CN111533845A - 轻质碳酸钙表面印迹聚合物及其合成方法和应用 - Google Patents

轻质碳酸钙表面印迹聚合物及其合成方法和应用 Download PDF

Info

Publication number
CN111533845A
CN111533845A CN202010421048.5A CN202010421048A CN111533845A CN 111533845 A CN111533845 A CN 111533845A CN 202010421048 A CN202010421048 A CN 202010421048A CN 111533845 A CN111533845 A CN 111533845A
Authority
CN
China
Prior art keywords
caco
mips
zen
warfarin
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010421048.5A
Other languages
English (en)
Inventor
何娟
许红
宋立新
黄志鹏
李媛媛
游利琴
王慧格
张云霞
许鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Henan Vocational College of Water Conservancy and Environment
Original Assignee
Henan University of Technology
Henan Vocational College of Water Conservancy and Environment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology, Henan Vocational College of Water Conservancy and Environment filed Critical Henan University of Technology
Priority to CN202010421048.5A priority Critical patent/CN111533845A/zh
Publication of CN111533845A publication Critical patent/CN111533845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于分析化学领域,公开了一种轻质碳酸钙表面印迹聚合物及其合成方法和应用。本发明采用天然多孔材料轻质纳米碳酸钙作为载体,使用华法林作为玉米赤霉烯酮的替代模板,丙烯酰胺与乙二醇二甲基丙烯酸酯分别为功能单体与交联剂,在偶氮二异丁腈的引发下合成CaCO3@MIPs。将其作为柱填料用于实际样品粮食中玉米赤霉烯酮的分离与富集,方法稳定效果良好,具有高的灵敏度与准确度,能够满足对粮食中痕量玉米赤霉烯酮的检测与定量分析,适合用于粮食中玉米赤霉烯酮的富集收集前处理。

Description

轻质碳酸钙表面印迹聚合物及其合成方法和应用
技术领域
本发明属于分析化学领域,涉及一种轻质碳酸钙表面印迹聚合物及其合成方法和应用。
背景技术
真菌毒素种类繁多,包括玉米赤霉烯酮毒素(Zearalenone,ZEN)、黄曲霉毒素(Aflatoxins,AFs)、赭曲霉毒素、呕吐毒素等。真菌毒素存在范围广泛,在玉米、小麦、大豆、大米、燕麦等粮食作物中均有可能存在。在粮食的种植、运输、存储以及加工阶段,在一定的温度和湿度条件下,粮食作物会产生ZEN等真菌毒素。但是由于ZEN等具有很强的热稳定性,在一般的烹饪过程中(如煎、炸、蒸、煮)很难被降解或破坏,所以这些毒素被加工为食物或饲料后,通过直接或间接的方式进入人体内并在体内进行累积。由于具有高的致畸、致癌性质,低浓度水平的ZEN等真菌毒素也会对人体造成极大的危害。已有研究报道证明ZEN属于一种内分泌干扰物,它会与雌激素受体相互结合,还会与类固醇发生相互作用。ZEN的存在也是导致女孩性早熟的原因之一。同时ZEN具有遗传和生殖毒性,会对DNA造成损伤。而且ZEN会对肝功能有一定影响;促进雌激素依赖性肿瘤,引起消化道炎症。
由于ZEN的广泛存在和其低含量高毒性的特性,不同的国家、地区和组织制定了ZEN在粮食中的限量标准,其中我国的限量标准不得高于60μg kg-1。目前关于ZEN的报道中,对ZEN的检测定量方法主要有液相色谱-荧光检测器联用法、液相色谱-质谱联用法、气相色谱-质谱联用法以及薄层色谱法。这些检测方法利用ZEN和样品基质在色谱上的不同保留时间不同,而对ZEN进行分离,然后使用荧光或质谱检测器对ZEN进行定量检测,但是由于实际粮食样品中的ZEN含量为痕量级别,且样品基质非常复杂,实际样品的提取液会含有很多杂质和干扰物质。这不仅会对检测时,首先要对样品进行前处理,对样品中的ZEN进行分离和富集,减少样品基质对检测的干扰。
对样品中ZEN的检测常用的前处理手段主要包括:固相萃取法(Solid PhaseExtraction,SPE),液液萃取法(Liquid-Liquid Extraction,LLE),免疫亲和层析法。SPE利用了目标物质和干扰物质之间在固定相填料和洗脱溶液中的保留能力不同,从而达到对目标物质和干扰物质分离的目的,但是对于含有复杂基质的粮食样品中的痕量ZEN,由于SPE柱的选择性不足,所以其提取效果仍然不能够满足要求。LLE又被称为溶剂萃取,其原理是利用混合溶液中不同组分在溶剂中的分配系数或溶解度不同,目标物质在两相中进行重新分配,从而达到对目标组分的分离与富集。LLE所需的操作装置简单,且只需寻找合适的萃取溶剂即可,但是其操作繁琐费时,而且在萃取过程中需要使用大量的有机溶剂,对环境不友好,不符合绿色化学的理念。免疫亲和层析法利用抗原-抗体间的高选择亲和能力对样品中的目标物质进行分离提取的方法即为免疫亲和层析法,方法中利用了抗原-抗体间的亲和能力达到了对目标组分高性能的分离与富积。使用IAC对样品进行前处理仍然具有一定的局限性,IAC的单价较为昂贵,而且需要低温保存且只能够单次使用,这些因素即导致在一些经济不发达或欠发达的地区使用IAC用于食品中ZEN的前处理仍然具有一定的困难。所以需要一种材料对粮食中的痕量ZEN前处理过程中,既能降低样品基质的干扰,对ZEN具有选择能力,能够对痕量的ZEN进行选择性的分离与富集,而且操作使用简便,省时省力,经济环保。
分子印迹聚合物(Molecularly Imprinted Polymers,MIPs)是一种采用分子印迹技术所合成的具有选择识别能力的高分子聚合物。有研究将MIPs与μ-SPE技术相结合,用于对复杂样品进行前处理除去样品基质的干扰。虽然MIPs具有良好的选择性、重复性等优点,但是传统的MIPs仍具有一些不足有待改进,传统的MIPs的合成多为本体聚合、沉淀聚合以及悬浮聚合等手段,合成后的传统MIPs模板分子会随机分布于聚合物的内部与表面,而存在于聚合物内部的模板分子由于位置的关系,难以去除,需要更多时间移除内部的模板分子,如果模板分子未去除完全,会对分离的结果与效率产生影响,也会造成模板分子的浪费,这些不足限制了MIPs发展与使用。
表面分子印迹聚合物(Surface Molecularly Imprinted Polymers,SMIPs)相较于传统MIPs具有更好的吸附性能,更高的传质速率,更短的吸附平衡时间等优势,用于前处理操作中能加快目标物质的分离与提取。轻质纳米碳酸钙是天然多孔材料,所以将其与表面分子印迹聚合物相结合对粮食中的ZEN等真菌毒素进行前处理具有很好的前景,目前未见相关报道。
发明内容
本发明目的在于提供一种轻质碳酸钙表面印迹聚合物,实现绿色环保、高效地对粮食中的ZEN等真菌毒素进行富集收集前处理。
为实现本发明目的,本发明采用纳米轻质碳酸钙作为载体材料,使用ZEN结构类似物华法林作为替代模板,丙烯酰胺(AM)与乙二醇二甲基丙烯酸酯(EDMA)分别为功能单体与交联剂,在偶氮二异丁腈(AIBN)引发下通过沉淀聚合合成CaCO3@MIPs。
Figure BDA0002496979800000031
具体技术方案如下:
(1)称取烘干的CaCO3于三口烧瓶中,加热条件下,搅拌并逐滴加3-(甲基丙烯酰氧)丙基三甲氧基硅烷,搅拌反应,反应结束后,分别加入丙烯酰胺和乙醇,超声混合,之后加入华法林超声反应,形成预聚物。然后加入乙二醇二甲基丙烯酸酯和偶氮二异丁腈,乙醇,混合均匀后,置于油浴锅中反应,反应结束后,抽滤并烘干过夜,得CaCO3@MIPs-template。
(2)模板分子的洗脱
将干燥后的CaCO3@MIPs模板用甲醇乙酸混合溶液和索氏提取器洗脱,洗脱完毕后,烘干得到CaCO3@MIPs。
在CaCO3@MIPs合成中,模板与功能单体的比例会影响MIPs的吸附量,合成中模板比例过大,会造成模板分子与功能单体形成的预聚物不完全,合成的MIPs识别位点不足,影响MIPs对目标物质的选择性识别;但合成过程中模板的比例过小,功能单体过剩,可能会导致MIPs无法合成。通过实验得知,当华法林与AM的摩尔比例为1:5时,合成的MIPs对华法林的吸附量最大。
合成CaCO3@MIPs中,载体材料CaCO3过多会造成剩余的CaCO3裸露,导致MIPs包裹不完全,影响CaCO3@MIPs的吸附性能;CaCO3用量过少,会导致外围MIPs聚合程度过高,影响CaCO3@MIPs的传质速率。当使用1g CaCO3参加1mmol的模板分子聚合反应时,合成的CaCO3@MIPs吸附量最大。
优选合成条件:华法林:AM:EDMA=1:5:30;每1mmol的华法林添加1g CaCO3
选用甲醇:水(3:7,V/V)作为CaCO3@MIPs的淋洗溶液。选取乙腈作为CaCO3@MIPs的洗脱溶液。
CaCO3@MIPs作为吸附剂与柱辅助固相萃取技术相结合,可以应用于粮食中ZEN等真菌毒素的富集收集前处理。
本发明优点:1、制得的CaCO3@MIPs粒度大小均匀,绿色环保,价格低廉,通过CaCO3@MIPs静态与动态吸附实验,证实CaCO3@MIPs具有较大吸附量与快速吸附平衡能力,在3min内达到6.51mg g-1最大吸附量。通过动力学与热力学的拟合,证实CaCO3@MIPs是一种双分子层的化学吸附性质的吸附剂材料,提高了CaCO3@MIPs对溶液中ZEN的分离与吸附效率。2、经过优化后的柱辅助CaCO3@MIPs固相萃取能够多次重复使用,并保持回收率不低于85%。3、在玉米、小米、大米样品中富集证实,其在10.0-200ng mL-1范围内线性良好,LODs和LOQs最低分别为3.0ng mL-1和10.0ng mL-1,具有高的灵敏度与准确度,能够满足对粮食中痕量ZEN的检测与定量分析,适合用于粮食中ZEN的富集收集前处理。
附图说明
图1为柱辅助CaCO3@MIPs分散固相萃取使用流程;
图2为扫描电镜图(a:CaCO3,b:CaCO3@MIPs),表面元素含量(c:CaCO3,d:CaCO3@MIPs);
图3为粒度分布图,a:CaCO3,b:CaCO3@MIPs;
图4为X射线衍射图(a)和傅里叶红外光谱图(b);
图5为CaCO3@MIPs静态吸附曲线;
图6为CaCO3@MIPs静态吸附线性拟合,a:Langmuir线性模型,b:Freundlich线性模型;
图7为CaCO3@MIPs动态吸附曲线;
图8为CaCO3@MIPs动态吸附线性拟合,a:伪一级动力学线性模型,b:伪二级动力学线性模型;
图9为CaCO3@MIPs淋洗与洗脱溶液的优化图,(a)不同溶剂淋洗柱状图,(b)3种淋洗溶液色谱图;
图10为CaCO3@MIPs洗脱液体积的选择柱状图;
图11为CaCO3@MIPs循环使用柱状图;
图12为基质匹配曲线,a:乙腈,b:玉米,c:小米,d:大米;
图13为玉米样品中处理效果的对比图,a:CaCO3@MIPs处理的加标提取液,b:CaCO3处理的加标提取液,c:CaCO3@MIPs处理的提取液,d:C18柱处理的加标提取液,e:Florisil柱处理的加标提取液,f:Silica柱处理的加标提取液。
具体实施方式
为对本发明进行更好地说明举实施例如下:
实施例1 CaCO3@MIPs的制备
(1)CaCO3@MIPs的合成
称取1g烘干的CaCO3于三口烧瓶中,70℃下高速搅拌并逐滴加入1mL3-(甲基丙烯酰氧)丙基三甲氧基硅烷,搅拌30min后分别加入0.354g(5mmol)AM和10mL乙醇,超声20min。之后加入0.300g(1.0mmol)华法林超声20min,形成预聚物。然后加入6mL(30mmol)EDMA和0.133g AIBN,加入110mL乙醇,混合5min后,置于油浴锅中并保持由于温度为85。℃待反应6h后,抽滤并烘干过夜,得白色粉末状固体。
CaCO3@NIPs的合成方法为CaCO3@MIPs的合成过程中不添加替代模板分子(华法林)。
(2)模板分子的洗脱
将干燥后的CaCO3@MIPs使用滤纸包成小包,使用甲醇乙酸混合溶液和索氏提取器,洗脱24h后,使用甲醇继续洗脱,洗脱至索氏提取器上部分溶液中回流甲醇溶液为中性,且不含有华法林分子。并使用紫外光谱仪对洗脱液进行检测。洗脱完毕后,烘干CaCO3@MIPs,收集待用。
图2(a,b)中为MIPs包裹前后的两种材料,分别是载体CaCO3和聚合后的CaCO3@MIPs,通过观察图中单个CaCO3颗粒与CaCO3@MIPs颗粒,可以发现CaCO3的表面呈现尖刺状,但聚合后的CaCO3@MIPs表面尖刺状消失,并且可以观察到表面有MIPs颗粒。通过EDS对CaCO3与CaCO3@MIPs表面元素含量进行分析,两种材料表面元素Ca、C、O的含量如图2(c,d),由表1可知聚合前后两种材料表面的Ca元素含量从64.6%减少到0.2%,这是由于MIPs中不含Ca,而且聚合后CaCO3被MIPs包裹。由此可知,成功使用CaCO3为载体合成了CaCO3@MIPs。
表1 CaCO3与CaCO3@MIPs表面元素含量
Figure BDA0002496979800000061
使用激光粒度仪,分别对CaCO3与CaCO3@MIPs的粒度分布进行测试,如图3所示,载体材料CaCO3与CaCO3@MIPs的平均粒度分布分别为7.605μm与8.094μm,由于MIPs的存在CaCO3@MIP的平均粒度相较于CaCO3有所增加。CaCO3@MIPs的粒度分布较窄为2.45-22.39μm,表明CaCO3@MIPs颗粒度良好且大小分布均匀,说明CaCO3@MIPs适合用于固相萃取中的吸附剂。
CaCO3与CaCO3@MIPs的X射线衍射图为图4(a),图中CaCO3@MIPs具有与CaCO3相同位置的衍射峰,但相较于CaCO3其峰强度有所降低,而在图4(b)的CaCO3与CaCO3@MIPs的红外光谱图中,在CaCO3@MIPs红外光谱图中CaCO3的特征吸收峰减弱,而且同时具有MIPs特征吸收峰,这是由CaCO3外围包裹的MIPs所造成的,表明了CaCO3@MIPs合成成功。
实施例2 CaCO3@MIPs吸附性能实验
2.1华法林标准溶液的配制
浓度为0.5、1.0、2.0、5.0、10、20、30、40、50μg mL-1的华法林标准溶液使用甲醇:水(1:9,V/V)配制,待用。
2.2 CaCO3@MIPs静态吸附实验
称取15mgCaCO3@MIPs于10mL离心管中,加入上述不同浓度的华法林标准溶液,使用振荡器于90rpm下震摇1h,测定溶液中华法林浓度,并根据公式4.1计算CaCO3@MIPs对华法林的吸附量:
Q=(C0-Ct)*V/m (4.1)
其中,
Q为CaCO3@MIPs的吸附量,(mg g-1);
C0与Ct分别为标准溶液和平衡溶液华法林的浓度,(μg mL-1);
V为加入标准溶液体积,(mL);
m为CaCO3@MIPs的质量,(mg)。
CaCO3@MIPs对华法林的吸附量如图5所示,在0.5-30μg mL-1内,CaCO3@MIPs的吸附量与华法林初始浓度成正比,在30μg mL-1后,CaCO3@MIPs的吸附量的增加速率逐渐放缓,最终当标准待测液中华法林浓度为50μg mL-1时,CaCO3@MIPs的吸附量达到最大,为6.51mg g-1
表2 Langmuir与Freundlich线性模型参数
Figure BDA0002496979800000071
如图6为Langmuir与Freundlich线性拟合模型,表2中两拟合公式的参数,可知相较于Langmuir线性模型,CaCO3@SMIPs对华法林的吸附过程更与Freundlich线性模型相匹配。这表明CaCO3@MIPs对华法林的吸附是同时发生在MIPs内外的双分子层的吸附过程,这是由于载体CaCO3具有更大的空隙,华法林分子可以被CaCO3@MIPs的外部和内部同时被吸附。
2.3 CaCO3@SMIPs动态吸附实验
于10mL离心管中,加入15mg CaCO3@MIPs和4mL 30μg mL-1华法林溶液,分别振荡0.5、1.0、1.5、2.0、3.0、4.0、5.0、6.0、8.0、10.0、15.0、20.0、30.0min后,测定溶液中华法林含量,根据公式4.1计算不同吸附时间后,CaCO3@MIPs对华法林的吸附量。
不同吸附时间后CaCO3@MIPs对华法林的吸附量如图7,在0-1.5min吸附时间内,随着吸附时间增长,CaCO3@MIPs的吸附量也迅速增大,1.5min后吸附量增长逐渐放缓,3min时,吸附量达到最大。CaCO3@MIPs的吸附平衡时间为3min左右,表明CaCO3@MIPs具有较快的传质速率,能够达到快速吸附溶液中目标物的目的。
表3伪一级与伪二级动力学线性模型参数
Figure BDA0002496979800000081
通过比较图8中的伪一级线性拟合模型与伪二级线性拟合模型,以及表3中两种线性模型的参数,可知伪二级线性拟合模型更加符合CaCO3@MIPs的吸附过程,说明CaCO3@MIPs的吸附过程属于一种化学性质的吸附,即CaCO3@MIPs的吸附是通过表面的MIPs内的印迹孔穴和识别位点通过化学作用而达到对目标物质的吸附效果。
CaCO3@MIPs具有快速的吸附能力以及化学识别过程的吸附,是作为实际样品中ZEN前处理步骤中吸附剂的前提,CaCO3@MIPs可以被进一步开发用于实际样品中ZEN的分离与富集。
实施例3实际样品中的应用
3.1实际样品预处理
实验中玉米、大米、小米样品均购买自当地超市(河南,郑州),粉碎。称取40g过40目筛后的样品以及4g NaCl和100mL提取液(乙腈:水(9:1,V/V))并混合于250mL锥形瓶中混合。使用机械振荡器振荡60min后,过滤并收集滤液。移取20mL滤液并以蒸馏水稀释4倍,过滤混合溶液至澄清,并收集滤液,待用。
3.2柱辅助CaCO3@MIPs分散固相萃取样品净化步骤的操作
称取100mg CaCO3@MIPs,分别使用10mL甲醇和10mL去离子水,对CaCO3@MIPs中的识别位点进行活化和水洗。将水洗后的CaCO3@MIPs转移到50mL烧杯中,加入10mL实际样品提取液,振荡3min后,静置,倾出上清液。加入10mL甲醇:水(3:7,V/V)混合溶液,振荡1min后,将溶液与CaCO3@MIPs一同转移到具有下筛板的固相萃取柱内,抽去柱内残留的水分,加入3mL(0.5mL×6)乙腈对CaCO3@MIPs中保留的ZEN进行洗脱,并收集洗脱液,使用0.22μm有机滤头过滤,待测。
3.3 CaCO3@MIPs净化步骤的优化实验
(1)CaCO3@MIPs淋洗与洗脱溶液的选择实验
配制有机溶剂(甲醇、乙腈):水体积比分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%的混合溶液用。
称取21份CaCO3@MIPs经过活化、水洗、上样10ng mL-1ZEN玉米样品提取液后,分别加入10mL上述混合溶液,收集振荡后的上清液,使用0.22μm有机滤头过滤,编号,待测。
不同比例淋洗与洗脱溶液中ZEN的回收率如图9(a)所示,有机溶剂比例较低时淋洗与洗脱溶液中没有ZEN检出,随着有机溶剂比例的增大,ZEN的回收率也逐渐增加。当淋洗与洗脱溶液为:去离子水、1:9、2:8、3:7(甲醇:水,V/V)、1:9、2:8(乙腈:水,V/V),这六种比例的溶液时,ZEN的回收率均为0。如图9(b)通过对比以上三种溶液的色谱图可知,色谱图中0-5min内为样品基质的杂质峰,甲醇:水(3:7,V/V)的杂质最多,可以确保ZEN保留的前提下讲更多的杂质洗去,所以选用甲醇:水(3:7,V/V)作为CaCO3@MIPs的淋洗溶液。但当溶液为乙腈时,ZEN的回收率最高且稳定,所以选取乙腈作为CaCO3@MIPs的洗脱溶液。
(2)CaCO3@MIPs洗脱溶液体积的选择实验
称取6份CaCO3@MIPs经过活化、水洗、上样10ng mL-1ZEN玉米样品提取液后,使用10mL甲醇:水(3:7,V/V)混合溶液淋洗,并抽干水分。分6次加入3mL乙腈洗脱CaCO3@MIPs吸附的ZEN,每次加入0.5mL并抽干,收集流出液并编号,流出液使用0.22μm有机滤头过滤,待测。
如图10所示,当乙腈为0.5mL时,ZEN的回收率约为40%,随乙腈用量的增加,ZEN的回收率也逐步升高。乙腈为3mL时,ZEN的回收率最高趋近于100%,且回收率误差较小。说明3mL乙腈即可以将CaCO3@MIPs保留的ZEN全部洗脱,
实施例3 CaCO3@MIPs的再生与重复性的测定
称取3份处理过ZEN玉米样品提取液的CaCO3@MIPs,使用20mL甲醇将固相萃取柱内CaCO3@MIPs冲洗出并转移至烧杯中,超声5min后,倾出甲醇,以20mL去离子是分两次冲洗,即为CaCO3@MIPs的再生。循环使用-再生5次,收集洗脱液并编号,测试每次再生后ZEN的回收率。
每次再生-使用后洗脱液中ZEN的回收率如图11所示,前3次循环中ZEN回收率均保持在90%左右,且误差较小。随着循环再生次数的增加,CaCO3@MIPs中的识别位点会有一定程度的损耗,所以第4次和第5次循环再生后ZEN的回收率逐渐降低至85%,且误差相对增加。表明柱辅助CaCO3@MIPs固相萃取不仅可以高效的对样品中ZEN进行分离与富集,而且可以经过再生手段重复使用5次以上。
实施例4重现性
4.1基质匹配曲线与基质效应
分别使用玉米、小米、大米作为实际样品,使用样品提取液配制一系列浓度的ZEN溶液,并绘制基质匹配曲线(图12)。如表4中,通过三种样品基质匹配曲线与标准溶液线性方程的斜率确定每种样品的基质效应。玉米、小米、大米样品的基质效应(ME)分别为14.33、11.38、10.17,三种样品中小米与大米的基质效应均比较小,由于玉米样品存在相对较多的杂质,所以玉米的基质效应大于小米和大米。
表4基质匹配曲线
Figure BDA0002496979800000101
通过对样品基质匹配曲线的绘制,可知玉米、小米、大米中的线性范围分别是10.0-200.0ng mL-1、10.0-200.0ng mL-1、15.0-200.0ng mL-1,具有较宽的线性范围,能够满足在国标限量范围内ZEN的定量检测。
玉米、小米、大米样品中的LODs如表4,分别为3.0ng mL-1、3.0ng mL-1、5ng mL-1,LOQs分别为10.0ng mL-1、10.0ng mL-1、15ng mL-1。有较低的LODs与LOQs,能够有效的对痕量ZEN进行分离与定量。
4.2准确度与精密度
为了评价方法的准确度与精密度,对玉米、小米、大米进行了三水平加标回收实验。提取液中ZEN的加标水平分别为4ng mL-1、8ng mL-1、12ng mL-1。如表5所示,在玉米样品中三个加标水平的回收率分别为88.49%、95.03%、102.88%,RSD分别为7.47%、4.19%、3.56%;小米样品中回收率分别为82.98%、98.40%、101.03%,RSD分别为9.05%、6.75%、0.25%;在大米样品中回收率分别为85.33%、102.64%、98.77%,RSD分别为9.28%、2.90%、2.56%。ZEN的平均回收率均高于82.98%,RSD不超过9.28%。具有较高的回收率,且效果稳定,能够用于对实际样品中ZEN的分离与检测定量。
表5加标回收率(n=6)
Figure BDA0002496979800000111
实施例5实际样品中的处理效果
以玉米样品为例,分别对新鲜玉米样品以及其加标样品进行提取,分别使用CaCO3@MIPs与CaCO3作为柱辅助分散固相萃取的吸附剂对提取液进行前处理,并与三种商品化固相萃取柱(C18柱、Florisil柱、Silica柱)的效果进行对比。
如图13所示,柱辅助CaCO3@MIPs分散固相萃取的方法不仅可以将样品提取液中的ZEN有效的提取与分离,而且可以更大程度的降低样品中基质带来的干扰,能够有效的对样品中ZEN进行分离与净化。

Claims (2)

1.一种轻质碳酸钙表面印迹聚合物,其特征在于,通过如下方法制备而成:
(1)称取烘干的CaCO3于三口烧瓶中,加热条件下,搅拌并逐滴加3-(甲基丙烯酰氧)丙基三甲氧基硅烷,搅拌反应,反应结束后,分别加入丙烯酰胺和乙醇,超声混合,之后加入华法林超声反应,形成预聚物;然后加入乙二醇二甲基丙烯酸酯和偶氮二异丁腈,乙醇, 混合均匀后,置于油浴锅中反应,反应结束后,抽滤并烘干过夜,得CaCO3@MIPs-template;
(2)模板分子的洗脱
将干燥后的CaCO3@MIPs模板用甲醇以乙酸混合溶液和索氏提取器洗脱,洗脱完毕后,烘干得到CaCO3@MIPs。
2.如权利要求1所述的轻质碳酸钙表面印迹聚合物,其特征在于,华法林:丙烯酰胺:乙二醇二甲基丙烯酸酯摩尔比=1:5:30;每1 mmol的华法林添加1 g CaCO3
CN202010421048.5A 2020-05-18 2020-05-18 轻质碳酸钙表面印迹聚合物及其合成方法和应用 Pending CN111533845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010421048.5A CN111533845A (zh) 2020-05-18 2020-05-18 轻质碳酸钙表面印迹聚合物及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010421048.5A CN111533845A (zh) 2020-05-18 2020-05-18 轻质碳酸钙表面印迹聚合物及其合成方法和应用

Publications (1)

Publication Number Publication Date
CN111533845A true CN111533845A (zh) 2020-08-14

Family

ID=71972132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010421048.5A Pending CN111533845A (zh) 2020-05-18 2020-05-18 轻质碳酸钙表面印迹聚合物及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN111533845A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262766A (zh) * 2021-05-17 2021-08-17 河南水利与环境职业学院 黄曲霉毒素多孔芳香族骨架paf-6分子印迹材料及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080100645A (ko) * 2007-05-14 2008-11-19 한국식품연구원 곰팡이 독소 제랄레논 또는 그 유도체 검출을 위한분자각인된 표면플라즈몬 공명 센서 칩, 그 제조방법 및그를 이용한 곰팡이 독소 제랄레논 또는 그 유도체의검출방법
CN106632809A (zh) * 2016-12-02 2017-05-10 武汉轻工大学 一种中空多孔型分子印迹材料的制备方法
CN111019070A (zh) * 2019-12-20 2020-04-17 中国药科大学 一种玉米赤霉烯酮磁性分子印迹聚合物的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080100645A (ko) * 2007-05-14 2008-11-19 한국식품연구원 곰팡이 독소 제랄레논 또는 그 유도체 검출을 위한분자각인된 표면플라즈몬 공명 센서 칩, 그 제조방법 및그를 이용한 곰팡이 독소 제랄레논 또는 그 유도체의검출방법
CN106632809A (zh) * 2016-12-02 2017-05-10 武汉轻工大学 一种中空多孔型分子印迹材料的制备方法
CN111019070A (zh) * 2019-12-20 2020-04-17 中国药科大学 一种玉米赤霉烯酮磁性分子印迹聚合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEJIN SUN ET AL.: "High selectivity and sensitivity fluorescence sensing of melamine based on the combination of a fluorescent chemosensor and molecularly imprinted polymers", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
张明: "玉米赤霉烯酮毒素印迹聚合物的合成及在粮食和饲料分析中的应用", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262766A (zh) * 2021-05-17 2021-08-17 河南水利与环境职业学院 黄曲霉毒素多孔芳香族骨架paf-6分子印迹材料及其应用
CN113262766B (zh) * 2021-05-17 2023-03-21 河南水利与环境职业学院 黄曲霉毒素多孔芳香族骨架paf-6分子印迹材料及其应用

Similar Documents

Publication Publication Date Title
CN111471147B (zh) 双模板分子氨基功能化金属有机骨架印迹聚合物及其合成方法和应用
Jiang et al. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography
Wei et al. Molecularly imprinted solid phase extraction coupled to high performance liquid chromatography for determination of aflatoxin M 1 and B 1 in foods and feeds
Cheng et al. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis (2-ethylhexyl) phthalate in environmental water
Zhai et al. Selective solid-phase extraction of trace cadmium (II) with an ionic imprinted polymer prepared from a dual-ligand monomer
Zhao et al. Synthesis of Zn (II) ion-imprinted solid-phase extraction material and its analytical application
Huang et al. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples
Yuan et al. Development and characterization of molecularly imprinted polymers for the selective enrichment of podophyllotoxin from traditional Chinese medicines
Liang et al. Metal organic framework-molecularly imprinted polymer as adsorbent in matrix solid phase dispersion for pyrethroids residue extraction from wheat
Peng et al. Molecularly imprinted polymer for solid-phase extraction of rutin in complicated traditional Chinese medicines
Li et al. Purification of antibiotics from the millet extract using hybrid molecularly imprinted polymers based on deep eutectic solvents
Kardani et al. A novel immunoaffinity column based metal–organic framework deep eutectic solvents@ molecularly imprinted polymers as a sorbent for the solid phase extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from cereals samples
Xin et al. Molecularly imprinted polymer as sorbent for solid-phase extraction coupling to gas chromatography for the simultaneous determination of trichlorfon and monocrotophos residues in vegetables
Li et al. Surface imprinting on nano-TiO2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior
Bayram et al. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples
Qian et al. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids
CN110204654A (zh) 基于hkust-1的黄曲霉毒素表面印迹聚合物及其应用
Liang et al. Mesoporous structured molecularly imprinted polymer with restricted access function for highly selective extraction of chlorpyrifos from soil
CN111499800A (zh) 玉米赤霉烯酮表面印迹聚合物及其合成方法和在谷物检测中的应用
Hroboňová et al. Determination of dicoumarol in Melilotus officinalis L. by using molecularly imprinted polymer solid-phase extraction coupled with high performance liquid chromatography
Azodi-Deilami et al. Preparation and utilization of a molecularly imprinted polymer for solid phase extraction of tramadol
Li et al. Separation and determination of alkylamides from prickly ash powder using molecularly imprinting technique
Wang et al. Molecularly imprinted solid-phase extraction coupled with gas chromatography for the determination of four chloroacetamide herbicides in soil
CN111533845A (zh) 轻质碳酸钙表面印迹聚合物及其合成方法和应用
Zhao et al. Novel molecularly imprinted polymer prepared by nanoattapulgite as matrix for selective solid-phase extraction of diethylstilbestrol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200814

WD01 Invention patent application deemed withdrawn after publication