KR20010004102A - 분말야금 고속도공구강 - Google Patents

분말야금 고속도공구강 Download PDF

Info

Publication number
KR20010004102A
KR20010004102A KR1019990024710A KR19990024710A KR20010004102A KR 20010004102 A KR20010004102 A KR 20010004102A KR 1019990024710 A KR1019990024710 A KR 1019990024710A KR 19990024710 A KR19990024710 A KR 19990024710A KR 20010004102 A KR20010004102 A KR 20010004102A
Authority
KR
South Korea
Prior art keywords
less
hardness
niobium
high temperature
samples
Prior art date
Application number
KR1019990024710A
Other languages
English (en)
Other versions
KR100316342B1 (ko
Inventor
배종수
김용진
임태수
홍성현
정형식
Original Assignee
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원 filed Critical 황해웅
Priority to KR1019990024710A priority Critical patent/KR100316342B1/ko
Publication of KR20010004102A publication Critical patent/KR20010004102A/ko
Application granted granted Critical
Publication of KR100316342B1 publication Critical patent/KR100316342B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/28Leaching or washing filter cakes in the filter handling the filter cake for purposes other than regenerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/123Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using belt or band filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 분말야금 고속도공구강에 관한 것으로서, 가스분사법에 의해 바나듐과 니오븀이 함유된 분말을 제조한 후 캔닝(canning), 고온등압성형, 열간가공 및 열처리를 하되, C 1.5∼2.5wt%, Cr 3∼5wt%, W 5∼7wt%, Mo 3∼6wt%, Co 4∼6wt%, V 4∼6wt%, Nb 1∼3wt%, Si 1wt%이하, Mn 0.6wt%이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되도록 하고, W+2Mo은 13wt%이상, Nb+V은 6wt%이상으로 구성되도록 함으로써, 고온경도 및 내마모성이 향상되고 내부조직 중의 탄화물의 크기가 1㎛이하로 되는 바나듐과 니오븀이 함유된 분말야금 고속도공구강을 제공하는 것이다.

Description

분말야금 고속도공구강{high speed steel produced by powder metallurgy}
본 발명은 고속도공구강의 고온특성 및 내마모성을 향상시키기 위하여 분말야금공정에 의해 제조되는 바나듐(V)과 니오븀(Nb)을 복합함유한 고속도공구강에 관한 것이다.
고속도공구강은 각종 금형, 절삭공구 및 압연롤의 소재로 널리 사용되고 있는 철계(鐵系) 합금이다. 이 고속도공구강 중의 바나듐은, 강을 오스테나이트화한 후 담금질(quenching)시 생성되는 MC형(여기서 M은 임의의 금속을 지칭함)의 1차 탄화물과 템퍼링시에 생성되는 2차 탄화물의 주요 구성성분이며 내마모 특성을 향상시키는 역할을 한다. 한편 니오븀은 바나듐과 함께 MC형 1차 탄화물의 주요 구성성분으로서 담금질시 M6C탄화물의 생성을 억제하고, MC형 탄화물의 생성을 촉진시키는 역할을 한다. 그러므로 바나듐과 니오븀을 적절한 조성으로 동시에 함유하게 하면 고온특성, 고온안정성 및 내마모 특성이 우수한 소재를 얻을 수 있다. 그러나 니오븀은 바나듐과는 달리 상온에서 철 기지(matrix)내의 고용도가 0.5wt% 이하이기 때문에 일반적인 용해주조법에 의해 고속도공구강을 제조할 때는 첨가시키기 매우 어려운 문제점이 있다.
본 발명의 목적은 분말야금법에 의해 적절한 조성의 니오븀과 바나듐을 동시에 함유하도록 하여 고온경도, 고온안정성, 탄화물의 미세화 및 내마모성이 우수한 분말야금 고속도공구강을 제공하는 것이다.
도 1은 바나듐과 니오븀을 복합함유한 분말야금 고속도공구강의 제조공정도,
도 2는 본 발명의 공구강의 특성을 비교하기 위한 실험에 사용된 시료의 화학 조성도,
도 3은 시료 1∼5의 열처리 후 내부 탄화물양 및 그 평균크기를 비교하여 나타내는 도면,
도 4는 시료 1∼5의 열처리 후 경도를 비교하여 나타내는 도면,
도 5는 시료 1∼5의 열처리 후 굽힘강도를 비교하여 나타내는 도면,
도 6은 시료 1∼5의 열처리 후 마모량을 비교하여 나타내는 도면,
도 7은 600℃의 염욕로에서 일정시간 유지했을 경우 시료 1, 2, 3 및 6의 시간에 따른 경도변화를 비교하여 나타내는 선도.
상기 목적을 달성하기 위한 분말야금법을 적용함에 있어서, 먼저 가스분사법에 의해 바나듐과 니오븀이 함유된 분말을 제조한 후 캔닝(canning), 고온등압성형, 열간가공 및 열처리를 하되, C 1.5∼2.5wt%, Cr 3∼5wt%, W 5∼7wt%, Mo 3∼6wt%, Co 4∼6wt%, V 4∼6wt%, Nb 1∼3wt%, Si 1wt%이하, Mn 0.6wt%이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되도록 하고, W+2Mo은 13wt%이상, Nb+V은 6wt%이상 구성하도록 하여 본 발명의 고속도공구강을 얻는다.
이하 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
도 1에 본 발명의 바나듐과 니오븀을 복합함유한 분말야금 고속도공구강의 제조공정이 도시되어 있다.
제1단계는 분말제조 공정으로서, 본 발명의 분말야금 고속도공구강을 구성하는 철(Fe), 탄소(C), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 코발트(Co), 바나듐(V) 및 니오븀(Nb)을 혼합하여 1600∼1700℃사이에서 용해한 후에 질소(N2)나 아르곤(Ar) 가스를 이용한 가스분사법에 의해 둥근 형상의 분말을 제조하는 공정이며, 이 때 최종 기계적 특성(경도, 굽힘강도, 마모량 등)의 저하를 방지하기 위해 분말의 산소함유량은 300ppm이하로 조절되어야 한다.
제2단계는 캔닝(canning)공정으로서, 철이나 스테인레스 캔(stainless can)내에 상기 제조된 분말을 상대밀도 70%이상 충진시킨 후 10-2torr이하의 진공도에서 500∼600℃로 가열하여 최소 1시간 이상 탈가스처리한 후 밀봉하는 공정이다.
제3단계는 고온등압성형(HIP)공정으로서, 상기 캔닝된 분말을 아르곤가스 분위기에서 1050∼1200℃의 온도 및 1000∼1500bar의 압력으로 1시간 이상 유지하여 진밀도화된 빌렛으로 성형하는 공정이다.
제4단계는 열간가공 및 열처리(풀림 포함)공정으로서, 고온등압성형에 의해 제조된 바나듐과 니오븀을 함유한 고속도공구강 빌렛의 기계적 특성(경도, 굽힘강도, 마모량 등)을 향상시키고 원하는 형상을 얻기 위해 재결정온도 이상인 900∼1150℃로 가열한 상태에서 단조나 압연가공으로 판재 및 봉재를 제조(열간가공)하고, 이 열간가공 후 내부응력을 제거하고 조직을 균일화하기 위해 700∼900℃로 재가열한 후 서냉하는 공정(풀림)이다. 그 후, 경도를 상승시키기 위해 담금질 및 템퍼링처리를 할 수 있다.
이상의 공정에 의해 제조되는 본 발명의 분말야금 고속도공구강의 주성분은 Fe, C, Cr, W, Mo, Co, V, Nb이며 구성원소의 함량 제한범위는 C가 1.5∼2.5wt%, Cr이 3∼5wt%, W이 5∼7wt%, Mo이 3∼6wt%, Co가 4∼6wt%, V이 4∼6wt%, 그리고 Nb이 1∼3wt%이며, 나머지는 Fe이다. 그 외에 미량원소로 Si가 1wt%이하, Mn이 0.6wt%이하 포함되어 있다. 또한 열처리 후 적정량의 탄화물이 생성되기 위해서는 W+2Mo은 13wt%이상, Nb+V은 6wt%이상으로 구성되어야 한다.
본 발명의 공구강에서 상기 각 구성원소의 역할을 설명하면 다음과 같다.
C는 W, Mo, V, Nb, Cr등과 결합하여 MC, M6C, M23C6형의 탄화물을 형성하며 기지(matrix)에 고용되어 기지경도도 향상시킨다. 여기서 C의 함량이 1.5wt%보다 적을 경우에는 탄화물의 절대적인 생성량이 적어지고 기지경도도 낮아지는 반면, C의 함량이 2.5wt%보다 많을 경우에는 탄화물이 과도하게 석출되어 기계적 특성과 가공성 등이 저하된다. 따라서 1.5∼2.5wt% 범위가 적절하다.
Cr은 열처리시 경화능을 증가시키고 내산화성을 증가시키는 역할을 하는 금속원소로서, 3wt%보다 작으면 이 역할을 충분히 발휘할 수 없으며 5wt%보다 크면 M23C6탄화물이 과도하게 생성되어 인성, 기계가공성 및 열전도성이 저하하게 되므로 3∼5wt%가 적당하다.
W은 결정립을 미세화시키고 고온경도를 향상시키며 템퍼링시 연화에 대한 저항성을 향상시키는 원소로서 C와 결합하여 M6C탄화물을 생성시킨다. W이 5wt%보다 적으면 충분한 탄화물이 생성되지 않아 상기 역할을 충분히 할 수 없고 W이 7wt%보다 많게 되면 생성되는 탄화물의 양이 과도하게 증가하고 탄화물의 크기도 지나치게 커지기 때문에 좋지 않다. 따라서 본 발명의 고속도공구강은 적정량의 1차 및 2차 탄화물을 형성시키기 위해 5∼7wt%를 포함한다.
Mo은 W과 함께 M6C탄화물을 형성하는 원소이며 열처리시 경화능을 향상시켜주고 템퍼링시 2차 탄화물을 형성시키는 역할을 한다. 포함되는 양이 3wt%보다 적게 포함되면 충분한 탄화물 생성이 되지 않아 그 효과를 나타내지 못하고 6wt%보다 크게 되면 탄화물의 양이 지나치게 많아지고 크기 또한 커지게 되는 문제점이 있다. 따라서 본 발명의 공구강은 적정량의 1차 및 2차 탄화물을 형성시키기 위해 3∼6wt%의 Mo을 함유한다.
Co는 고속도공구강의 고온경도 및 경화능을 향상시키는 역할을 한다. 고온가공 및 절삭용으로 사용되는 대부분의 분말야금 고속도공구강은 고온특성 향상을 위해 8wt%이상 함유하고 있다. 일반적으로 Co함량이 증가할수록 고온경도는 향상되지만 고가이므로 제조비용이 증가하는 문제점이 있다. 본 발명의 공구강에서는 Nb 첨가로 고온특성을 향상시킬 수 있기 때문에 Co함량을 6wt% 이하의 범위로 제한하여 제조비용을 절감하였고 고온경도 향상효과를 충분히 발휘하기 위해 4wt%이상 포함하였다.
V은 열처리 후 MC형 1차 및 2차 탄화물을 형성시켜 고속도공구강의 내마모 특성을 향상시키는 역할을 한다. V의 함유량이 4wt%미만 포함되면 충분한 탄화물이 생성되지 않고, 6wt%보다 많이 포함되면 내마모 특성은 향상되지만 탄화물의 크기가 커지고 인성이 감소하기 때문에 본 발명의 공구강에서는 4∼6wt%로 제한한다.
Nb는 V와 함께 MC형 탄화물을 형성시키는 원소이며 V함유 MC형 탄화물보다 고온경도 및 열적 안정성이 우수하고 열처리 후 생성된 탄화물의 크기가 미세하다. 그러나 Nb가 3wt%보다 크게 포함될 경우 기지내의 Nb 고용한계 때문에 탄화물이 결정입계에 석출되어 굽힘강도 및 인성(靭性)등을 저하시킨다. 그리고 1wt%미만 포함되면 충분한 탄화물이 형성되지 않는다. 따라서 본 발명의 공구강에서는 1∼3wt%로 한정된다.
기타, 용해과정 중에 첨가될 수 있는 Si 및 Mn은 본 발명의 공구강에서 최종 기계적 특성에 영향을 미치지 않는 범위인 1wt%이하 및 0.6wt%이하로 각각 제한된다.
또한, Fe은 본 발명의 공구강의 기본요소로서 전술한 원소의 조성외의 나머지를 구성하고 있다.
또한 본 발명의 공구강은 열처리 후 생성되는 탄화물의 양을 적절히 하여 열적, 기계적 특성을 최적화시키기 위해서 W+2Mo는 13wt%이상, Nb+V는 6wt%이상을 함유하여야 한다.
한편, V 없이 Nb만 내재한 경우에는 Nb의 탄화물의 입계석출이 일어나고 V을 주성분으로 하는 2차 탄화물이 생성되지 않으므로 기계적 특성은 오히려 감소한다. 그러므로 본 발명의 고속도공구강은 전술한 바와 같은 조성의 V와 Nb을 복합함유한 구성을 갖는다.
이하, 상기한 본 발명의 내용을 명확히 뒷받침하는 실험내용에 대하여 설명한다.
도 2에 본 발명의 공구강의 기계적ㆍ열적 특성을 비교하기 위한 실험에서 사용된 시료의 조성을 나타내는 표가 도시되어 있다. 시료 중 1∼5번은 질소 가스분사법에 의해 고속도공구강 분말을 제조한 후 캔닝, 고온등압성형, 열간가공 공정을 거쳐 제조된 것이며 시료 6번은 종래의 분말야금 고속도공구강 중 절삭용 소재로 사용되는 대표적인 제품의 조성이다. 시료 1∼5번의 조성을 갖는 합금을 제조하기 위한 실험조건 및 공정은 다음과 같다.
1) 분말제조
시료 1∼5번의 조성을 가진 모재를 1600∼1650℃로 가열, 용해 후 질소를 이용한 가스분사법에 의해 평균입도 150∼200㎛, 산소함유량 140∼200ppm 범위를 가진 둥근 형상의 분말을 제조하였다.
2) 캔닝 및 고온등압성형
직경 30mm, 길이 120mm의 원통 스테인레스 캔내에 상기 1)공정에 의해 제조된 분말을 상대밀도 70∼75%로 충진시킨 후 탈가스처리하여 밀봉하였다. 이 때 상기 탈가스처리는 500℃에서 5시간, 10-2torr이하의 진공도에서 실시하였다. 고온등압성형은 캔닝 후 1150℃에서 3시간 동안 아르곤 가스 분위기에서 1200bar로 가압하여 실시하였다.
3) 열간가공 및 풀림처리
고온등압성형된 소형 빌렛을 1100℃로 가열한 후 스웨이징기(swaging machine)를 사용하여 직경 13mm인 봉재로 제조하였다(열간가공). 제조된 봉재는 다시 870℃에서 2시간 가열한 후 서냉하였다(풀림처리).
4) 열처리
우선 선반가공으로 굽힘강도 측정용, 경도시험용 및 조직관찰용으로 나누어 시료(시편)를 제작하였다. 그리고 이 시편을 진공담금질로(vacuum quenching furnace) 내에서 1170℃로 10분간 유지한 후, 5bar의 질소가스로 담금질하고 다시 550℃로 가열하여 1시간씩 3회에 걸쳐 템퍼링하였다.
도 3은 상기 시료 1∼5를 열처리한 후, 주사 전자현미경과 상분석기를 사용하여 탄화물 부피와 평균크기를 측정한 결과를 나타낸다. 탄화물 형성원소가 다른 시료에 비해 상대적으로 많이 함유되어 있는 시료 4를 제외한 모든 시료의 탄화물 부피분율은 20.9∼21.8%로서 거의 유사하다는 것을 알 수 있다. 한편, 탄화물의 크기는 니오븀 함량이 높을수록 더욱 미세하다. 또한 니오븀 함량이 비슷한 시료 4 및 5에 있어서는 바나듐 함량이 적은 시료 5에서 탄화물 크기가 더 미세함을 알 수 있다. 이는 일반적인 고속도공구강에서 바나듐을 단독으로 첨가했을 때 바나듐 함량이 증가하면 탄화물의 크기가 증가하는데 반하여, 본 실험에서와 같이 니오븀을 첨가하면 탄화물이 미세해진다는 것을 의미하는 것이다.
도 4는 조성이 다른 시료 1∼5의 열처리 후의 경도치를 나타낸다. 동일한 열처리 조건하에서의 경도는 니오븀을 첨가하지 않은 시료 1과 바나듐 함량이 상대적으로 적은 시료 5보다 바나듐과 니오븀이 적절히 첨가된 시료 2∼4에서 높게 나타난다. 그러나 같은 바나듐 함량에서는 니오븀 함량이 증가하면 경도는 낮아진다.
도 5는 조성이 다른 시료에 따른 열처리 후의 굽힘강도를 나타낸다. 굽힘강도는 시료 1보다 니오븀이 첨가된 시료 2∼4에서 다소 낮게 나타난다. 일반적으로 고속도공구강에서 경도가 상승하면 굽힘강도는 감소한다. 도 4에 나타난 바와 같이 열처리 경도가 상대적으로 높게 나타난 시료 2∼4가 니오븀을 포함하지 않은 시료 1 이나 바나듐 함량이 적은 시료 5에 비해 높게 나타났기 때문에 굽힘강도는 다소 감소하였다. 특히 시료 4는 시료 2나 3보다 경도가 낮음에도 불구하고 굽힘강도가 낮게 나타났음을 알 수 있다. 이는 일정량 이상의 니오븀을 첨가하면 기계적 특성이 오히려 저하된다는 것을 의미한다.
다음, 도 2의 시료 1∼5번을 열처리하여 핀 온 디스크(pin on disc)형 마모시험기에서 마모시험을 하였다. 시험조건으로서, 마모속도 6m/sec, 하중 480g중, 총 마모거리 6km, 상대 마모재는 로크웰 경도치(HRC) 62의 M2 고속도공구강 디스크를 사용하였다. 도 6은 조성이 다른 시료에 따른 마모량을 나타낸 것으로서 니오븀을 첨가하지 않은 시료 1이나 Nb/V 비가 높은 시료 5보다 시료 2, 3 및 4가 마모량이 작게 나타나기 때문에 내마모 특성이 우수하다는 것을 알 수 있다.
또한, 고온에서 경도가 저하되는 정도를 비교하기 위해, 도 2의 시료 1, 2 및 3과 절삭가공용 분말야금 고속도공구강 소재로 널리 사용중인 시료 6을 상기 열처리 조건하에서 열처리한 후 600℃의 염욕로에서 일정시간 유지한 후 상온에서 경도를 측정하였다. 도 7은 염욕에서의 유지시간에 따른 경도변화를 나타낸 것이다. 본 발명의 공구강인 시료 2와 3은 유지시간에 따른 경도저하가 니오븀을 포함하지 않은 시료 1이나 6보다 낮게 나타남을 알 수 있는데 이는 니오븀을 포함하고 있는 MC형 탄화물이 바나듐에 의한 MC형 탄화물 또는 텅스텐이나 몰리브덴에 의해 형성된 M6C형 탄화물보다 고온에서 안정된 특성을 가지기 때문이다.
상기와 같은 조성 및 공정을 통해 얻은 본 발명의 분말야금 고속도공구강은, 용해주조법으로는 함유시키기 어려운 원소인 니오븀을 바나듐과 함께 복합함유시킴으로써, 생성되는 탄화물의 크기가 1㎛이하로 미세하게 되며 경도, 고온안정성 및 내마모성등 기계적 특성이 우수하다는 효과가 있다. 따라서 고온절삭용 공구, 금형소재 및 내마모용 소재로서의 응용이 가능하고, 전체적인 특성을 저하시키지 않는 한도내에서 값싼 니오븀이 고가의 코발트를 대체할 수 있으므로 염가로 분말야금 고속도공구강을 얻을 수 있다는 또 다른 효과가 있다.

Claims (1)

  1. 분말제조, 캔닝, 고온등압성형, 열간가공 및 열처리의 공정에 의해 제조되는 분말야금 고속도공구강에 있어서, C 1.5∼2.5wt%, Cr 3∼5wt%, W 5∼7wt%, Mo 3∼6wt%, Co 4∼6wt%, V 4∼6wt%, Nb 1∼3wt%, Si 1wt%이하, Mn 0.6wt%이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되며, W+2Mo은 13wt%이상, Nb+V은 6wt%이상으로 구성되는 분말야금 고속도공구강.
KR1019990024710A 1999-06-28 1999-06-28 분말야금 고속도공구강 KR100316342B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990024710A KR100316342B1 (ko) 1999-06-28 1999-06-28 분말야금 고속도공구강

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990024710A KR100316342B1 (ko) 1999-06-28 1999-06-28 분말야금 고속도공구강

Publications (2)

Publication Number Publication Date
KR20010004102A true KR20010004102A (ko) 2001-01-15
KR100316342B1 KR100316342B1 (ko) 2001-12-20

Family

ID=19595983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990024710A KR100316342B1 (ko) 1999-06-28 1999-06-28 분말야금 고속도공구강

Country Status (1)

Country Link
KR (1) KR100316342B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524406B2 (en) * 2000-02-09 2003-02-25 National Research Institute For Metals Shape memory alloy
CN116000300A (zh) * 2023-01-10 2023-04-25 东南大学 一种粉末冶金高速钢的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102623463B1 (ko) * 2023-03-17 2024-01-11 국방과학연구소 근사정형 분말야금 부품 제조방법 및 그 방법으로 제조된 분말야금 부품

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796897B2 (ja) * 1990-12-19 1998-09-10 株式会社クボタ 高速度鋼系焼結合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524406B2 (en) * 2000-02-09 2003-02-25 National Research Institute For Metals Shape memory alloy
CN116000300A (zh) * 2023-01-10 2023-04-25 东南大学 一种粉末冶金高速钢的制备方法

Also Published As

Publication number Publication date
KR100316342B1 (ko) 2001-12-20

Similar Documents

Publication Publication Date Title
US4249945A (en) Powder-metallurgy steel article with high vanadium-carbide content
RU2324576C2 (ru) Нанокристаллический металлический материал с аустенитной структурой, обладающий высокой твердостью, прочностью и вязкостью, и способ его изготовления
US5936169A (en) Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
KR100562761B1 (ko) 열간 가공툴용 강재료
EP0875588A2 (en) Wear resistant, powder metallurgy cold work tool steel articles having high impact toughness and a method for producing the same
KR100500772B1 (ko) 합금 강, 합금 강으로 제조된 공구 그리고 합금 강 및 공구를 제조하기 위한 통합 방법
CN109735777B (zh) 一种抗氧化热作模具钢及其制备方法
US4032302A (en) Carbide enriched high speed tool steel
US5522914A (en) Sulfur-containing powder-metallurgy tool steel article
KR101518723B1 (ko) 냉간 가공 공구강 제품
JP4703005B2 (ja) スチール、該スチールの使用、該スチール製の製品および該スチールの製造方法
RU2290452C2 (ru) Сталь для холодной обработки
JP5045972B2 (ja) 粉末冶金で製造された高速度鋼
KR100562759B1 (ko) 냉간 가공 공구용, 및 양호한 내마모성, 인성 및 열처리 특성을 갖는 부품용 강 재료와 그의 제조방법
EP1274872A1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
US6837945B1 (en) Steel cold work tool, its use and manufacturing
WO2018056884A1 (en) Hot work tool steel
KR100316342B1 (ko) 분말야금 고속도공구강
JPH04358046A (ja) 高速度鋼系焼結合金
EP0648851A1 (en) Sulfur-containing powder-metallurgy tool steel article and its method of manufacture
KR100299463B1 (ko) 인성및내마모성이우수한냉간가공용공구강제조방법
JP7431631B2 (ja) 粉末高速度鋼
JP2022074553A (ja) 粉末高速度工具鋼
JPH0459362B2 (ko)
KR100256363B1 (ko) 몰리브데늄계 고속도공구강

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041118

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee