipe in building |
CN114577335B (en) * | 2022-03-04 | 2024-10-29 | 西安热工研究院有限公司 | Intelligent monitoring control system for pipeline vibration |
CN115647464B (en) * | 2022-12-14 | 2023-03-03 | 唐山新亚德波纹管科技有限公司 | Cutting device for machining metal hose and machining process thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57195940A (en) * | 1981-05-28 | 1982-12-01 | Sanwa Tekki Corp | Vibration preventive device |
CN2802242Y (en) * | 2003-10-30 | 2006-08-02 | 陈中和 | An anti-shock expansion joint structure |
CN107676556A (en) * | 2017-10-31 | 2018-02-09 | 山东亿佰通机械股份有限公司 | A kind of seismatic method for pipeline attachment structure |
CN108548012B (en) * | 2018-03-19 | 2020-03-31 | 江苏大学 | A single-pole universal anti-seismic support hanger |
CN109000040B (en) * | 2018-07-10 | 2020-04-17 | 浙江海洋大学 | Building warm damping hanger for ventilation pipe |
CN109027513B (en) * | 2018-08-14 | 2020-08-04 | 安徽盛美金属科技有限公司 | Pipeline inspection robot |
-
2020
- 2020-05-18 CN CN202010418697.XA patent/CN111536342B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111536342A (en) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111536342B (en) | A civil engineering seismic structure | |
CN103514817B (en) | Can the LED display of auto-folder and using method thereof | |
CN103868669A (en) | Underwater multipoint excitation pseudo-dynamic testing system | |
CN104485838B (en) | Stack type dielectric elastomer wave energy collector | |
CN104992602A (en) | Motion model of crystal dislocation structure | |
CN107144773B (en) | A gas-insulated impulse voltage generator | |
CN110553938A (en) | Device and method for testing bending hysteresis effect scaling model experiment of marine flexible pipe cable | |
Du et al. | High‐Speed Rotary Motor for Multidomain Operations Driven by Resonant Dielectric Elastomer Actuators | |
CN108729476B (en) | Concave waterproof structure of underwater vibrating table | |
CN110581673A (en) | Shock Pads for Hybrid Generators | |
CN207906384U (en) | A kind of incomplete gear mechanism shock insulation limiting device | |
CN211401595U (en) | Improved structure of rigidity test soil box | |
KR101286714B1 (en) | Piezoelectric energy harvesting device | |
CN103792059A (en) | Segmented model box by using multiple-point vibration table to simulate non-uniform excitation of underground structure | |
CN216746680U (en) | A vibration test device | |
CN206990737U (en) | A kind of gas-insulating type surge voltage generating means | |
CN106351266B (en) | Shear model box is laminated in a kind of the large-scale of external electromagnetic damping device | |
CN219532436U (en) | Earthquake simulation platform for geotechnical engineering | |
CN114525951A (en) | Adjustable device for fixing stage lifting frame | |
CN113530749B (en) | Wave power generation device utilizing wave energy | |
CN203732232U (en) | Underwater multipoint excitation pseudo-dynamic test system | |
CN209387231U (en) | A waterproof device for an underwater vibrating table | |
CN108869623A (en) | A kind of combined type shock isolating pedestal for high voltage electric equipment shock insulation | |
TW202032036A (en) | Electromagnetic damping device having flywheel characterized in an effect of a stroke level not being limited can be achieved with the gear rail and the corresponding gear | |
JPH078848Y2 (en) | Compressed air generator using wave force |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |