CN111519113A - 一种电子产品用高强不锈钢粉末及制备工艺 - Google Patents

一种电子产品用高强不锈钢粉末及制备工艺 Download PDF

Info

Publication number
CN111519113A
CN111519113A CN202010437460.6A CN202010437460A CN111519113A CN 111519113 A CN111519113 A CN 111519113A CN 202010437460 A CN202010437460 A CN 202010437460A CN 111519113 A CN111519113 A CN 111519113A
Authority
CN
China
Prior art keywords
percent
powder
stainless steel
equal
electronic products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010437460.6A
Other languages
English (en)
Other versions
CN111519113B (zh
Inventor
罗海文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202010437460.6A priority Critical patent/CN111519113B/zh
Publication of CN111519113A publication Critical patent/CN111519113A/zh
Application granted granted Critical
Publication of CN111519113B publication Critical patent/CN111519113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种电子产品用高强不锈钢粉末及制备工艺,属于消费电子产品所用粉末冶金材料制备领域。成分重量百分比为:C:≤0.2%;Cr:11.0‑13.5%;Co:11‑14%;Mo:5‑7.5%;(Cu+Ni)≤3.5%;V:0.1‑0.5%;W:0‑2%,余量为Fe及不可避免的杂质。经熔炼工艺制备母合金,经制粉、粉末烧结后,进行固溶处理→深冷处理→时效处理;热处理后的粉末烧结材料,其屈服强度≥1500MPa,延伸率≥4%。本发明不含有易氧化的强化元素Ti、Al等,通过W、Mo、Co、Cu等元素的强化,成分设计可以避免铁素体和过多奥氏体相的形成,得到的高强不锈钢金属粉末除了可用于消费电子产品领域,也可应用于激光打印用复杂精密零件的粉末耗材,也可推广至医疗、海工等相关领域,具有广阔的市场前景。

Description

一种电子产品用高强不锈钢粉末及制备工艺
技术领域
本发明涉及消费电子产品所用粉末冶金材料制备领域,具体涉及一种高强度不锈钢粉末冶金材料及其制备方法。
背景技术
不锈钢的传统应用领域是石油化工、国防工业、海洋器械等方面,但近年来随着手机、智能腕表等通讯类电子消费产品的不断升级换代,不锈钢粉末直接烧结的零部件应用也越来越广泛,并对粉末烧结的材料性能也提出了越来越高的要求。一方面,基于与人体汗液的接触而要求材料依然具有足够的抗腐蚀性;另一方面对于电子产品结构件的强度要求也越来越高,以保证在承受弯曲、撞击、掉落冲击等情境下不断裂、不发生显著变形可保护内部精密电子电路。目前新型消费类电子产品要求不锈钢粉末烧结成形后,其屈服强度需超过1500MPa、延伸率超过4%,同时要求该不锈钢粉末有良好的烧结工艺性,即不含有易氧化元素Al、Ti等,因为它们易在雾化制粉、烧结时易氧化而导致塑性、韧性急剧恶化和致密度下降。
满足此类电子产品用的高屈服强度不锈钢目前只能是马氏体不锈钢,具体而言,可细分为具有高硬度、高强度的马氏体铬钢和马氏体铬镍时效不锈钢两种。
(1)马氏体铬钢。钢中除含铬外还含一定量的碳。铬含量决定钢的耐蚀性,碳含量越高则强度、硬度和耐磨性越高。主要用于制造对强度、硬度要求高、但对耐腐蚀性能要求不高的工具、刀具等。典型钢号有2Crl3、4Crl3、9Crl8等。此类马氏体不锈钢,由于高屈服强度的要求而加入较高的碳含量,这导致一是耐腐蚀性显著下降,二是塑性也显著恶化,通常塑性无法满足上述消费类电子产品的应用要求。
(2)马氏体铬镍时效不锈钢,是在超低碳马氏体时效钢的基础上加入高于10%的铬和一定含量的镍制成的,既保有马氏体时效钢的良好综合性能,又提高了耐蚀性,主要用于强韧性兼备的航空结构件。此类钢含10%~15%铬以保证抗腐蚀性,镍含量为6%~11%(或钴含量为10%~20%),并加入Mo、Ti、Cu等强化元素,其典型的马氏体时效钢钢种成分、强化相和屈服强度见表1所示。由此可见,通过Cu析出强化的沉淀硬化不锈钢系列(PH)其屈服强度只能达到1200MPa左右;而其他通过NiAl、Ni3Ti等强化相提高强度的马氏体时效不锈钢最高屈服强度可以达到1500MPa,但由于含有Al、Ti等易氧化元素而无法满足烧结的工艺要求。因此迫切需要开发一种不含有易氧化元素、屈服强度可以超高1500MPa且具有一定塑韧性的马氏体不锈钢母合金和粉末,以满足消费电子产品的需求。
表1典型高强不锈钢的合金成分及强化相
Figure BDA0002502827350000031
发明内容
本发明的目的在于提供一种消费类电子产品用高强不锈钢粉末及制备工艺,通过母合金熔炼、制粉、烧结和配套的热处理工艺,制造出一种可用于消费类电子产品的屈服强度超过1500MPa,延伸率超过4%的不锈钢零部件,以填补目前的市场空白。
一种电子产品用高强不锈钢粉末,其特征在于成分不含易氧化元素Al、Ti,且化学成分按重量百分比为:
C:≤0.2%;Cr:11.0-13.5%;Co:11-14%;Mo:5-7.5%;(Cu+Ni)≤3.5%;V:0.1-0.5%;W:0-2%,余量为Fe及不可避免的杂质。
进一步地,所述不锈钢粉末成分范围为:C:0.05-0.15%;Cr:11.0-13.5%;(Cu+Ni)≤3.5%;Co:12-14%;Mo:5-7.5%;V:0.1-0.5%;W:0-2%;其中S、P、O、N等杂质元素总量不超过0.2%。
相比于传统高强马氏体不锈钢金属粉末化学成分而言,本发明除了含有常见元素Cr、Ni、Cu外,还含有Co、Mo、W和V等非常规强化元素,同时需要控制了低的氧、氮含量以提高塑韧性。其中各元素作用如下:
C:C的作用复杂,既可通过固溶强化提高强度,也可形成碳化物析出强化;但C含量过多会形成孪晶马氏体而降低钢塑性和韧性,恶化耐蚀性,残余奥氏体的数量与稳定性也与碳含量相关。
