CN111518299B - 一种有机无机杂化质子交换膜的制备方法 - Google Patents

一种有机无机杂化质子交换膜的制备方法 Download PDF

Info

Publication number
CN111518299B
CN111518299B CN202010365653.5A CN202010365653A CN111518299B CN 111518299 B CN111518299 B CN 111518299B CN 202010365653 A CN202010365653 A CN 202010365653A CN 111518299 B CN111518299 B CN 111518299B
Authority
CN
China
Prior art keywords
exchange membrane
proton exchange
organic
quartz substrate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010365653.5A
Other languages
English (en)
Other versions
CN111518299A (zh
Inventor
吕丽芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunbei New Energy (Jiashan) Co.,Ltd.
Original Assignee
Shanghai Keyi Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Keyi Industrial Co ltd filed Critical Shanghai Keyi Industrial Co ltd
Priority to CN202010365653.5A priority Critical patent/CN111518299B/zh
Publication of CN111518299A publication Critical patent/CN111518299A/zh
Application granted granted Critical
Publication of CN111518299B publication Critical patent/CN111518299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/002Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers modified by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了有机无机杂化质子交换膜的制备方法,包括以下步骤:步骤一、石英基板修饰;步骤二、纳米SiO2负载;步骤三、酰胺化反应;步骤四、反应液的配制;步骤五、杂化质子交换膜的制备。本发明还提供了该方法制备得到的有机无机杂化质子交换膜及其在燃料电池中的应用。本发明将引发剂修饰在石英基板上,再进行纳米SiO2负载,能够提升膜的综合性能和低湿条件下的质子传导性能,接着将反应液成膜后再进行聚合交联,从而构筑了更加有序的质子传输通道,酰胺化交联及聚合反应生成的PMMA共同赋予有机无机杂化质子交换膜优异的综合性能,能够同时适用于高温水合状态和高温低湿状态下的质子传导。

Description

一种有机无机杂化质子交换膜的制备方法
技术领域
本发明涉及燃料电池技术领域,具体涉及一种有机无机杂化质子交换膜的制备方法。
背景技术
传统的PEMFC质子交换膜广泛采用全氟磺酸树脂成膜,该膜的质子传导性能严重依赖于液态水,一般工作在60~90℃,温度过高会导致PEM脱水,质子传导率急剧下降,电池性能严重衰减。因此开发耐高温质子交换膜燃料电池,提高PEMFC的工作温度是解决传统PEMFC环境耐受性差、性能衰减等问题的有效措施之一。
价格低廉的磺化聚芳醚酮砜具有优异的热稳定性和化学稳定性,是良好的质子交换膜聚合物材料。研究发现,磺化聚芳醚酮砜聚合物膜的质子传导率随磺酸基团的增加而提高,而膜的尺寸稳定性和阻醇性能却随磺酸基团的增加而下降。膜中的质子主要是依赖水通过车载机理进行传递,因此,磺酸基团越多就使得膜的吸水率越大,而且由于甲醇的渗透与质子的传输路径相同,导致膜的质子传导率越高,阻醇性能就越差。
因此急需研发一种既能保证膜的尺寸稳定性,又能打破质子传递对水的依赖,构建新的质子传输通道从而提高质子传导率的质子交换膜。
发明内容
针对现有质子交换膜的不足,本发明提供一种尺寸稳定性好、质子传导率高、机械强度高的有机无机杂化质子交换膜的制备方法。
本发明的目的通过如下技术方案实现:
一种有机无机杂化质子交换膜的制备方法,包括以下步骤:
步骤一、石英基板修饰:将石英基板进行亲水处理,再用硅烷化的引发剂进行修饰,得到修饰有引发剂的石英基板;
步骤二、纳米SiO2负载:将修饰有引发剂的石英基板置于真空溅射镀膜仪的底盘上,采用SiO2陶瓷作为靶材,氩气氛中溅镀;
步骤三、酰胺化反应:将羧酸磺化聚芳基醚酮砜聚合物溶解在二甲基亚砜(DMSO)中搅拌至形成均匀溶液,然后加入EDCI冰浴反应0.5h,再加入NHS和氨基单体,搅拌12h,将所得混合物倒入去离子水中,静置,清洗后干燥即得酰胺聚合物;
步骤四、反应液的配制:将步骤三制得的酰胺聚合物溶解在DMSO中得到聚合物溶液,之后将甲基丙烯酸甲酯(MMA)单体、催化剂和配体五甲基二乙烯三胺(PMDETA)溶解在N,N-二甲基甲酰胺(DMF)中,与聚合物溶液混合超声处理后密封,得反应液;
步骤五:杂化质子交换膜的制备:将步骤四配制的反应液浇铸或旋涂至步骤二制得的负载有纳米SiO2和引发剂的石英基板上,之后将石英基板置于反应器中,注入过量的还原剂溶液,密封油浴加热,反应6h,之后清洗石英基板,盐酸溶液中浸泡24h,剥离,取出用去离子水冲洗,真空干燥即得。
进一步地,步骤一中石英基板亲水处理为水虎酸即浓硫酸和双氧水体积比为2:1的混合液处理。
进一步地,步骤一中硅烷化的引发剂为3-氨丙基三乙氧基硅烷和2-溴异丁酰溴反应制备得到,结构式为
Figure BDA0002476454950000021
进一步地,步骤二中所用SiO2陶瓷靶材为为高纯高致密二氧化硅,纯度大于99.99%。
进一步地,步骤二中靶材与底盘的垂直距离为10~12cm,溅镀功率80~100W,溅镀时间5~15s。
进一步地,步骤三中所述均匀溶液中羧酸磺化聚芳基醚酮砜聚合物的质量分数为15~25%。
进一步地,步骤三中所述羧酸磺化聚芳基醚酮砜聚合物的制备方法具体为:将4,4′-二氟二苯甲酮、3,3′-二磺酸钠基-4,4′-二氯二苯砜、4-羧基苯基对苯二酚、双酚A、无水K2CO3、甲苯和环丁砜装入干燥的反应器中,加热至120℃保持3~4h,然后将温度缓慢升至200℃以除去体系中残留的甲苯,并继续搅拌约20h直至混合物达到一定粘度,然后将其倒入去离子水中以获得条形聚合物,切碎后沸水洗涤数次,干燥即得羧酸磺化聚芳基醚酮砜聚合物。
进一步地,所述步骤三中氨基单体的结构式为
Figure BDA0002476454950000022
其用量为羧酸磺化聚芳基醚酮砜聚合物摩尔量的50%~55%。
进一步地,步骤四中MMA单体的质量为酰胺聚合物质量的8%~15%,催化剂和配体五甲基二乙烯三胺(PMDETA)的质量分别为MMA单体质量的1%~3%,5%~10%。
进一步地,步骤五中清洗石英基板的具体操作为:分别用四氢呋喃、沸腾的去离子水冲洗石英基板。
本发明的另一个目的是提供了上述制备方法制备得到的有机无机杂化质子交换膜。
本发明还提供了上述制备方法制备得到的有机无机杂化质子交换膜在燃料电池中的应用。
本发明所用羧酸磺化聚芳基醚酮砜聚合物中含有磺酸基团和羧酸磺酸基团,纳米SiO2可以与磺酸基、羧酸磺酸基团均匀结合,有助于负载纳米SiO2的固定,避免其在后续反应过程发生聚集,能够提高杂化膜的力学性能,氨基单体与羧基反应生成酰胺基团以及MMA与配体的ATRP聚合反应进一步促进膜的交联,增加了杂化膜的机械强度和物理尺寸的稳定性,同时也提高了杂化膜的热稳定性和氧化稳定性,使其能够适用于高温燃料电池的工作环境。
本发明通过将引发剂负载在石英基板上,形成有序排列的引发剂单分子层,然后通过真空溅镀在基板上负载纳米SiO2,通过调节溅镀时间来控制纳米SiO2的负载量,通过溅镀功率及靶材与底盘间距离调节,赋予溅射的纳米粒子一定的动能,而硅烷化的引发剂的柔性链起到缓冲作用,使得粒径相对较大的纳米SiO2粒子卡在引发剂分子间隙,既不会遮盖引发剂的活性基团,又能避免SiO2粒子聚集或沉积在石英基板上,氨基单体与羧酸磺化聚芳基醚酮砜聚合物中的羧基基团反应生成酰胺基团进行交联,提高了膜的有序性、尺寸稳定性和化学稳定性,再将聚合反应液以浇铸或旋涂的方式在基板表面成膜,以MMA单体与配体五甲基二乙烯三胺(PMDETA)为聚合单元、通过原子转移自由基聚合的方式制备得到有机无机杂化质子交换膜。
通过水接触角测试仪对制备过程中的石英基板进行表面亲水性监测,结果显示:亲水处理后的石英基板水接触角仅为2~5°,修饰有引发剂的石英基板接触角增加至85~89°,这是因为引发剂上的溴原子裸露在最外层,其为强疏水性的基团,导致水接触角增大。而纳米SiO2负载后,基板表面亲水性增加,接触角降至27~29°,反应液在石英基板上成膜后的接触角为64~66°,而聚合反应完成后的接触角为70~73°,这时聚合后的PMMA聚合物憎水性较强。
通过原子力显微镜对制备过程中的石英基板进行表面粗糙度监测,结果显示:亲水处理后的石英基板表面粗糙度极小,Ra=0.26nm,溅镀负载纳米SiO2后粗糙度增大,Ra=38.4nm,反应液成膜后粗糙度略有下降,Ra=35.5nm,聚合反应后粗糙度进一步下降,Ra=30.8nm,这是由于聚合物结构的有序性使得膜表面结构规整,因而虽为多孔薄膜,仍然具有较低的粗糙度。
本发明与现有技术相比具有以下有益效果:
(1)本发明将引发剂修饰在石英基板上,然后进行纳米SiO2负载,纳米SiO2的均匀分布有利于增加膜的机械强度和尺寸稳定性,提升膜的综合性能和低湿条件下的质子传导性能,之后再进行原子转移自由基聚合,引发剂分子的有序排列以及先将反应液成膜再进行聚合反应的操作能够保证膜结构的有序性,同时酰胺化反应中氨基单体中的联苯基团也使得聚合产物具有更好的立体规整性,从而构筑了更加有序的质子传输通道,提高了质子传输效率;
(2)本发明中氨基单体与羧基反应生成酰胺促进交联,MMA通过配位聚合形成PMMA,其还能够和纳米SiO2作用,形成紧密有序的网络结构,使得质子交换膜具有良好的机械性能,羧酸磺化聚芳基醚酮砜聚合物、酰胺聚合物及聚合反应生成的PMMA共同赋予有机无机杂化质子交换膜优异的综合性能,具有良好的高温电导率和较低的溶胀率,阻醇性能好,能够同时适用于高温水合状态和高温低湿状态下的质子传导。
附图说明
图1为实施例1~3及对比例1~4制得的有机无机杂化质子交换膜在不同温度下的电导率测试结果。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合具体实施例进行详细描述。
实施例1
羧酸磺化聚芳基醚酮砜聚合物的制备方法具体为:将摩尔比为7:3的4,4′-二氟二苯甲酮、3,3′-二磺酸钠基-4,4′-二氯二苯砜以及4-羧基苯基对苯二酚、双酚A、无水K2CO3、甲苯和环丁砜装入干燥的反应器中,加热至120℃保持3-4h,然后将温度缓慢升至200℃以除去体系中残留的甲苯,并继续搅拌约20h直至混合物达到一定粘度,然后将其倒入去离子水中以获得条形聚合物,切碎后沸水洗涤数次,干燥即得磺化度为60%的羧酸磺化聚芳基醚酮砜聚合物。
有机无机杂化质子交换膜的制备方法如下:
步骤一、石英基板修饰:①亲水处理:将清洗干净的石英基板放入配制好的水虎酸(V浓硫酸:V双氧水=2:1)中,80℃,加热1h,降至室温,将酸倒出,加入一定量的去离子水,超声5min,重复4次,然后将清洗好的基片浸泡在去离子水中,放置到冰箱中备用;②在反应容器中加入无水甲苯和硅烷化的引发剂,然后将亲水处理后的石英基板用氮气吹干后放入反应容器中,油浴加热到80℃,反应24h后取出石英基板,分别用甲苯、甲醇、二氯甲烷冲洗三次,再置于氯甲烷溶液中超声处理5min,氮气吹干,密封保存备用;
步骤二、纳米SiO2负载:将步骤一修饰有引发剂的石英基板置于真空溅射镀膜仪的底盘中央,采用高纯高致密二氧化硅陶瓷作为靶材,靶材与底盘间垂直距离10cm,溅镀功率80W,抽真空至真空度大于1.5×10-3Pa,充氩气,在氩气氛中溅镀5s;
步骤三、酰胺化反应:将羧酸磺化聚芳基醚酮砜聚合物溶解在二甲基亚砜(DMSO)中搅拌至形成均匀溶液,然后加入EDCI冰浴反应0.5h,再加入NHS和羧酸磺化聚芳基醚酮砜聚合物质量50%的氨基单体,搅拌12h,将所得混合物倒入去离子水中,静置,清洗后干燥即得酰胺聚合物;
步骤四、反应液的配制:将步骤三制得的酰胺聚合物溶解在DMSO中得到聚合物溶液,之后将酰胺聚合物质量10%的甲基丙烯酸甲酯(MMA)单体、分别为MMA单体质量1%、5%的溴化亚铜和PMDETA溶解在N,N-二甲基甲酰胺(DMF)中,与聚合物溶液混合超声处理后密封,得反应液;
步骤五:杂化质子交换膜的制备:将步骤四配制的反应液浇铸至步骤二制得的负载有纳米SiO2和引发剂的石英基板表面成膜,之后将石英基板置于反应器中,注入过量的还原剂溶液,密封油浴加热,75℃下反应6h,之后分别用四氢呋喃、沸腾的去离子水冲洗石英基板,盐酸溶液中浸泡24h,剥离,取出用去离子水冲洗,真空干燥即得。
实施例2
羧酸磺化聚芳基醚酮砜聚合物的制备方法同实施例1。
有机无机杂化质子交换膜的制备方法如下:
步骤一、石英基板修饰:①亲水处理:将清洗干净的石英基板放入配制好的水虎酸(V浓硫酸:V双氧水=2:1)中,80℃,加热1.5h,降至室温,将酸倒出,加入一定量的去离子水,超声5min,重复5次,然后将清洗好的基片浸泡在去离子水中,放置到冰箱中备用;②在反应容器中加入无水甲苯和硅烷化的引发剂,然后将亲水处理后的石英基板用氮气吹干后放入反应容器中,油浴加热到80℃,反应24h后取出石英基板,分别用甲苯、甲醇、二氯甲烷冲洗三次,二氯甲烷溶液中超声处理5min,氮气吹干,密封保存备用;
步骤二、纳米SiO2负载:将步骤一修饰有引发剂的石英基板置于真空溅射镀膜仪的底盘中央,采用高纯高致密二氧化硅陶瓷作为靶材,靶材与底盘间垂直距离11cm,溅镀功率90W,抽真空至真空度大于1.5×10-3Pa,充氩气,在氩气氛中溅镀10s;
步骤三、酰胺化反应:将羧酸磺化聚芳基醚酮砜聚合物溶解在二甲基亚砜(DMSO)中搅拌至形成均匀溶液,然后加入EDCI冰浴反应0.5h,再加入NHS和酰胺聚合物摩尔量52%的氨基单体,搅拌12h,将所得混合物倒入去离子水中,静置,清洗后干燥即得酰胺聚合物;
步骤四、反应液的配制:将步骤三制得的酰胺聚合物溶解在DMSO中得到聚合物溶液,之后将酰胺聚合物质量12%的甲基丙烯酸甲酯(MMA)单体、分别为MMA单体质量2%、7%的溴化亚铜和PMDETA溶解在N,N-二甲基甲酰胺(DMF)中,与聚合物溶液混合超声处理后密封,得反应液;
步骤五:杂化质子交换膜的制备:将步骤四配制的反应液浇铸至步骤二制得的负载有纳米SiO2和引发剂的石英基板表面成膜,之后将石英基板置于反应器中,注入过量的还原剂溶液,密封油浴加热,75℃下反应6h,之后分别用四氢呋喃、沸腾的去离子水冲洗石英基板,盐酸溶液中浸泡24h,剥离,取出用去离子水冲洗,真空干燥即得。
实施例3
羧酸磺化聚芳基醚酮砜聚合物的制备方法同实施例1。
有机无机杂化质子交换膜的制备方法如下:
步骤一、石英基板修饰:①亲水处理:将清洗干净的石英基板放入配制好的水虎酸(V浓硫酸:V双氧水=2:1)中,80℃,加热2h,降至室温,将酸倒出,加入一定量的去离子水,超声5min,重复6次,然后将清洗好的基片浸泡在去离子水中,放置到冰箱中备用;②在反应容器中加入无水甲苯和硅烷化的引发剂,然后将亲水处理后的石英基板用氮气吹干后放入反应容器中,油浴加热到80℃,反应24h后取出石英基板,分别用甲苯、甲醇、二氯甲烷冲洗三次,二氯甲烷溶液中超声处理5min,氮气吹干,密封保存备用;
步骤二、纳米SiO2负载:将步骤一修饰有引发剂的石英基板置于真空溅射镀膜仪的底盘中央,采用高纯高致密二氧化硅陶瓷作为靶材,靶材与底盘间垂直距离12cm,溅镀功率100W,抽真空至真空度大于1.5×10-3Pa,充氩气,在氩气氛中溅镀15s;
步骤三、酰胺化反应:将羧酸磺化聚芳基醚酮砜聚合物溶解在二甲基亚砜(DMSO)中搅拌至形成均匀溶液,然后加入EDCI冰浴反应0.5h,再加入NHS和羧酸磺化聚芳基醚酮砜聚合物质量55%的氨基单体,搅拌12h,将所得混合物倒入去离子水中,静置,清洗后干燥即得酰胺聚合物;
步骤四、反应液的配制:将步骤三制得的酰胺聚合物溶解在DMSO中得到聚合物溶液,之后将酰胺聚合物质量15%的甲基丙烯酸甲酯(MMA)单体、分别为MMA单体质量3%、10%的溴化亚铜和PMDETA溶解在N,N-二甲基甲酰胺(DMF)中,与聚合物溶液混合超声处理后密封,得反应液;
步骤五:杂化质子交换膜的制备:将步骤四配制的反应液浇铸至步骤二制得的负载有纳米SiO2和引发剂的石英基板表面成膜,之后将石英基板置于反应器中,注入过量的还原剂溶液,密封油浴加热,75℃下反应6h,之后分别用四氢呋喃、沸腾的去离子水冲洗石英基板,盐酸溶液中浸泡24h,剥离,取出用去离子水冲洗,真空干燥即得。
对比例1
除不含步骤一,步骤四中将引发剂与还原剂一同加入外,其余同实施例2。
对比例2
除不含步骤二外,其余同实施例2。
对比例3
除步骤三中不加配体外,其余同实施例2。
对比例4
除步骤四未采取成膜操作,而是直接将步骤二制得的负载有纳米SiO2的石英基板加入反应液中外,其余同实施例2。
分别对上述实施例1~3以及对比例1~4制备得到的质子交换膜样品进行以下性能测试,测试方法如下:
(1)拉伸性能测试:按照GB/T 1040-2006《塑料拉伸性能试验方法》进行测试;
(2)吸水率测试:将样品置于50℃热水中,至质量不再增加为止,称取湿膜质量W1;再将膜于50℃真空干燥24h,称取干膜质量W2。吸水率ω(H2O)计算公式如下:
Figure BDA0002476454950000071
(3)溶胀率测试:量取干样品长度L1、宽度W1、用游标卡尺量取样品的厚度T1。样品置于50℃热水中,至质量不再增加为止。量取湿样品的长度L2、宽度W2和厚度T2
计算样品面积溶胀率(SS)的公式如下:
Figure BDA0002476454950000072
计算样品体积溶胀率(VS)的公式如下:
Figure BDA0002476454950000073
(4)热稳定性测试:通过TGA测量膜在高温下的热分解行为,并且在氮气气氛下在TGA上记录样品膜的热稳定性。5%失重温度(Td5%)列于表1中。
(5)质子电导率:采用交流阻抗法(EIS)测试复合膜的质子电导率,测试频率范围为1~100 000Hz。将实施例1~3和对比例1~4的样品编号为A~G,分别置于inplane电导率测试夹具中夹紧后,实施例1~3及对比例1、对比例3将夹具置于100℃、120℃、140℃、160℃、180℃、200℃、220℃恒温条件下保持30min,测试其在100℃、120℃、140℃、160℃、180℃、200℃、220℃下的质子电导率,对比例2仅测试了100℃、120℃、140℃、160℃的质子电导率,对比例4仅测试了100℃、120℃、140℃、160℃、180℃的电导率,计算公式如下:
Figure BDA0002476454950000081
公式(Ⅰ)中:σ为膜的电导率(S·cm-1);R为膜的电阻(Ω);L为两电极片之间的长度(cm);W为膜的宽度(cm);D为膜的厚度(cm)。
(6)氧化稳定性:制备的质子交换膜的氧化稳定性是通过将膜浸泡在70℃的Fenton试剂(含有4ppm Fe2+的3%的双氧水溶液)中20h,称量并计算膜的重量保留率来衡量的。计算公式为:保留率=(浸泡后膜重量-浸泡前膜重量)/浸泡前膜重量×100%。
(7)甲醇渗透率:通过60℃甲醇渗透系数来评价。
热稳定性测试结果如下表1所示:
样品 Td5%(℃)
实施例1 305
实施例2 310
实施例3 309
对比例1 275
对比例2 166
对比例3 284
对比例4 193
质子电导率测试结果如图1所示。从图1可以看到实施例1~3及对比例1~4制得的样品膜的电导率均随温度升高而增大,实施例2制得的样品膜在220℃时电导率高达0.294S·cm-1,能够适用于高温条件下质子传导。
其他各项测试结果如下表2所示:
Figure BDA0002476454950000082
从表2可以看出,本发明实施例1~3制得的高温质子交换膜具有较小的吸水性能和甲醇渗透率、良好的机械性能和化学稳定性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种有机无机杂化质子交换膜的制备方法,其特征在于,包括以下步骤:
步骤一、石英基板修饰:将石英基板进行亲水处理,再用硅烷化的引发剂进行修饰,得到修饰有引发剂的石英基板,所述硅烷化的引发剂为3-氨丙基三乙氧基硅烷和2-溴异丁酰溴反应制备得到,结构式为
Figure FDA0003814641790000011
步骤二、纳米SiO2负载:将修饰有引发剂的石英基板置于真空溅射镀膜仪的底盘上,采用SiO2陶瓷作为靶材,氩气氛中溅镀;
步骤三、酰胺化反应:将羧酸磺化聚芳基醚酮砜聚合物溶解在二甲基亚砜(DMSO)中搅拌至形成均匀溶液,然后加入EDCI冰浴反应,再加入NHS和氨基单体,搅拌,将所得混合物倒入去离子水中,静置,清洗后干燥即得酰胺聚合物;
步骤四、反应液的配制:将步骤三制得的酰胺聚合物溶解在DMSO中得到聚合物溶液,之后将甲基丙烯酸甲酯(MMA)单体、催化剂和配体五甲基二乙烯三胺(PMDETA)溶解在N,N-二甲基甲酰胺(DMF)中,与聚合物溶液混合超声处理后密封,得反应液;
步骤五:杂化质子交换膜的制备:将步骤四配制的反应液浇铸或旋涂至步骤二制得的负载有纳米SiO2和引发剂的石英基板上,之后将石英基板置于反应器中,注入过量的还原剂溶液,密封油浴加热反应,之后清洗石英基板,盐酸溶液中浸泡,剥离,取出用去离子水冲洗,真空干燥即得。
2.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,步骤二中所用SiO2陶瓷靶材为为高纯高致密二氧化硅,纯度大于99.99%。
3.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,步骤二中靶材与底盘的垂直距离为10~12cm,溅镀功率80~100W,溅镀时间5~15s。
4.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,步骤三中所述均匀溶液中羧酸磺化聚芳基醚酮砜聚合物的质量分数为15~25%。
5.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,步骤三中所述羧酸磺化聚芳基醚酮砜聚合物的制备方法具体为:将4,4′-二氟二苯甲酮、3,3′-二磺酸钠基-4,4′-二氯二苯砜、4-羧基苯基对苯二酚、双酚A、无水K2CO3、甲苯和环丁砜装入干燥的反应器中,加热至120℃保持3~4h,然后将温度缓慢升至200℃以除去体系中残留的甲苯,并继续搅拌20h直至混合物达到一定粘度,然后将其倒入去离子水中以获得条形聚合物,切碎后沸水洗涤数次,干燥即得羧酸磺化聚芳基醚酮砜聚合物。
6.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,所述步骤三中氨基单体的结构式为
Figure FDA0003814641790000021
其质量为羧酸磺化聚芳基醚酮砜聚合物质量的50%~55%。
7.如权利要求1所述有机无机杂化质子交换膜的制备方法,其特征在于,步骤四中MMA单体的质量为酰胺聚合物质量的8%~15%,催化剂和配体五甲基二乙烯三胺(PMDETA)的质量分别为MMA单体质量的1%~3%,5%~10%。
8.如权利要求1~7任一项所述有机无机杂化质子交换膜的制备方法制备得到的有机无机杂化质子交换膜。
9.权利要求8所述有机无机杂化质子交换膜在燃料电池中的应用。
CN202010365653.5A 2020-04-30 2020-04-30 一种有机无机杂化质子交换膜的制备方法 Active CN111518299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010365653.5A CN111518299B (zh) 2020-04-30 2020-04-30 一种有机无机杂化质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010365653.5A CN111518299B (zh) 2020-04-30 2020-04-30 一种有机无机杂化质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN111518299A CN111518299A (zh) 2020-08-11
CN111518299B true CN111518299B (zh) 2022-12-09

Family

ID=71906395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010365653.5A Active CN111518299B (zh) 2020-04-30 2020-04-30 一种有机无机杂化质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN111518299B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113651A (zh) * 2021-03-12 2021-07-13 嘉寓氢能源科技(辽宁)有限公司 一种氢燃料电池用质子交换膜材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106751839A (zh) * 2016-11-29 2017-05-31 长春工业大学 燃料电池用高分子微球/含氨基的磺化聚芳醚酮砜质子交换膜材料、制备方法及其应用
CN107565149A (zh) * 2017-08-14 2018-01-09 西北工业大学 蝌蚪型磺化含poss杂化高分子合成的质子交换膜及制备方法
CN109929112A (zh) * 2019-03-11 2019-06-25 长春工业大学 新型吡啶接枝磺化聚芳醚酮砜质子交换膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309135A1 (de) * 2003-02-28 2004-09-09 Basf Ag Verfahren zur Herstellung eines zum Protonenaustausch befähigten Polymersystems auf der Basis von Polyaryletherketonen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106751839A (zh) * 2016-11-29 2017-05-31 长春工业大学 燃料电池用高分子微球/含氨基的磺化聚芳醚酮砜质子交换膜材料、制备方法及其应用
CN107565149A (zh) * 2017-08-14 2018-01-09 西北工业大学 蝌蚪型磺化含poss杂化高分子合成的质子交换膜及制备方法
CN109929112A (zh) * 2019-03-11 2019-06-25 长春工业大学 新型吡啶接枝磺化聚芳醚酮砜质子交换膜及其制备方法

Also Published As

Publication number Publication date
CN111518299A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Zhu et al. Novel anion exchange membranes based on quaternized diblock copolystyrene containing a fluorinated hydrophobic block
Kim et al. Single-step synthesis of proton conducting poly (vinylidene fluoride)(PVDF) graft copolymer electrolytes
Liu et al. 1-(3-Aminopropyl) imidazole functionalized poly (vinyl chloride) for high temperature proton exchange membrane fuel cell applications
Krathumkhet et al. Preparation of sulfonated zeolite ZSM-5/sulfonated polysulfone composite membranes as PEM for direct methanol fuel cell application
Ding et al. Cross-linked sulfonated poly (phathalazinone ether ketone) s for PEM fuel cell application as proton-exchange membrane
Kim et al. Proton conducting poly (vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes
Wang et al. Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells
Devi et al. Highly selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA proton exchange membranes for DMFC applications
Hwang et al. Analysis of states of water in poly (vinyl alcohol) based DMFC membranes using FTIR and DSC
Xu et al. Synthesis and properties of novel cross-linked composite sulfonated poly (aryl ether ketone sulfone) containing multiple sulfonic side chains for high-performance proton exchange membranes
Song et al. Preparation and characterization of SPEEK membranes crosslinked by electron beam irradiation
Yang et al. Sulfonated poly (phenylene oxide) membranes as promising materials for new proton exchange membranes
Zhang et al. Preparation and properties of novel cross-linked sulfonated poly (arylene ether ketone) for direct methanol fuel cell application
Fatyeyeva et al. Grafting of p-styrene sulfonate and 1, 3-propane sultone onto Laponite for proton exchange membrane fuel cell application
Yang et al. Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene
JP4428181B2 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
Xu et al. Novel ether-free sulfonated poly (biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery
Park et al. Proton-conducting nanocomposite membranes based on P (VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles
Li et al. Anion exchange membranes by bromination of benzylmethyl-containing poly (arylene ether) s for alkaline membrane fuel cells
Su et al. The effect of side chain architectures on the properties and proton conductivities of poly (styrene sulfonic acid) graft poly (vinylidene fluoride) copolymer membranes for direct methanol fuel cells
CN111518299B (zh) 一种有机无机杂化质子交换膜的制备方法
Nath et al. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC
Munavalli et al. Development of robust proton exchange membranes for fuel cell applications by the incorporation of sulfonated β-cyclodextrin into crosslinked sulfonated poly (vinyl alcohol)
Xu et al. Excellent performance of resistance methanol of a novel sulfonated poly (aryl ether ketone sulfone)/poly (vinylalcohol) composite membrane for direct methanol fuel cell applications
Yoshida-Hirahara et al. Synthesis and investigation of sulfonated poly (p-phenylene)-based ionomers with precisely controlled ion exchange capacity for use as polymer electrolyte membranes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221123

Address after: 201407 room 273, 2f, No. 560, Jinwang village, Qingcun Town, Fengxian District, Shanghai

Applicant after: Shanghai Keyi Industrial Co.,Ltd.

Address before: Building Y6, National University Science Park, No. 11, Changchun Road, Zhengzhou Hi tech Development Zone, Henan 450000

Applicant before: Lv Lifang

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230526

Address after: Room 5306, Building 5, No. 568 Jinyang East Road, Luoxing Street, Jiashan County, Jiaxing City, Zhejiang Province, 314100 (Residence application)

Patentee after: Yunbei New Energy (Jiashan) Co.,Ltd.

Address before: 201407 room 273, 2f, No. 560, Jinwang village, Qingcun Town, Fengxian District, Shanghai

Patentee before: Shanghai Keyi Industrial Co.,Ltd.

TR01 Transfer of patent right