CN111516515A - 用于电动车辆的无线电力传输系统 - Google Patents

用于电动车辆的无线电力传输系统 Download PDF

Info

Publication number
CN111516515A
CN111516515A CN202010079820.XA CN202010079820A CN111516515A CN 111516515 A CN111516515 A CN 111516515A CN 202010079820 A CN202010079820 A CN 202010079820A CN 111516515 A CN111516515 A CN 111516515A
Authority
CN
China
Prior art keywords
voltage
wpt
link
stage
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010079820.XA
Other languages
English (en)
Inventor
F·冈萨雷斯·埃斯平
C·拉姆勒
D·迪施尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of CN111516515A publication Critical patent/CN111516515A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

用于电动车辆EV的无线电力传输WPT(400)系统,其包括地面组件GA(401)和车辆组件VA(402),GA(401)包括GA传输线圈(407),VA(402)包括磁耦合到GA传输线圈(407)的VA接收线圈(408),WPT(400)系统包括:补偿策略级(406)、(409),其包括并联串联补偿网络,以在VA接收线圈(408)中获得与GA传输线圈(407)中的有效电流Ip_rms成正比的电压VVA;整流器(410),其在VA(402)中,以获得连续电压Vdc_VA;以及控制策略级(445),其具有电压控制回路(450)和电流控制回路(455),其中,控制策略级(445)提供控制命令,以调节VA(402)中的电压,从而基于参考DC链路电压调整连续电压Vdc_VA,在EV的感应充电过程中,利用经调整的连续电压Vdc_VA调节EV的导电充电器的DC链路。

Description

用于电动车辆的无线电力传输系统
技术领域
本发明涉及用于电动车辆(EV)的无线电力传输系统。
背景技术
利用磁共振的无线电力传输(WPT)是可以使人们摆脱恼人的电线的技术。实际上,WPT采用已经开发了至少30年的相同的基本理论,即术语感应功率传输。WPT技术近年来发展迅速。在千瓦功率水平下,传输距离从几毫米增加到几百毫米,并且电网的负载效率超过90%。这些进步使WPT在静态和动态充电场景中都对电动车辆(EV)充电应用非常有吸引力。通过在电动车辆中引入WPT,可以轻松减轻充电时间、续航里程和成本方面的障碍,并且电池技术在电动车辆市场中将不再那么重要。
常规地,在功率转换中,当AC被转换为低压DC,或者从一个频率的AC转换为另一频率时,AC通常被整流和平滑以获得固定频率的固定电压。一旦完成,电力便被按路线发送到逆变器,以获得具有可变电压和可变频率的最终输出。被馈送到逆变器中的DC电压被称为DC链路。顾名思义,两个源通过滤波电容器链接在一起。
在电动车辆(EV)应用中,DC链路电容器用作负载平衡储能设备。可以将DC链路电容器放置在DC电池和AC之间,即,电压逆变器的负载侧。电容器与电池和DC-DC(DC-to-DC)电池充电器并联放置,从而跨逆变器而保持稳定的电压。DC链路电容器有助于保护逆变器网络免受瞬时电压峰值、浪涌和EMI的影响。
图1示出了用于EV 120的已知的WPT系统100,其中用于感应充电的基本功能块在地面组件(GA)101和车辆组件(VA)102之间共享。
WPT系统100的GA 101包括具有功率因数校正(PFC)的AC/DC转换器104,该功率因数校正将单相或三相电源103转换为经调节的DC电源。WPT系统100的GA 101还包括DC到高频(HF)AC转换器105,其产生具有几乎恒定的频率和占空比的方波电压。GA 101包括一次补偿电路106,该一次补偿电路是无源电路网络,其补偿传输线圈电感以减少由DC到HF AC转换器105输送的无功功率的量。
WPT系统100包括感应充电线圈组件112,该感应充电线圈组件包括在接地侧GA101的传输GA线圈107以及位于车辆侧VA 102的接收VA线圈108。
VA 102包括二次补偿电路109,该二次补偿电路109是无源电路网络,其补偿接收线圈电感以在电谐振时最大化所传递的功率。VA 102包括AC/DC整流器110和/或DC/DC电池充电器205(如图2所示)(可能包括也可能不包括电池充电算法/充电策略)以及高压电池111。
高压电池111的充电可以潜在地由WPT系统100的GA 101和VA 102这两个组件来处理,其设计可以确定最佳的WPT架构。
通常,在不考虑EV中潜在的现有导电充电器的情况下设计WPT系统的VA感应充电。因此,WPT中的充电模块没有在成本、体积和重量方面进行优化,因为VA 102中的充电模块的一些基本功能可能会在EV 120的导电和感应充电级中重复出现。
例如,VA的感应充电器的现有系统元件(例如电流倍增整流器、交错的二次控制和/或输出滤波器级)可以不与VA的导电充电器共享。在这些系统中,很可能将导电车载充电器(OBC)并联连接到电池上,从而重复了上述级的功能,如图2所示,其中示出了EV 120的导电充电级。
图2再次示出了EV 120中的与导电充电级OBC 200结合的WPT系统100。WPT系统100包括GA 101,GA 101具有:带有功率因数校正(PFC)的AC/DC转换器104,该功率因数校正(PFC)将三相电源103转换为经调节的DC电源;产生方波电压的HF AC转换器105;用于补偿传输线圈电感的一次补偿电路106;以及传输线圈107。
WPT系统100的VA 102包括:接收VA线圈108,其位于感应式充电线圈组件112的车辆侧;二次补偿电路109,其用于补偿接收线圈电感;AC/DC整流器110;DC链路电容器204;以及DC/DC电池充电器205。
图2示出了用于EV 120的导电充电的OBC 200。VA 102的OBC 200包括:三相PFC级201,其用于三相电源103;DC链路,其包含DC链路电容器202;以及隔离的DC/DC电池充电器203。
因此,从图2可以看出,感应VA 102和OBC 200的DC链路电容器204和202、以及DC/DC电池充电器205和203是重复的。
因此,期望一种电池充电系统,其使用感应充电和导电充电,但是至少避免上述重复以减小EV的车辆组件的体积、重量和成本。
发明内容
本发明涉及一种无线电力传输(WPT)系统,其可以与用于电动车辆的已经存在的导电车载电池充电器(OBC)集成在一起。本发明具有与WPT系统共享导电车载充电器模块的潜力,从而减小了车辆组件的体积、重量和成本。
本发明提出了一种WPT架构,其包括具有所提出的补偿和控制策略的相关电力转换器拓扑结构,该补偿和控制策略允许将WPT系统与EV中已经存在的导电充电系统的充电模块集成在一起,从而优化EV的体积、重量和成本。
在第一方面,提出了根据本发明的用于EV的WPT系统的示例。WPT系统包括GA和VA。GA包括GA传输线圈,并且VA包括磁耦合到GA传输线圈的VA接收线圈。该WPT系统可以对应于图3和图4。
WPT包含补偿策略。该补偿策略包括并联串联补偿网络,其允许在VA接收线圈中获得电压VVA,该电压VVA与流经GA传输线圈的有效电流Ip_rms成正比。并联串联补偿网络如图5所示。
可以通过EV的VA中包含的整流器将VA接收线圈中的电压VVA转换为连续电压。因此,在WPT的VA接收线圈中获得了电压源VVA的连续Vdc_VA
WPT包括控制策略级,用于调整连续电压Vdc_VA以达到参考DC链路电压。对于此操作,控制策略级包括两个嵌套控制回路:将连续Vdc_VA和参考DC链路电压作为输入而接收的电压控制回路,以及将电流Ip_rms和电压控制回路的输出作为输入而接收的电流控制回路。参考DC链路电压是EV的导电充电器的DC链路中所需的电压。
因此,在EV的感应充电过程中,可以利用经调整的Vdc_VA调节EV的导电充电器的DC链路。因此,在使用提出的补偿和控制策略时,所提出的WPT可以在EV的感应充电过程中使用导电充电器的电池充电模块/DC链路,因此可以避免车辆组件的重复。
WPT的GA可以包含DC-AC转换器,其将DC源转换为方波电压源。DC-AC转换器的占空比可以根据从控制策略级接收到的控制命令而变化,以获得经调整的Vdc_VA
另外,WPT包括DC阻隔和阻抗匹配网络(IMN)级,其包括电容器Cc,用于阻隔可能使IMN变压器饱和的DC电流。电感器Lc可以将来自DC-AC转换器的方波电压源转换为电流源。IMN变压器可以将阻抗和电压水平调整为WPT中GA线圈和VA线圈所需的值。
在第二方面,提出了用于EV的WPT系统的另一示例。WPT包括GA和VA。GA包括GA传输线圈。VA包括磁耦合到GA传输线圈的VA接收线圈。
该WPT还包括补偿策略,该补偿策略包括并联串联补偿网络,以获得VA接收线圈中的电压VVA,该电压与GA传输线圈中的有效电流Ip_rms成正比。
WPT还包括控制策略级,用于基于参考DC链路电压来调整Vdc_VA。与第一个WPT中一样,参考DC链路电压是EV的导电充电器的DC链路中的所需电压。
控制策略级包括两个嵌套的控制回路:将Vdc_VA和参考DC链路电压作为输入接收的电压控制回路,以及接收电流Ip_rms和来自电压控制回路的输出的电流控制回路。
在EV的感应充电过程中,可以为EV的导电充电器的功率因数校正(PFC)级提供VVA,以获得连续的Vdc_VA。因此,连续的Vdc_VA可用于调节EV的导电充电器的DC链路。因此,所提出的WPT的第二个示例在感应充电过程中使用了导电充电器的电池充电模块/DC链路。此外,该WPT还使用导电充电器的PFC作为整流器,以获得连续的Vdc_VA。因此,所提出的WPT不再需要常规WPT的DC充电级。根据本发明的第二方面的WPT可以对应于图7所示的实施例。
类似于第一方面,WPT包括利用控制策略级的控制命令进行调整以获取经调整的Vdc_VA的DC-AC转换器以及DC阻隔和阻抗匹配网络(IMN)。
根据本发明的第三方面,提出了一种电动车辆,其包括具有DC链路的导电充电级和所提出的WPT。
在第四方面,提出了一种根据本发明的利用WPT系统为EV充电的方法,该系统包括GA和VA,该方法包括以下步骤:第一步,将有效电流Ip_rms施加到WPT的GA传输线圈;第二步,获得与Ip_rms成正比的WPT的VA接收线圈中的电压VVA;第三步,在WPT的VA中获得连续电压Vdc_VA;第四步,调整Vdc_VA以达到参考DC链路电压值;第五步,利用经调整的Vdc_VA调节EV的导电充电的DC链路。该方法可以由根据本公开中描述的第一WPT的WTP执行。
在第五方面,提出了一种利用WPT系统为EV充电的方法,该系统包括GA和VA,该方法包括以下步骤:第一步,向WPT的GA传输线圈施加有效电流Ip_rms;第二步,获得与Ip_rms成正比的WPT的VA接收线圈中的电压VVA;第三步,调整Vdc_VA以达到参考DC链路电压;第四步,向EV的导电充电器的PFC提供VVA以获得连续的经调整的Vdc_VA;以及第五步,用于利用连续的经调整的Vdc_VA调节EV的导电充电的DC链路。该方法可以由本公开中描述的第二WTP执行。
附图说明
为了更好地理解上述说明并仅出于提供示例的目的,包括示意性地描绘实际实施例的一些非限制性附图。
图1示出用于EV的常规WPT系统。
图2示出EV的与导电充电器结合的常规的WPT系统。
图3示出根据本发明的WPT和导电充电器的第一示例。
图4示出根据本发明的WPT的第一示例。
图5示出并联串联补偿网络的示例。
图6输出耦合线圈的行为。
图7示出根据本发明的WPT的第二示例。
具体实施方式
图3示出了与导电充电级结合的根据本发明的WPT系统300的第一示例,该导电充电级包括具有用于EV的DC链路电容器202的OBC 200。WPT系统300包括用于对EV进行感应充电的GA 301和VA 302。此外,EV包括如图2所示的用于导电充电的OBC 200。
WPT系统300包括感应充电线圈组件312,其包括GA 301中的传输线圈307和VA 302中的接收线圈308。
WPT系统300的GA 301包括具有功率因数校正(PFC)的AC/DC转换器304,其将三相电源303转换为经调节的DC电源。WPT系统300的GA 301包括AC转换器305,该AC转换器305产生具有几乎恒定的频率和占空比的方波电压。
WPT系统300还包括补偿电路,其具有用于GA 301的一次补偿电路306和用于VA302的二次补偿电路309。补偿电路是用于实现根据本发明提出的补偿策略的并联串联补偿网络。所提出的补偿策略允许通过调节OBC 200中的DC链路电容器202的DC链路电压来在VA302中对EV进行感应充电以利用导电电池充电器。因此,补偿电路309允许接收线圈308充当电压源。因此,在VA接收线圈308中产生电压VVA,其振幅与GA传输线圈307中的有效电流Ip_rms成正比。优选的并联串联补偿网络如图5所示。
WPT系统300的VA 302包括作为并联串联补偿网络的一部分的二次补偿电路309,该二次补偿电路使线圈组312的接收线圈308充当电压源。WTP系统300的VA 302缺少先前在图2中示出的DC链路电容器和DC/DC电池充电器。HF整流器310的输出可以被加载到DC链路电容器202中。因此,OBC 200的DC链路电容器202和DC/DC电池充电器203可以在WPT系统300的导电级OBC200和VA 302之间共享。因此,所提出的WPT系统300避免了EV 120中的充电模块/DC链路的重复。
图4示出了根据本公开的WPT 400的更详细示例的GA 401和VA 402无线充电级。图4还示出了控制策略级445,其用于获得期望的电压以调节EV的常规导电充电器中的DC链路/电池充电器。
GA 401包括DC-AC(DC-to-AC)转换器404,其对应于图3中的AC转换器305,并将DC源Vdc_GA转换为方波电压源,该方波电压源的主频率取决于可应用技术标准,例如SAE标准(例如81.38kHz到90kHz),并且其占空比可以根据来自控制策略级445的调节电路输入命令而变化。可以将DC-AC转换器404设计为借助于零电压开关(ZVS)或零电流开关(ZCS)技术来最小化开关损耗。
GA 401包括DC阻隔和阻抗匹配网络(IMN)级405,其包括电容器Cc 405a,用于阻隔可能使IMN变压器饱和的DC电流。电感器LC 405b将方波电压源转换为电流源,且IMN变压器将阻抗和电压水平调整为WPT线圈407、408所需的值。
GA 401包括GA线圈Lp 407和一次补偿网络406。VA 402包括VA线圈Ls 408和二次补偿网络409。补偿网络406、409是并联串联补偿电路。如前所述,并联串联补偿电路有利地允许在VA线圈Ls 408处产生电压源VVA,其振幅取决于流过GA线圈Lp 407的有效电流Ip_rms。由于应在特定范围内调节DC/DC电池充电器403中的导电充电的DC链路电压,以确保车载DC-DC电池充电器的正常运行,因此并联串联补偿电路允许通过控制GA 401中的GA线圈电流Ip_rms来调节DC链路电压。
因此,GA线圈Lp 407将能量从GA 401传递到VA 402。补偿网络406允许本地提供无功功率(即,DC-AC转换器404仅输送有功功率)。VA线圈Ls 408与GA线圈Lp 407磁耦合,并且接收从GA线圈Lp 407无线传递的最大化的能量。
VA 402包括HF整流器410。HF整流器410将VA线圈上的高频信号转换为DC。图4还示出了EV的导电充电的DC链路电容器Cdc 420。WPT 400还示出了用于获得期望的连续电压而提出的控制策略级445的框图,该期望的连续电压调节了EV的导电充电器中的DC链路/电池充电器。
如图4所示,控制策略级445由基于电压源Vdc_VA和GA线圈电流Ip_rms的调节的两个嵌套控制回路组成。对于该特定实现方式,控制策略级包括用于电压和电流控制的两个PI调节器450、455。
Vda_VA*代表参考DC链路电压,即DC链路中所需的DC链路电压。Vdc_VA是实际的DC链路电压,即实时测量的电压。Vdc_VA是整流后的VA线圈Ls 408处的电压VVA的DC值。
此外,WPT 400包括在VA 402和GA 401之间的无线通信装置。因此,可以通过使用在线通信(例如WIFI)和/或离线通信(例如蓝牙、NFC等)将参考DC链路电压Vda_VA*和实际DC链路电压Vdc_VA从VA 402无线发送到GA 401。在一段时间之后(对于该应用而言,通常在几秒或几毫秒的范围内),PI调节器450、455可以使实际DC链路电压Vdc_VA等于参考DC链路电压Vda_VA*。因此,在稳态下,Vdc_VA和Vda_VA*的差值为0,并且在EV的感应充电过程中,可以通过调整后的Vdc_VA来调节EV的导电充电器的DC链路。因此,控制策略级445可以命令DC-AC转换器404调节Ip_rms以获得等于Vda_VA*的Vdc_VA
图5示出了可以在根据本发明的提出的WPT中使用的并联串联补偿电路500。VA302中的VA线圈模型包括寄生电阻R2和电感器L2。如果将电容器C2与电感器L2(补偿网络)串联放置,并且正确选择其值,则L2和电容器C2的串联连接的阻抗在工作频率下为零,此时无线传输以固定频率f=85Khz进行。有趣的是,该电压的振幅取决于恒定的信号频率、耦合项M(对于EV汽车相对于GA线圈L1的给定位置也是恒定的)、以及GA电流Ip_rms。因此,这是GA线圈电流Ip_rms和VA线圈电压VVA之间的电关系。因此,由于电感器L2被串联电容器C2抵消,所以该电压VVA可直接设置成跨越HF整流器410的端子。
图6解释了耦合线圈的电行为。在该图中,示出了与线圈电感串联的电压源,该电压源可以更精确地模拟耦合线圈的行为(在该图中忽略了寄生电阻)。VA线圈的补偿使Ls从模型中消失,从而仅留下电压源,该电压源与频率、耦合项M和一次线圈电流Ip成正比。
图7示出了根据本发明的WPT 700的替代性示例。
类似地,WPT 700的GA 701包括具有功率因数校正(PFC)的AC/DC转换器704,其将三相电源103转换为经调节的DC电源。WPT 700的GA 701包括AC转换器705,其产生具有几乎恒定的频率和占空比的方波电压。
WPT 700包括感应充电线圈组件712,其包括GA 701中的传输线圈707和VA 713中的接收线圈708。
GA 701中的感应充电线圈组件712包括GA线圈707和一次补偿网络706。VA 702包括VA线圈708和二次补偿网络709。补偿网络706、709也是并联串联补偿电路。如前所述,并联补偿电路有利地允许在VA线圈708处产生电压源,该电压源的振幅取决于流过GA线圈707的有效电流。
图7还示出了用于EV的导电充电的导电充电级OBC 200。VA 702的OBC 200包括用于三相电源103的三相PFC级201、包括DC链路电容器202的DC链路以及隔离的DC/DC电池充电器203。
图7中示出了一种替代性解决方案,VA补偿网络709的输出连接到导电充电OBC200中的导电充电器三相PFC级201的输入。由于三相PFC级201可以由基于MOSFET的3个半桥组成(其中每一个均包括并联的寄生体二极管),因此该三相PFC级201可用作简单的整流器,以获得可调节的连续电压(Vdc_VA),该电压可用于在EV的感应充电过程中调节EV的导电充电器的DC链路,从而提供原始解决方案中所示的专用整流器以及DC链路。
尽管已经参考了本发明的具体实施例,但是对于本领域技术人员而言显而易见的是,本文中描述的WPT架构容易受到许多变化和修改的影响,并且在不脱离所附权利要求所限定的保护范围的情况下,所提到的所有细节都可以替换为其他技术上等效的细节。

Claims (14)

1.一种用于电动车辆EV的无线电力传输WPT(400)系统,所述系统包括地面组件GA(401)和车辆组件VA(402),所述GA(401)包括GA传输线圈(407),所述VA(402)包括磁耦合到所述GA传输线圈(407)的VA接收线圈(408),其特征在于,所述WPT(400)系统包括:
补偿策略级(406)、(409),所述补偿策略级(406)、(409)包括并联串联补偿网络,以在VA接收线圈(408)中获得与GA传输线圈(407)中的有效电流Ip_rms成正比的电压VVA
整流器(410),所述整流器(410)在所述VA(402)中,以获得连续电压Vdc_VA;以及
控制策略级(445),所述控制策略级(445)具有电压控制回路(450)和电流控制回路(455),
其中,所述控制策略级(445)提供控制命令,以调节所述VA(402)中的电压,从而基于参考DC链路电压调整所述连续电压Vdc_VA
其中,在所述EV的感应充电过程中,利用经调整的连续电压Vdc_VA调节所述EV的导电充电器的DC链路,以及
其中,所述整流器(410)连接到所述EV的所述导电充电器的所述DC链路。
2.根据权利要求1所述的用于EV的WPT系统(400),其中,所述GA(401)包括由所述控制策略级(445)的所述控制命令调节的DC-AC转换器(404)。
3.根据前述权利要求中的任一项所述的用于EV的WPT系统(400),其中,所述GA(401)包括具有功率因数校正PFC的AC/DC转换器(304)。
4.根据前述权利要求中的任一项所述的用于EV的WPT系统(400),其中,所述GA(401)包括DC阻隔和阻抗匹配网络IMN。
5.根据前述权利要求中的任一项所述的用于EV的WPT系统(400),其中,所述GA(401)和所述VA(402)包括无线通信装置,所述无线通信装置用于至少将所述连续电压Vdc_VA和所述参考DC链路电压从所述VA(402)传输到所述GA(401)。
6.一种用于EV的WPT系统(700),所述系统包括GA(701)和VA(702),所述GA(701)包括GA传输线圈(707),所述VA(702)包括磁耦合到所述GA传输线圈(707)的VA接收线圈(708),其特征在于,所述WPT(700)包括:
补偿策略(706)、(709),所述补偿策略(706)、(709)包括并联串联补偿网络,以获取与所述GA传输线圈(707)中的有效电流Ip_rms成正比的所述VA接收线圈(709)中的电压VVA;以及
控制策略级(445),所述控制策略级(445)具有电压控制回路(450)和电流控制回路(455),
其中,所述控制策略级(445)提供控制命令,以调节所述VA(702)中的电压,从而基于参考DC链路电压来调整连续电压Vdc_VA
其中,在所述EV的感应充电过程中,向所述EV的导电充电器的PFC级提供所述电压VVA,以及
其中,所述连续电压Vdc_VA是在所述EV的所述导电充电器的DC链路处测得的电压。
7.根据权利要求5所述的用于EV的WPT系统(700),其中,所述GA(701)包括由所述控制策略级(445)的控制命令调节的DC-AC转换器(705)。
8.根据权利要求5和6所述的用于EV的WPT系统(700),其中,所述GA(701)包括具有PFC的AC/DC转换器(704)。
9.根据权利要求5至7所述的用于EV的WPT系统(700),其中,所述GA(701)包括DC阻隔和阻抗匹配网络(IMN)。
10.根据权利要求6至9所述的用于EV的WPT系统(700),其中,所述GA(701)和所述VA(702)包括无线通信装置,所述无线通信装置用于将所述连续电压Vdc_VA和所述参考DC链路电压从所述VA(402)传输到所述GA(401)。
11.一种电动车辆,包括:
导电充电级(200),所述导电充电级(200)具有DC链路;以及
根据权利要求1至10中的任一项所述的WPT系统(400、700),
其中,所述WPT系统(300、700)调节所述导电充电级(200)的所述DC链路。
12.一种用于利用WPT系统(400)为EV充电的方法,所述系统包括GA和VA,所述方法包括:
向所述WPT的GA传输线圈施加有效电流Ip_rms
获得与所述Ip_rms成正比的所述WPT的VA接收线圈中的电压VVA
在所述WPT的所述VA中获得连续电压Vdc_VA
基于参考DC链接电压调整所述连续电压Vdc_VA
利用经调整的连续电压Vdc_VA调节所述EV的导电充电器的DC链路。
13.一种用于利用WPT系统(700)为EV充电的方法,所述系统包括GA和VA,所述方法包括:
向所述WPT的GA传输线圈施加有效电流Ip_rms
获得与所述Ip_rms成正比的所述WPT的VA接收线圈中的电压VVA
向所述EV的导电充电器的PFC级提供所述电压VVA
获得经调整的连续电压Vdc_VA
基于参考DC链路电压调整所述连续电压Vdc_VA
利用经调整的连续电压Vdc_VA调节所述EV的所述导电充电器的DC链路,
其中,所述连续电压Vdc_VA是在所述EV的所述导电充电器的所述DC链路处测得的电压,以及
其中,整流器(410)连接到所述EV的所述导电充电器的所述DC链路。
14.根据权利要求11或12所述的方法,还包括:
将所述连续电压Vdc_VA和所述参考DC链路电压从所述WPT系统(400、700)的所述VA传输到所述GA。
CN202010079820.XA 2019-02-05 2020-02-04 用于电动车辆的无线电力传输系统 Pending CN111516515A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19382083.4A EP3694079B1 (en) 2019-02-05 2019-02-05 Wireless power transfer systems for electric vehicles
EP19382083.4 2019-02-05

Publications (1)

Publication Number Publication Date
CN111516515A true CN111516515A (zh) 2020-08-11

Family

ID=65529612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010079820.XA Pending CN111516515A (zh) 2019-02-05 2020-02-04 用于电动车辆的无线电力传输系统

Country Status (5)

Country Link
US (1) US20200247250A1 (zh)
EP (1) EP3694079B1 (zh)
JP (1) JP2020127353A (zh)
CN (1) CN111516515A (zh)
ES (1) ES2934079T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115769A1 (zh) * 2021-12-21 2023-06-29 阳光电源股份有限公司 一种车载充电器、dcdc变换器及控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878600B2 (en) * 2021-03-31 2024-01-23 Lear Corporation Vehicle on-board charger with variable DC-link voltage
US11949330B2 (en) * 2021-10-19 2024-04-02 Volvo Car Corporation Integrated power conversion topology for electric vehicles
WO2024023657A1 (en) 2022-07-28 2024-02-01 Bluhub Srl System for the simultaneous wireless charging of light electric vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953683A (zh) * 2014-03-31 2015-09-30 Abb技术有限公司 感应功率传递系统以及用于操作感应功率传递系统的方法
CN106134029A (zh) * 2014-04-16 2016-11-16 三菱电机株式会社 车辆用充电装置
US20180290545A1 (en) * 2017-04-05 2018-10-11 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381821B2 (en) * 2013-05-15 2016-07-05 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle wired and wireless charging
KR20170110866A (ko) * 2016-03-24 2017-10-12 현대자동차주식회사 무선 전력 전송 일차 코일 회로 및 이를 이용하는 그라운드 어셈블리와 그 제조 방법
KR102526872B1 (ko) * 2016-11-01 2023-04-27 현대자동차주식회사 계자 권선을 이용하는 무선 전력 전송 방법과 이를 이용하는 차량 어셈블리 및 전기차
US10340724B2 (en) * 2017-04-04 2019-07-02 Gm Gloval Technology Operations Llc Inductive and conductive onboard charging systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953683A (zh) * 2014-03-31 2015-09-30 Abb技术有限公司 感应功率传递系统以及用于操作感应功率传递系统的方法
CN106134029A (zh) * 2014-04-16 2016-11-16 三菱电机株式会社 车辆用充电装置
US20180290545A1 (en) * 2017-04-05 2018-10-11 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components
CN108688490A (zh) * 2017-04-05 2018-10-23 福特全球技术公司 具有共用组件的车载车辆充电系统和无线车辆充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115769A1 (zh) * 2021-12-21 2023-06-29 阳光电源股份有限公司 一种车载充电器、dcdc变换器及控制方法

Also Published As

Publication number Publication date
JP2020127353A (ja) 2020-08-20
ES2934079T3 (es) 2023-02-16
EP3694079A1 (en) 2020-08-12
US20200247250A1 (en) 2020-08-06
EP3694079B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
Chen et al. Hybrid and reconfigurable IPT systems with high-misalignment tolerance for constant-current and constant-voltage battery charging
CN111516515A (zh) 用于电动车辆的无线电力传输系统
KR102226793B1 (ko) 전기 또는 하이브리드 차량의 온보드 충전 디바이스 제어 방법
Onar et al. Vehicular integration of wireless power transfer systems and hardware interoperability case studies
Onar et al. A high-power wireless charging system development and integration for a Toyota RAV4 electric vehicle
US9887553B2 (en) Electric power transmission device, and electric power reception device and vehicle including the same
Vardani et al. A single-stage bidirectional inductive power transfer system with closed-loop current control strategy
WO2015126946A1 (en) Resonant inverter topology, wireless charger, and control method
US9849796B2 (en) Method for charging a vehicle battery by induction
KR20170059391A (ko) 무선 충전기용 양면 lcc 컨버터 및 그 구현방법
CN110914100A (zh) 无线充电系统
CN114614665A (zh) 用于单级车载充电器功率因数校正无功控制的系统和方法
CN115593250A (zh) 恒功率无线充电系统
Wang et al. Widening the operating range of a wireless charging system using tapped transmitter winding and bifrequency pulse train control
Sagar et al. Analysis and design of a two-winding wireless power transfer system with higher system efficiency and maximum load power
US11201503B2 (en) Wireless charging circuit and system
US20190299800A1 (en) Wireless power transmission device and wireless power transmission system
Zhang et al. An LCL-N compensated strongly-coupled wireless power transfer system for high-power applications
Ameri et al. A novel algorithm for tracking maximum inductive transferred power point
Myneni et al. Three-phase voltage controlled active bridge rectifier based resonant wireless power transfer for EV charging applications
Somsak et al. Constant current-voltage with maximum efficiency inductive wireless EV charging control using dual-sides DC converters
Teeneti et al. 1-kW wireless charger for power wheelchairs
Narvaez et al. An Inductive Power Transfer System Case Study: Large Gap in Low Power Wireless Power Supply
CN115280635A (zh) 有源阻抗控制
Gonzalez-Hernando et al. Z3 class 50 kW Bidirectional IPT charger for EV

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200811