V、Mo、W、Cu:均为强化元素,但是各自的强化机制并不相同,且强化的同时会导致塑性、韧性降低;得到最佳强韧化效果的V、Mo、W含量与碳含量、其他合金元素含量均相关;
Cr:对不锈钢的耐蚀性起着决定性作用,而引起钢耐蚀性产生突变的铬含量约为12%。过高的铬含量,基体中生成铁素体,导致耐蚀性下降和横向韧性恶化、强度降低;还会降低钢的Ms点,导致参与奥氏体含量增加,因此将Cr的含量控制在10.0-13.0%。
Ni:Ni可提高钢的韧性,降低δ-铁素体的含量,但Ni含量过多将导致室温组织中的残余奥氏体过多,影响钢的屈服强度,同时Ni、Cu都是奥氏体化元素,显著扩大奥氏体相区,因此Ni、Cu的含量需要综合设计以避免残余体过多。
氧和氮:金属粉末中有害的气体元素,造成较多空心粉形成的同时显著降低后期部件的塑韧性,特别是低温塑性、韧性。
一种如上所述的电子产品用高强不锈钢粉末不锈钢粉的制备工艺,其特征在于:
(1)母合金制备:采用真空熔炼工艺制备母合金,母合金成分按重量百分比为:
C:0.05-0.2%;Cr:11.0-13.5%;Cu:0-3.5%;Ni:0-3.5%;(Cu+Ni)≤3.5%;Co:12-14%;Mo:5-7.5%;V:0.1-0.5%;W:0-2%;余量为Fe及不可避免的杂质,其中S、P、O、N杂质元素总量不超过0.05%;当(Cu+Ni)%达到范围上限时,碳含量取上述范围下限;不添加易氧化元素Al、Ti等;熔炼后可浇铸成锭或直接进行制粉;
(2)制粉:将上述母合金熔化后,在惰性气氛下气雾化制粉,粉体的平均成分具备权利要求1所述特征。
(3)粉末烧结:将上述获得粉末按照器件形状按照常规标准布粉、振实和成型后,在惰性气氛保护下烧结;
(4)热处理工艺:上述粉末烧结后,进行固溶处理→深冷处理→时效处理;
(5)经过上述热处理的粉末烧结材料,其屈服强度≥1500MPa,延伸率≥4%。
进一步地,步骤(3)所述烧结是在1200-1400温度下进行烧结2秒~10小时。
进一步地,步骤(4)所述固溶处理是在1050~1150℃保温2秒~5小时。
进一步地,步骤(4)所述深冷处理是在≤-60℃以下温度保温2秒~10小时。
进一步地,步骤(4)所述时效处理是500~600℃保温10秒~10小时。
进一步地,步骤(4)热处理各工序的保温时间与烧结器件尺寸相关,尺寸越小,则需保温的时间越短,而越大则需要的保温时间越大;深冷处理温度与C、Cu、Ni元素含量相关,当三个元素取上限时,则深冷温度越低。
本发明与现有技术相比,优点在于本发明采用通过创新的合金成分体系设计,不含有易氧化的强化元素如Ti、Al等,而通过W、Mo、Co、Cu等元素的强化,成分设计可以避免铁素体和过多奥氏体相的形成,经过常规工艺烧结后,按照本发明的热处理工艺即可获得高屈服强度≥1500MPa,延伸率≥4%。
本发明的高强不锈钢金属粉末除了可用于消费电子产品领域,也可应用于激光打印用复杂精密零件的粉末耗材,也可推广至医疗、海工等相关领域,具有广阔的市场前景。
附图说明
图1为拉伸试验用烧结件。
具体实施方式
实施例1
采用真空感应炉熔炼获得如下成分母合金,0.07%C-13%Cr-1.1%Ni-13.1%Co-5.5%Mo-1.5%Cu-0.3%V-1.1%W-0.0086%P-0.0058%S,[N]含量65ppm,[O]含量52pmm,熔化后在高纯氩气中雾化制粉,获得粉体颗粒平均尺寸在10μm左右,粉体的平均成分各金属合金元素含量与母合金一致,将上述获得粉末布粉、振实、成型后,在氩气气氛保护下,加热至1300度温度烧结6小时后冷却至室温,获得如图1所示形状的拉伸试验用烧结件,然后将烧结件加热至1100℃保温1小时进行固溶处理,在-70℃保温2小时进行深冷处理,在540℃保温3小时进行时效处理,获得屈服强度1802MPa,延伸率6.9%。
实施例2
采用真空感应炉加真空自耗炉熔炼获得如下成分母合金,0.1%C-13.2%Cr-0.5%Ni-12.5%Co-6.5%Mo-2.5%Cu-0.3%V-0.5%W-0.0076%P-0.0038%S,[N]含量21ppm,[O]含量12pmm,熔化后在高纯氩气中雾化制粉,粉体的平均成分各金属元素含量与母合金一致,而气体含量变化95ppm[N]和90ppm[O],将上述获得粉末布粉、振实、成型后,获得如图1所示形状的拉伸试验用烧结件,在氩气气氛保护下,加热至1300度温度烧结7小时后冷却至室温,然后将烧结件加热至1060℃保温2小时进行固溶处理,在-170℃保温0.5小时进行深冷处理,在550℃保温1小时进行时效处理,获得屈服强度1832MPa,延伸率6.1%。
实施例3
采用真空感应炉熔炼获得如下成分母合金,0.08%C-12.2%Cr-1.1%Ni-12.5%Co-6.5%Mo-2.1%Cu-0.5%V-0.5%W-0.0086%P-0.0028%S,熔化后在高纯氩气中雾化制粉,粉体的平均成分各金属元素含量与母合金一致,而气体含量变化135ppm[N]和88ppm[O],将上述获得粉末布粉、振实、成型后,获得如图1所示形状的拉伸试验用烧结件,在氮气气氛加热至700度,然后在氩气气氛保护下加热至1300度温度烧结5小时后冷却至室温,然后将烧结件加热至1130℃保温2小时进行固溶处理,在-70℃保温10小时进行深冷处理,在560℃保温4小时进行时效处理,获得屈服强度1835MPa,延伸率5.3%。
实施例4
采用真空感应炉熔炼获得如下成分母合金,0.12%C-12.5%Cr-2.1%Ni-13.2%Co-5.2%Mo-0.3%V-1.2%W,熔化后在高纯氩气中雾化制粉,粉体的平均成分各金属元素含量与母合金一致,将上述获得粉末布粉、振实、成型后,获得如图1所示形状的拉伸试验用烧结件,在氮气气氛加热至700度,然后在氩气气氛保护下加热至1320度温度烧结8小时后冷却至室温,然后将烧结件加热至1080℃保温1小时进行固溶处理,在-73℃保温8小时进行深冷处理,在530℃保温4小时进行时效处理,获得屈服强度1706MPa,延伸率10.2%。
实施例5
采用真空感应炉熔炼获得如下成分母合金,0.10%C-12.2%Cr-2.5%Ni-12.4%Co-5.3%Mo-0.5%Cu-0.2%V-0.9%W,熔化后在高纯氮气中雾化制粉,粉体的平均成分各金属元素含量与母合金一致,将上述获得粉末布粉、振实、成型后,获得如图1所示形状的拉伸试验用烧结件,在氮气气氛加热至700度,然后在氩气气氛保护下加热至1300度温度烧结8小时后冷却至室温,然后将烧结件加热至1060℃保温2小时进行固溶处理,在-73℃保温3小时进行深冷处理,在520℃保温5小时进行时效处理,获得屈服强度1653MPa,延伸率11.3%。
实施例6
采用真空感应炉熔炼获得如下成分母合金,0.11%C-12.5%Cr-1.5%Ni-11.4%Co-5.1%Mo-0.5%Cu-0.3%V-1.3%W,熔化后在高纯氮气中雾化制粉,粉体的平均成分各金属元素含量与母合金一致,将上述获得粉末布粉、振实、成型后,获得如图1所示形状的拉伸试验用烧结件,在氮气气氛加热至700度,然后在氩气气氛保护下加热至1300度温度烧结10小时后冷却至室温,然后将烧结件加热至1080℃保温3小时进行固溶处理,在-63℃保温8小时进行深冷处理,在530℃保温6小时进行时效处理,获得屈服强度1607MPa,延伸率13.1%。
上述实施例的成分、工艺与性能总结于表2
表2实施例中母合金成分、热处理工艺与力学性能总结
Figure BDA0002502827350000081
Figure BDA0002502827350000091

Claims (7)

1.一种电子产品用高强不锈钢粉末,其特征在于成分不含易氧化元素Al、Ti,且化学成分按重量百分比为:
C:≤0.2%;Cr:11.0-13.5%;Co:11-14%;Mo:5-7.5%;(Cu+Ni)≤3.5%;V:0.1-0.5%;W:0-2%,余量为Fe及不可避免的杂质。
2.如权利要求1所述电子产品用高强不锈钢粉末,其特征在于成分范围为:C:0.05-0.15%;Cr:11.0-13.5%;(Cu+Ni)≤3.5%;Co:12-14%;Mo:5-7.5%;V:0.1-0.5%;W:0-2%;其中S、P、O、N杂质元素总量不超过0.2%。
3.一种如权利要求2所述的电子产品用高强不锈钢粉末的制备工艺,其特征在于:
(1)母合金制备:熔炼工艺制备母合金,母合金成分按重量百分比为:
C:0.05-0.2%;Cr:11.0-13.5%;Cu:0-3.5%;Ni:0-3.5%;(Cu+Ni)≤3.5%;Co:12-14%;Mo:5-7.5%;V:0.1-0.5%;W:0-2%;其中S、P、O、N杂质元素总量不超过0.05%,其中当(Cu+Ni)%达到范围上限时,碳含量取上述范围下限;余量为Fe及不可避免的杂质,不添加易氧化元素Al、Ti;熔炼后浇铸成锭或直接进行制粉;
(2)制粉:将上述母合金熔化后,在惰性气氛下气雾化制粉,获得粉体平均成分如下:C:0.05-0.15%;Cr:11.0-13.5%;Co:12-14%;Mo:5-7.5%;(Cu+Ni)≤3.5%;V:0.1-0.5%;W:0-2%,余量为Fe及不可避免的杂质,其中S、P、O、N杂质元素总量不超过0.05%;
(3)粉末烧结:将上述获得粉末根据器件形状按照常规标准布粉、振实和成型后,在惰性气氛保护下烧结;
(4)热处理工艺:上述粉末烧结后,进行固溶处理→深冷处理→时效处理;
(5)经过上述热处理的粉末烧结材料,其屈服强度≥1500MPa,延伸率≥4%。
4.如权利要求3所述的电子产品用高强不锈钢粉末的制备工艺,其特征在于步骤(3)所述烧结是在1200-1400温度下进行烧结60秒~10小时。
5.如权利要求3所述的电子产品用高强不锈钢粉末的制备工艺,其特征在于步骤(4)所述固溶处理是在1050~1150℃保温2秒~5小时。
6.如权利要求3所述的电子产品用高强不锈钢粉末的制备工艺,其特征在于步骤(4)所述深冷处理是在≤-60℃以下温度保温2秒~10小时。
7.如权利要求3所述的电子产品用高强不锈钢粉末的制备工艺,其特征在于步骤(4)所述时效处理是500~650℃保温10秒~10小时。
CN202010437460.6A 2020-05-21 2020-05-21 一种电子产品用高强不锈钢粉末及制备工艺 Active CN111519113B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010437460.6A CN111519113B (zh) 2020-05-21 2020-05-21 一种电子产品用高强不锈钢粉末及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010437460.6A CN111519113B (zh) 2020-05-21 2020-05-21 一种电子产品用高强不锈钢粉末及制备工艺

Publications (2)

Publication Number Publication Date
CN111519113A true CN111519113A (zh) 2020-08-11
CN111519113B CN111519113B (zh) 2021-10-29

Family

ID=71907567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010437460.6A Active CN111519113B (zh) 2020-05-21 2020-05-21 一种电子产品用高强不锈钢粉末及制备工艺

Country Status (1)

Country Link
CN (1) CN111519113B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404420A (zh) * 2020-11-19 2021-02-26 中南大学 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN112680668A (zh) * 2020-12-18 2021-04-20 辽宁五寰特种材料与智能装备产业技术研究院有限公司 一种马氏体沉淀硬化不锈钢及其制备方法
CN113681005A (zh) * 2021-08-26 2021-11-23 宁波匠心快速成型技术有限公司 具有超高温强度的不锈钢3d打印材料、制备方法及应用
CN114657452A (zh) * 2020-12-23 2022-06-24 山东大学 一种选区激光熔化制备不锈钢所用粉料及制备方法
CN114959508A (zh) * 2022-07-28 2022-08-30 北京科技大学 一种不锈钢及其制备方法
CN115740427A (zh) * 2022-11-30 2023-03-07 深圳艾利门特科技有限公司 一种1800MPa级超高强度高韧钢的MIM粉体与MIM成型工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722000A1 (en) * 2005-05-12 2006-11-15 Gainsmart Group Limited, a Corporation of the British Virgin Islands with offices at: High strength stainless chromium-nickel steel without aluminium and titanium, and method for making same
TW201107497A (en) * 2009-08-27 2011-03-01 ting-cheng Chen An aging precipitation hardened stainless steel
CN105081336A (zh) * 2014-05-20 2015-11-25 Crs控股公司 使用粉末冶金工序制备铁合金制品的方法
CN105568177A (zh) * 2015-12-31 2016-05-11 钢铁研究总院 一种Cu复合强化高强韧二次硬化耐热钢及制备方法
CN106148826A (zh) * 2016-08-12 2016-11-23 刘少尊 一种Al,Cu增强高强不锈耐热钢及制备方法
CN108588582A (zh) * 2018-06-29 2018-09-28 钢铁研究总院 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
CN109666876A (zh) * 2018-12-29 2019-04-23 王俊乔 一种高钴马氏体不锈钢及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722000A1 (en) * 2005-05-12 2006-11-15 Gainsmart Group Limited, a Corporation of the British Virgin Islands with offices at: High strength stainless chromium-nickel steel without aluminium and titanium, and method for making same
TW201107497A (en) * 2009-08-27 2011-03-01 ting-cheng Chen An aging precipitation hardened stainless steel
CN105081336A (zh) * 2014-05-20 2015-11-25 Crs控股公司 使用粉末冶金工序制备铁合金制品的方法
CN105568177A (zh) * 2015-12-31 2016-05-11 钢铁研究总院 一种Cu复合强化高强韧二次硬化耐热钢及制备方法
CN106148826A (zh) * 2016-08-12 2016-11-23 刘少尊 一种Al,Cu增强高强不锈耐热钢及制备方法
CN108588582A (zh) * 2018-06-29 2018-09-28 钢铁研究总院 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
CN109666876A (zh) * 2018-12-29 2019-04-23 王俊乔 一种高钴马氏体不锈钢及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NACI KURGAN: "Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel", 《MATERIALS AND DESIGN》 *
童幸生等: "《材料成型工艺基础(第二版)》", 31 August 2019, 华中科技大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404420A (zh) * 2020-11-19 2021-02-26 中南大学 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN112680668A (zh) * 2020-12-18 2021-04-20 辽宁五寰特种材料与智能装备产业技术研究院有限公司 一种马氏体沉淀硬化不锈钢及其制备方法
CN114657452A (zh) * 2020-12-23 2022-06-24 山东大学 一种选区激光熔化制备不锈钢所用粉料及制备方法
CN113681005A (zh) * 2021-08-26 2021-11-23 宁波匠心快速成型技术有限公司 具有超高温强度的不锈钢3d打印材料、制备方法及应用
CN114959508A (zh) * 2022-07-28 2022-08-30 北京科技大学 一种不锈钢及其制备方法
CN115740427A (zh) * 2022-11-30 2023-03-07 深圳艾利门特科技有限公司 一种1800MPa级超高强度高韧钢的MIM粉体与MIM成型工艺

Also Published As

Publication number Publication date
CN111519113B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN111519113B (zh) 一种电子产品用高强不锈钢粉末及制备工艺
JP6093405B2 (ja) 窒素含有低ニッケル焼結ステンレス鋼
US11242581B2 (en) Wear resistant alloy
EP3394309B1 (en) Hot work tool steel
US6630103B2 (en) Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom
KR101673484B1 (ko) 저합금강 분말
CN109735777B (zh) 一种抗氧化热作模具钢及其制备方法
US10094007B2 (en) Method of manufacturing a ferrous alloy article using powder metallurgy processing
TW201037092A (en) Iron vanadium powder alloy
CN111560564B (zh) 一种资源节约型高氮双相不锈钢及其近净成形方法
EP3077560B1 (en) A steel alloy and a component comprising such a steel alloy
CN101942606B (zh) 含氮奥氏体型热作模具钢及其制备方法
WO2018056884A1 (en) Hot work tool steel
JP6271310B2 (ja) 鉄基焼結材およびその製造方法
CN114214567B (zh) 一种Ni3Al金属间化合物沉淀强化的高温轴承钢及其制备方法
KR101203539B1 (ko) 고강도 및 고내공식성을 가지는 고질소 오스테나이트계 스테인리스강 및 이의 제조방법
CN116457487A (zh) 马氏体时效钢
JP2013181198A (ja) 粉末冶金用合金鋼粉
JP2019512595A (ja) 合金鋼および工具
CN118086764A (zh) 高强高硬高耐磨不锈钢粉末及其制备工艺
CN114318134A (zh) 耐磨高速钢
CN118222933A (zh) 一种增材制造用热作模具钢粉末、其制备方法、3d打印方法及制得的模具钢
KR20010004102A (ko) 분말야금 고속도공구강
JP2022074553A (ja) 粉末高速度工具鋼
CN114959498A (zh) 球磨机耐磨钢衬板材料及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant