CN111510150A - A Novel Sigma-Delta Modulator - Google Patents

A Novel Sigma-Delta Modulator Download PDF

Info

Publication number
CN111510150A
CN111510150A CN202010316984.XA CN202010316984A CN111510150A CN 111510150 A CN111510150 A CN 111510150A CN 202010316984 A CN202010316984 A CN 202010316984A CN 111510150 A CN111510150 A CN 111510150A
Authority
CN
China
Prior art keywords
digital
analog
input
switch
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010316984.XA
Other languages
Chinese (zh)
Other versions
CN111510150B (en
Inventor
王顺平
杨利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Shoreline Beijing Science And Technology Group Co ltd
Original Assignee
Beijing Nufront Wireless Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Nufront Wireless Tech Co ltd filed Critical Beijing Nufront Wireless Tech Co ltd
Priority to CN202010316984.XA priority Critical patent/CN111510150B/en
Publication of CN111510150A publication Critical patent/CN111510150A/en
Application granted granted Critical
Publication of CN111510150B publication Critical patent/CN111510150B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种新型Sigma‑Delta调制器,包括:积分器、量化器、选择器和反馈数模转换器;通过积分器包括的多个开关及选择器控制端选择模数转换工作模式或数模转换工作模式,本发明中的Sigma‑Delta调制器可以应用于发射器和接收器中,在接收器端选择模数转换工作模式,在发射器端选择数模转换工作模式,通过Sigma‑Delta调制器中数模转换器的复用,能够节省芯片面积降低功耗。

Figure 202010316984

The invention discloses a novel Sigma-Delta modulator, comprising: an integrator, a quantizer, a selector and a feedback digital-to-analog converter; the analog-to-digital conversion working mode or Digital-to-analog conversion working mode, the Sigma-Delta modulator in the present invention can be applied to the transmitter and receiver, select the analog-to-digital conversion working mode at the receiver end, select the digital-to-analog conversion working mode at the transmitter end, through the Sigma-Delta The multiplexing of digital-to-analog converters in the delta modulator can save chip area and reduce power consumption.

Figure 202010316984

Description

一种新型Sigma-Delta调制器A Novel Sigma-Delta Modulator

技术领域technical field

本发明涉及通信技术领域,尤其涉及一种新型Sigma-Delta调制器。The invention relates to the technical field of communication, in particular to a novel Sigma-Delta modulator.

背景技术Background technique

在2G/3G/4G/5G,或者WiFi等通信系统中,通常在接收器RX中采用sigma-delta调制器来进行模数转换,在发射器TX中采用电流舵数模转换器来进行数模转换。如图1所示,包括:天线ANT(Antenna)、低噪声放大器LNA(Low Noise Amplifier)、混频器MIXER、低通滤波器LPF(Low Pass Filter)、可编程增益放大器PGA(Programmable Gain Amplifier)。In 2G/3G/4G/5G, or WiFi and other communication systems, the sigma-delta modulator is usually used in the receiver RX for analog-to-digital conversion, and the current steering digital-to-analog converter is used in the transmitter TX for digital-to-analog conversion. convert. As shown in Figure 1, it includes: Antenna ANT (Antenna), Low Noise Amplifier LNA (Low Noise Amplifier), Mixer MIXER, Low Pass Filter LPF (Low Pass Filter), Programmable Gain Amplifier PGA (Programmable Gain Amplifier) .

由于发射器TX和接收器RX属于两种相对独立的通路,在通常设计中,一般将发射器TX中的数模转换器DAC和接收器RX中的模数转换器ADC单独设计。然而,在诸如WiFi这种半双工通信系统中,数模转换器DAC和模数转换器ADC是不同时工作的,并且模数转换器ADC大多采用sigma-delta调制器,图2为现有技术中1阶单环N位sigma delta调制器结构图,图2中可以看出传统sigma-delta调制器中包含数模转换器DAC。Since the transmitter TX and the receiver RX belong to two relatively independent paths, in a common design, the digital-to-analog converter DAC in the transmitter TX and the analog-to-digital converter ADC in the receiver RX are generally designed separately. However, in a half-duplex communication system such as WiFi, the digital-to-analog converter DAC and the analog-to-digital converter ADC do not work at the same time, and most of the analog-to-digital converter ADCs use sigma-delta modulators. Figure 2 shows the existing The structure diagram of the first-order single-loop N-bit sigma delta modulator in the technology. It can be seen in Figure 2 that the digital-to-analog converter DAC is included in the traditional sigma-delta modulator.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明提供了一种新型Sigma-Delta调制器,具有模数转换工作模式和数模转换工作模式,可以应用于发射器TX和接收器RX中,在接收器RX端选择模数转换工作模式,在发射器TX端选择数模转换工作模式,通过Sigma-Delta调制器中数模转换器的复用,能够节省芯片面积降低功耗。In view of this, the present invention provides a new type of Sigma-Delta modulator, which has an analog-to-digital conversion working mode and a digital-to-analog conversion working mode, which can be applied to the transmitter TX and the receiver RX, and selects the analog-digital at the receiver RX end. To convert the working mode, select the digital-to-analog conversion working mode at the TX end of the transmitter. Through the multiplexing of the digital-to-analog converter in the Sigma-Delta modulator, the chip area can be saved and power consumption can be reduced.

所述新型Sigma-Delta调制器包括:积分器、量化器、选择器和反馈数模转换器;The new Sigma-Delta modulator includes: an integrator, a quantizer, a selector, and a feedback digital-to-analog converter;

积分器输入端连接第一输入信号线端口,积分器的输出端连接量化器输入端;选择器的第一输入端连接量化器的输出端,第二输入端连接第二输入信号线端口,选择器输出端连接反馈数模转换器输入端;反馈数模转换器输出端连接积分器的运算放大器的输入端;The input end of the integrator is connected to the first input signal line port, and the output end of the integrator is connected to the input end of the quantizer; the first input end of the selector is connected to the output end of the quantizer, the second input end is connected to the second input signal line port, and the selection The output end of the feedback digital-to-analog converter is connected to the input end of the feedback digital-to-analog converter; the output end of the feedback digital-to-analog converter is connected to the input end of the operational amplifier of the integrator;

所述积分器,包括连接于第一电阻R1和运算放大器正输入端的的第一开关S1、连接于第二电阻R2和运算放大器负输入端的第二开关S2、第三开关S3、第四开关S4、第一反馈电阻R3和第二反馈电阻R4;第三开关S3与第一反馈电阻R3串联后与第一反馈电容C1并联,第四开关S4与第二反馈电阻R4串联后与第二反馈电容C2并联;The integrator includes a first switch S1 connected to the first resistor R1 and the positive input end of the operational amplifier, a second switch S2, a third switch S3, and a fourth switch S4 connected to the second resistor R2 and the negative input end of the operational amplifier , the first feedback resistor R3 and the second feedback resistor R4; the third switch S3 is connected in series with the first feedback resistor R3 and then connected in parallel with the first feedback capacitor C1; the fourth switch S4 is connected in series with the second feedback resistor R4 and then connected with the second feedback capacitor C2 in parallel;

所述第一开关S1、第二开关S2用于控制积分器和第一输入信号之间的通断;The first switch S1 and the second switch S2 are used to control the on-off between the integrator and the first input signal;

第一开关S1、第二开关S2闭合,第三开关S3、第四开关S4断开,选择器的控制端选择第一输入端,Sigma-Delta调制器工作在模数转换工作模式;The first switch S1 and the second switch S2 are closed, the third switch S3 and the fourth switch S4 are open, the control terminal of the selector selects the first input terminal, and the Sigma-Delta modulator works in the analog-to-digital conversion working mode;

第一开关S1、第二开关S2断开,第三开关S3、第四开关S4闭合,选择器的控制端选择第二输入端,Sigma-Delta调制器工作在数模转换工作模式。The first switch S1 and the second switch S2 are open, the third switch S3 and the fourth switch S4 are closed, the control terminal of the selector selects the second input terminal, and the Sigma-Delta modulator works in the digital-to-analog conversion mode.

其中,所述第一输入信号为模数转换工作模式下的模拟差分输入信号;Wherein, the first input signal is an analog differential input signal in an analog-to-digital conversion working mode;

所述第二输入信号为数模转换工作模式的输入数字信号。The second input signal is an input digital signal in a digital-to-analog conversion working mode.

进一步的,further,

积分器的运算放大器的正输入端通过与第一开关S1串联的第一电阻R1、负输入端通过与第二开关S2串联的第二电阻R2连接到第一输入信号线端口;The positive input end of the operational amplifier of the integrator is connected to the first input signal line port through the first resistor R1 connected in series with the first switch S1, and the negative input end is connected to the first input signal line port through the second resistor R2 connected in series with the second switch S2;

运算放大器的输入端与反馈数模转换器的输出端连接;The input end of the operational amplifier is connected with the output end of the feedback digital-to-analog converter;

运算放大器的输出端连接量化器的输入端,将积分器的输出的模拟差分电压信号配置给量化器。The output end of the operational amplifier is connected to the input end of the quantizer, and the analog differential voltage signal output by the integrator is configured to the quantizer.

所述量化器,被配置为对积分器输出的模拟差分电压信号进行量化处理,输出N位数字信号,并将N位数字信号配置给选择器;The quantizer is configured to perform quantization processing on the analog differential voltage signal output by the integrator, output an N-bit digital signal, and configure the N-bit digital signal to the selector;

所述选择器,被配置为选择性地将量化器输出的N位数字信号,或第二输入信号输入至反馈数模转换器的输入端;The selector is configured to selectively input the N-bit digital signal output by the quantizer or the second input signal to the input end of the feedback digital-to-analog converter;

所述反馈数模转换器,被配置为将选择器输入的N位数字信号,或第二输入信号进行数模转换,并将输出的模拟信号反馈至积分器。The feedback digital-to-analog converter is configured to perform digital-to-analog conversion on the N-bit digital signal input by the selector or the second input signal, and feed back the output analog signal to the integrator.

所述积分器,被配置为:The integrator, configured as:

模数转换工作模式时,第一输入信号经由第一开关S1、第二开关S2、第一电阻R1、第二电阻R2输入至运算放大器,运算放大器及第一反馈电容C1、第二反馈电容C2根据反馈数模转换器输出的反馈模拟信号对第一输入信号进行积分;In the analog-to-digital conversion working mode, the first input signal is input to the operational amplifier through the first switch S1, the second switch S2, the first resistor R1, and the second resistor R2. The operational amplifier, the first feedback capacitor C1, and the second feedback capacitor C2 Integrate the first input signal according to the feedback analog signal output by the feedback digital-to-analog converter;

数模转换工作模式时,第一反馈电阻R3与第二反馈电阻R4接入至运算放大器的输入端和输出端;第一反馈电阻R3、第二反馈电阻R4、第一反馈电容C1、第二反馈电容C2及运算放大器构成积分器,对反馈数模转换器的输出信号进行积分。In the digital-to-analog conversion working mode, the first feedback resistor R3 and the second feedback resistor R4 are connected to the input and output ends of the operational amplifier; the first feedback resistor R3, the second feedback resistor R4, the first feedback capacitor C1, the second The feedback capacitor C2 and the operational amplifier form an integrator, which integrates the output signal of the feedback digital-to-analog converter.

所述量化器,在数模转换工作模式时,量化器的采样开关断开,量化器不工作。When the quantizer is in the digital-to-analog conversion working mode, the sampling switch of the quantizer is turned off, and the quantizer does not work.

模数转换工作模式下:所述积分器对第一输入信号进行积分,量化器对积分器的输出信号进行量化处理,输出N位数字信号;选择器选择将量化器输出的N位数字信号输入至反馈数模转换器的输入端,反馈数模转换器将选择器输入的N位数字信号进行数模转换,并将输出的模拟信号反馈至积分器;Sigma-Delta调制器输出信号为量化器输出的N位数字信号;In the analog-to-digital conversion working mode: the integrator integrates the first input signal, the quantizer quantizes the output signal of the integrator, and outputs an N-bit digital signal; the selector selects to input the N-bit digital signal output by the quantizer To the input end of the feedback digital-to-analog converter, the feedback digital-to-analog converter performs digital-to-analog conversion on the N-bit digital signal input by the selector, and feeds back the output analog signal to the integrator; the output signal of the Sigma-Delta modulator is the quantizer The output N-bit digital signal;

数模转换工作模式下:量化器的采样开关断开,量化器不工作;选择器通过控制端选择第二输入端,将第二输入信号输入至反馈数模转换器的输入端,反馈数模转换器将选择器输入的第二输入信号进行数模转换,并将输出的模拟信号输入至积分器;积分器将反馈数模转换器的输出的模拟信号进行积分并输出模拟差分电压信号,所述模拟差分电压信号为Sigma-Delta调制器的输出信号。In the digital-to-analog conversion working mode: the sampling switch of the quantizer is turned off, and the quantizer does not work; the selector selects the second input terminal through the control terminal, and inputs the second input signal to the input terminal of the feedback digital-to-analog converter, and the feedback digital-to-analog converter The converter performs digital-to-analog conversion on the second input signal input by the selector, and inputs the output analog signal to the integrator; the integrator integrates the analog signal output by the feedback digital-to-analog converter and outputs an analog differential voltage signal, so The analog differential voltage signal is the output signal of the Sigma-Delta modulator.

本发明取得的有益效果是:The beneficial effects obtained by the present invention are:

1.易于实现,本发明提出的新型Sigma-Delta调制器,只在传统Sigma-Delta调制器基础上增加四个开关、一个选择器即可实现;1. Easy to implement, the new Sigma-Delta modulator proposed by the present invention can be implemented only by adding four switches and one selector on the basis of the traditional Sigma-Delta modulator;

2.通过本发明中提出的新型Sigma-Delta调制器,实现了传统Sigma-Delta调制器中包含的数模转换模块DAC的复用,能够节省芯片面积,降低功耗;2. Through the new Sigma-Delta modulator proposed in the present invention, the multiplexing of the digital-to-analog conversion module DAC included in the traditional Sigma-Delta modulator is realized, which can save chip area and reduce power consumption;

3.本发明中提出的新型Sigma-Delta调制器,能够同时应用于发射端和接收端,通过切换不同的工作模式,能够实现通信系统中发射器中的数模转换和接收器中的模数转换;3. The new Sigma-Delta modulator proposed in the present invention can be applied to the transmitter and the receiver at the same time. By switching different working modes, the digital-to-analog conversion in the transmitter and the analog-to-digital conversion in the receiver can be realized in the communication system. convert;

4.本发明中量化器选用异步SAR ADC,能大大节省功耗和面积,并且容易实现不同工艺之间的迁移。4. The asynchronous SAR ADC is used for the quantizer in the present invention, which can greatly save power consumption and area, and can easily realize migration between different processes.

为了上述以及相关的目的,一个或多个实施例包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明某些示例性方面,并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显,所公开的实施例是要包括所有这些方面以及它们的等同。For the above and related purposes, one or more embodiments comprise the features hereinafter described in detail and particularly pointed out in the claims. The following description and accompanying drawings illustrate certain exemplary aspects in detail and are indicative of but a few of the various ways in which the principles of various embodiments may be employed. Other benefits and novel features will become apparent from the following detailed description considered in conjunction with the accompanying drawings, and the disclosed embodiments are intended to include all such aspects and their equivalents.

附图说明Description of drawings

图1是现有技术中发射器和接收器结构示意图;1 is a schematic diagram of the structure of a transmitter and a receiver in the prior art;

图2是现有技术中传统1阶单环N位Sigma-Delta调制器结构图;Fig. 2 is a structure diagram of a traditional first-order single-loop N-bit Sigma-Delta modulator in the prior art;

图3是本发明提供的一种新型Sigma-Delta调制器结构图;3 is a structural diagram of a novel Sigma-Delta modulator provided by the present invention;

图4是本发明提供的一种量化器的10位异步SAR ADC内部结构图;Fig. 4 is a 10-bit asynchronous SAR ADC internal structure diagram of a quantizer provided by the present invention;

图5是本发明提供的连续时间型模数转换工作模式结构示意图;5 is a schematic structural diagram of a continuous-time analog-to-digital conversion working mode provided by the present invention;

图6是本发明提供的数模转换工作模式结构示意图;6 is a schematic structural diagram of a digital-to-analog conversion working mode provided by the present invention;

图7是本发明中可调节电容C1、C2阵列图。FIG. 7 is an array diagram of the adjustable capacitors C1 and C2 in the present invention.

具体实施方式Detailed ways

以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的组件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本发明的这些实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。The following description and drawings sufficiently illustrate specific embodiments of the invention to enable those skilled in the art to practice them. Other embodiments may include structural, logical, electrical, process, and other changes. The examples represent only possible variations. Unless explicitly required, individual components and functions are optional and the order of operations may vary. Portions and features of some embodiments may be included in or substituted for those of other embodiments. The scope of embodiments of the invention includes the full scope of the claims, along with all available equivalents of the claims. These embodiments of the invention may be referred to herein by the term "invention," individually or collectively, for convenience only and not to automatically limit the application if more than one invention is in fact disclosed. The scope is any single invention or inventive concept.

本发明提供了一种新型Sigma-Delta调制器,具有模数转换工作模式和数模转换工作模式,通过切换不同的工作模式,能够实现通信系统中发射器中的数模转换和接收器中的模数转换,如图3所示,包括:The invention provides a new type of Sigma-Delta modulator, which has an analog-to-digital conversion working mode and a digital-to-analog conversion working mode. By switching different working modes, the digital-to-analog conversion in the transmitter and the digital-to-analog conversion in the receiver in the communication system can be realized. The analog-to-digital conversion, shown in Figure 3, consists of:

其中,本发明中的模数转换工作模式为连续时间型模数转换工作模式;Wherein, the analog-to-digital conversion working mode in the present invention is a continuous-time analog-to-digital conversion working mode;

积分器U1、量化器U2、选择器U3和反馈数模转换器U4;Integrator U1, quantizer U2, selector U3 and feedback digital-to-analog converter U4;

所述积分器U1输入端连接第一输入信号线端口,输出端连接量化器U2输入端;量化器U2输出端连接选择器U3输入端;选择器U3第一输入端连接量化器的输出端,第二输入端连接第二输入信号线端口,输出端连接反馈数模转换器U4输入端;反馈数模转换器U4输出端连接积分器U1的运算放大器的输入端;The input end of the integrator U1 is connected to the first input signal line port, and the output end is connected to the input end of the quantizer U2; the output end of the quantizer U2 is connected to the input end of the selector U3; the first input end of the selector U3 is connected to the output end of the quantizer, The second input terminal is connected to the second input signal line port, and the output terminal is connected to the input terminal of the feedback digital-to-analog converter U4; the output terminal of the feedback digital-to-analog converter U4 is connected to the input terminal of the operational amplifier of the integrator U1;

具体的,所述积分器U1包括:第一开关S1、第二开关S2、第一电阻R1、第二电阻R2、第三开关S3、第四开关S4、第一反馈电阻R3、第二反馈电阻R4及运算放大器AMP;Specifically, the integrator U1 includes: a first switch S1, a second switch S2, a first resistor R1, a second resistor R2, a third switch S3, a fourth switch S4, a first feedback resistor R3, a second feedback resistor R4 and operational amplifier AMP;

其中,第一开关S1连接于第一电阻R1和运算放大器的正输入端,第二开关连接于第二电阻R2和运算放大器的负输入端;Wherein, the first switch S1 is connected to the first resistor R1 and the positive input terminal of the operational amplifier, and the second switch is connected to the second resistor R2 and the negative input terminal of the operational amplifier;

第三开关S3与第一反馈电阻R3串联后与第一反馈电容C1并联,第四开关S4与第二反馈电阻R4串联后与第二反馈电容C2并联;The third switch S3 is connected in series with the first feedback resistor R3 and then connected in parallel with the first feedback capacitor C1; the fourth switch S4 is connected in series with the second feedback resistor R4 and connected in parallel with the second feedback capacitor C2;

所述第一可调节电容C1、第二可调节电容C2,用于调节积分器的信号带宽;The first adjustable capacitor C1 and the second adjustable capacitor C2 are used to adjust the signal bandwidth of the integrator;

运算放大器的正输入端通过与第一开关S1串联的第一电阻R1、负输入端通过与第二开关S2串联的第二电阻R2连接到第一输入信号线端口。The positive input terminal of the operational amplifier is connected to the first input signal line port through a first resistor R1 connected in series with the first switch S1, and the negative input terminal is connected to the first input signal line port through a second resistor R2 connected in series with the second switch S2.

积分器U1的正输出端连接量化器U2的正输入端,积分器U1的负输出端连接量化器U2的负输入端;反馈数模转换器U4正输出端连接运算放大器的负输入端;反馈数模转换器U4负输出端连接运算放大器的正输入端;The positive output end of the integrator U1 is connected to the positive input end of the quantizer U2, and the negative output end of the integrator U1 is connected to the negative input end of the quantizer U2; the positive output end of the feedback digital-to-analog converter U4 is connected to the negative input end of the operational amplifier; the feedback The negative output terminal of the digital-to-analog converter U4 is connected to the positive input terminal of the operational amplifier;

所述第一输入信号为连续时间型模数转换工作模式下的模拟差分输入信号;The first input signal is an analog differential input signal in a continuous-time analog-to-digital conversion working mode;

所述第二输入信号为数模转换工作模式的输入数字信号。The second input signal is an input digital signal in a digital-to-analog conversion working mode.

所述量化器U2,被配置为对积分器的输出信号进行量化处理,输出N位数字信号,并将N位数字信号配置给选择器;The quantizer U2 is configured to perform quantization processing on the output signal of the integrator, output an N-bit digital signal, and configure the N-bit digital signal to the selector;

所述量化器,在数模转换工作模式时,量化器的采样开关断开,量化器不工作。When the quantizer is in the digital-to-analog conversion working mode, the sampling switch of the quantizer is turned off, and the quantizer does not work.

所述选择器U3,被配置为选择性地将量化器输出的N位数字信号,或第二输入信号输入至反馈数模转换器的输入端;The selector U3 is configured to selectively input the N-bit digital signal output by the quantizer or the second input signal to the input end of the feedback digital-to-analog converter;

具体为,在连续时间型模数转换工作模式时,通过控制端选择第一输入端,将量化器输出的N位数字信号输入至反馈数模转换器的输入端;在数模转换工作模式时,通过控制端选择第二输入端接入第二输入信号,并将第二输入信号输入至反馈数模转换器的输入端。Specifically, in the continuous-time analog-to-digital conversion working mode, the first input terminal is selected through the control terminal, and the N-bit digital signal output by the quantizer is input to the input terminal of the feedback digital-to-analog converter; in the digital-to-analog conversion working mode , select the second input terminal to connect to the second input signal through the control terminal, and input the second input signal to the input terminal of the feedback digital-to-analog converter.

所述反馈数模转换器U4,被配置为将选择器输入的N位数字信号,或第二输入信号进行数模转换,并将输出的模拟信号输入至积分器:The feedback digital-to-analog converter U4 is configured to perform digital-to-analog conversion on the N-bit digital signal input by the selector or the second input signal, and input the output analog signal to the integrator:

具体为,在连续时间型模数转换工作模式时,用于对积分器进行反馈,将选择器输入的N位数字信号进行数模转换,并将输出的模拟信号反馈至积分器;在数模转换工作模式时,用于将第二输入信号进行数模转换,并将输出的模拟信号输入至积分器。Specifically, in the continuous-time analog-to-digital conversion working mode, it is used to feedback the integrator, perform digital-to-analog conversion on the N-bit digital signal input by the selector, and feed back the output analog signal to the integrator; When converting the working mode, it is used to perform digital-to-analog conversion on the second input signal, and input the output analog signal to the integrator.

所述积分器,被配置为:The integrator, configured as:

连续时间型模数转换工作模式时,第一开关S1、第二开关S2闭合,第三开关S3、第四开关S4断开,第一输入信号经由第一开关S1、第二开关S2、第一电阻R1、第二电阻R2输入至运算放大器;运算放大器、第一反馈电容C1、第二反馈电容C2根据反馈数模转换器输出的反馈模拟信号对第一输入信号进行积分;In the continuous-time analog-to-digital conversion working mode, the first switch S1 and the second switch S2 are closed, the third switch S3 and the fourth switch S4 are open, and the first input signal passes through the first switch S1, the second switch S2, the first switch The resistor R1 and the second resistor R2 are input to the operational amplifier; the operational amplifier, the first feedback capacitor C1, and the second feedback capacitor C2 integrate the first input signal according to the feedback analog signal output by the feedback digital-to-analog converter;

数模转换工作模式时,第一开关S1、第二开关S2断开,第三开关S3、第四开关S4闭合,第一反馈电阻R3与第二反馈电阻R4接入至运算放大器的输入端和输出端;第一反馈电阻R3、第二反馈电阻R4、第一反馈电容C1、第二反馈电容C2、及运算放大器构成积分器,对反馈数模转换器的输出信号进行积分。In the digital-to-analog conversion working mode, the first switch S1 and the second switch S2 are turned off, the third switch S3 and the fourth switch S4 are turned on, and the first feedback resistor R3 and the second feedback resistor R4 are connected to the input terminal of the operational amplifier and the Output end; the first feedback resistor R3, the second feedback resistor R4, the first feedback capacitor C1, the second feedback capacitor C2, and the operational amplifier form an integrator, which integrates the output signal of the feedback digital-to-analog converter.

具体的,N位量化器U2选用异步SAR ADC来实现,图4所示为10位异步SAR ADC结构图,在低节点工艺上用异步SAR ADC来设计高速ADC,能够大大节省面积、降低功耗,并且也容易实现不同工艺之间的迁移,从而实现功耗和面积的优化。Specifically, the N-bit quantizer U2 is implemented by an asynchronous SAR ADC. Figure 4 shows the structure diagram of a 10-bit asynchronous SAR ADC. Using an asynchronous SAR ADC to design a high-speed ADC on a low-node process can greatly save area and reduce power consumption. , and it is also easy to realize the migration between different processes, so as to realize the optimization of power consumption and area.

积分器U1输出端连接N位量化器,N位量化器对积分器输出的模拟差分电压信号进行量化处理;The output end of the integrator U1 is connected to an N-bit quantizer, and the N-bit quantizer performs quantization processing on the analog differential voltage signal output by the integrator;

经过量化器输出N位二进制数字码DOUT_ADC,该N位数字码DOUT_ADC与数模转换工作模式的的数字输入码DIN_DAC一起输入选择器;The N-bit binary digital code DOUT_ADC is output through the quantizer, and the N-bit digital code DOUT_ADC is input to the selector together with the digital input code DIN_DAC of the digital-to-analog conversion working mode;

所述选择器为二选一开关U3,选择器U3在不同工作模式下选择量化器输出N位二进制数字码DOUT_ADC,或数模转换工作模式的数字输入码DIN_DAC,并输出至反馈数模转换器;The selector is a two-to-one switch U3, and the selector U3 selects the quantizer to output the N-bit binary digital code DOUT_ADC under different working modes, or the digital input code DIN_DAC of the digital-to-analog conversion working mode, and outputs it to the feedback digital-to-analog converter. ;

本发明中的Sigma-Delta调制器具有连续时间型模数转换工作模式和数模转换工作模式,以下简称连续时间型ADC工作模式和DAC工作模式:The Sigma-Delta modulator in the present invention has a continuous-time analog-to-digital conversion working mode and a digital-to-analog conversion working mode, hereinafter referred to as the continuous-time ADC working mode and the DAC working mode:

电路的具体连接方式为:The specific connection method of the circuit is as follows:

第一输入信号即模拟差分输入信号VIP_ADC连接到第一电阻R1,VIN_ADC连接到第二电阻R2,R1的另一端连接第一开关S1,R2的另一端连接第二开关S2,S1的另一端连接运算放大器AMP的正输入端,S2的另一端连接运算放大器AMP的负输入端;The first input signal, that is, the analog differential input signal VIP_ADC is connected to the first resistor R1, VIN_ADC is connected to the second resistor R2, the other end of R1 is connected to the first switch S1, the other end of R2 is connected to the second switch S2, and the other end of S1 is connected to The positive input end of the operational amplifier AMP, and the other end of S2 is connected to the negative input end of the operational amplifier AMP;

第一反馈电阻R3和第三开关S3串联后与第一反馈电容C1并联:R3和S3形成第一串联电路,所述第一串联电路一端连接运算放大器AMP的正输入端,另一端连接AMP的负输出端;第一可调节电容C1一端连接运算放大器AMP的正输入端,另一端连接AMP的负输出端;The first feedback resistor R3 and the third switch S3 are connected in series with the first feedback capacitor C1: R3 and S3 form a first series circuit, one end of the first series circuit is connected to the positive input end of the operational amplifier AMP, and the other end is connected to the AMP negative output terminal; one end of the first adjustable capacitor C1 is connected to the positive input terminal of the operational amplifier AMP, and the other end is connected to the negative output terminal of the AMP;

第二反馈电阻R4和第四开关S4串联后与第二反馈电容C2并联:R4和S4形成第二串联电路,所述第二串联电路一端连接运算放大器AMP的负输入端,另一端连接AMP的正输出端;第二可调节电容C2一端连接运算放大器AMP的负输入端,另一端连接AMP的正输出端;The second feedback resistor R4 and the fourth switch S4 are connected in series with the second feedback capacitor C2: R4 and S4 form a second series circuit, one end of the second series circuit is connected to the negative input end of the operational amplifier AMP, and the other end is connected to the negative input end of the AMP. Positive output terminal; one end of the second adjustable capacitor C2 is connected to the negative input terminal of the operational amplifier AMP, and the other end is connected to the positive output terminal of the AMP;

运算放大器的正输出端连接量化器U2的正输入端,运算放大器负输出端连接量化器的负输入端;The positive output end of the operational amplifier is connected to the positive input end of the quantizer U2, and the negative output end of the operational amplifier is connected to the negative input end of the quantizer;

选择器U3包括:控制端、第一输入端、第二输入端;选择器U3的第一输入端连接量化器U2的输出端,第二输入端连接第二输信号线端口即DAC工作模式下的输入信号DIN_DAC;The selector U3 includes: a control end, a first input end, and a second input end; the first input end of the selector U3 is connected to the output end of the quantizer U2, and the second input end is connected to the second output signal line port, that is, in the DAC working mode The input signal DIN_DAC;

选择器U3的输出端连接反馈数模转换器U4输入端;The output end of the selector U3 is connected to the input end of the feedback digital-to-analog converter U4;

反馈数模转换器的正输出端连接运算放大器AMP的负输入端,反馈数模转换器负输出端连接运算放大器AMP的正输入端。The positive output terminal of the feedback digital-to-analog converter is connected to the negative input terminal of the operational amplifier AMP, and the negative output terminal of the feedback digital-to-analog converter is connected to the positive input terminal of the operational amplifier AMP.

两种工作模式的具体工作机制如下:The specific working mechanisms of the two working modes are as follows:

1)连续时间型ADC工作模式下:所述新型Sigma-Delta调制器,应用于接收器RX中,实现的是模数转换功能,将模拟差分输入信号转换成N位二进制数字码,具体的,如图5所示:1) In the continuous time ADC working mode: the new Sigma-Delta modulator is applied in the receiver RX, and realizes the analog-to-digital conversion function, which converts the analog differential input signal into an N-bit binary digital code. Specifically, As shown in Figure 5:

第一开关S1、第二开关S2闭合,模拟差分输入信号VIP_ADC和VIN_ADC通过电阻R1、R2接入至运算放大器,第三开关S3、第四S4断开,积分器中工作的部分包括:S1、S2、R1、R2、C1、C2、运算放大器;第三开关S3、第四开关S4,第一反馈电阻R3、第二反馈电阻R4不工作;The first switch S1 and the second switch S2 are closed, the analog differential input signals VIP_ADC and VIN_ADC are connected to the operational amplifier through the resistors R1 and R2, the third switch S3 and the fourth switch S4 are disconnected, and the working part of the integrator includes: S1, S2, R1, R2, C1, C2, operational amplifier; the third switch S3, the fourth switch S4, the first feedback resistor R3, the second feedback resistor R4 do not work;

量化器的采样开关根据采样时钟CLK1进行开关或者闭合,图4中在采样时钟CLK1为1时,采样开关闭合,开关S1、S2接入Vip和Vin,量化器U2正常工作;积分器后的输出信号经量化器后输出N位二进制数字码DOUT_ADC;The sampling switch of the quantizer is switched or closed according to the sampling clock CLK1. In Figure 4, when the sampling clock CLK1 is 1, the sampling switch is closed, the switches S1 and S2 are connected to Vip and Vin, and the quantizer U2 works normally; the output after the integrator After the signal is quantized, the N-bit binary digital code DOUT_ADC is output;

N位二进制数字码DOUT_ADC与DAC工作模式下的的数字输入码DIN_DAC输入选择器,所述选择器为二选一开关U3,通过选择器中的控制端选择第二输入端,即选择量化器输出信号,即选择图5中1通路,输出N位二进制数字码DOUT_ADC;The N-bit binary digital code DOUT_ADC and the digital input code DIN_DAC input selector in the DAC working mode, the selector is a two-to-one switch U3, and the second input terminal is selected through the control terminal in the selector, that is, the quantizer output is selected signal, that is, select channel 1 in Figure 5, and output N-bit binary digital code DOUT_ADC;

N位二进制数字码DOUT_ADC输入至反馈数模转换器,反馈数模转换器将N位二进制数字码DOUT_ADC进行数模转换,输出模拟差分信号,并将模拟差分信号分别反馈接入运算放大器U1的模拟输入差分端,对积分器进行反馈;The N-bit binary digital code DOUT_ADC is input to the feedback digital-to-analog converter, and the feedback digital-to-analog converter performs digital-to-analog conversion on the N-bit binary digital code DOUT_ADC, outputs an analog differential signal, and feeds back the analog differential signal to the analog input of the operational amplifier U1. Input the differential terminal to feedback the integrator;

连续时间型ADC工作模式下输入信号为积分器输入端输入的模拟信号,输出信号为量化器输出的N位数字信号DOUT_ADC,所述新型Sigma-Delta调制器实现的是一阶N位连续时间Sigma-Delta调制器功能。In continuous-time ADC working mode, the input signal is the analog signal input from the input end of the integrator, and the output signal is the N-bit digital signal DOUT_ADC output by the quantizer. The new Sigma-Delta modulator realizes the first-order N-bit continuous-time Sigma -Delta modulator function.

2)DAC工作模式下所述新型Sigma-Delta调制器,应用于发射器TX中,实现的是数模转换功能,将DAC工作模式的输入信号即数字输入码DIN_DAC转换模拟差分电压信号,具体的,如图6所示:2) The new Sigma-Delta modulator in the DAC working mode is applied in the transmitter TX, and realizes the digital-to-analog conversion function. The input signal of the DAC working mode, that is, the digital input code DIN_DAC, is converted into an analog differential voltage signal. The specific ,As shown in Figure 6:

第一开关S1、第二开关S2断开,第三开关S3、第四开关S4闭合,积分器中工作的部分包括:S3、S4、R3、R4、C1、C2、运算放大器;第一开关S1、第二开关S2、第一电阻R1、第二电阻R2不工作;The first switch S1 and the second switch S2 are open, the third switch S3 and the fourth switch S4 are closed, and the working part of the integrator includes: S3, S4, R3, R4, C1, C2, operational amplifier; the first switch S1 , the second switch S2, the first resistor R1, and the second resistor R2 do not work;

量化器U2的采样开关打开,即图4中输入开关接入至Vref,量化器U2处于关闭掉电状态,即PD1设置为1,激活掉电工作方式,量化器U2不工作;The sampling switch of the quantizer U2 is turned on, that is, the input switch in Figure 4 is connected to Vref, and the quantizer U2 is in a power-off state, that is, PD1 is set to 1, and the power-off working mode is activated, and the quantizer U2 does not work;

选择器的输入为DAC工作模式的数字输入码DIN_DAC,通过选择器中的控制端选择第二输入端选择数字输入码DIN_DAC,即选择图6中0通路,选择器输出N位二进制数字码DIN_DAC;The input of the selector is the digital input code DIN_DAC of the DAC working mode, and the second input terminal in the selector is selected to select the digital input code DIN_DAC, that is, channel 0 in Figure 6 is selected, and the selector outputs the N-bit binary digital code DIN_DAC;

N位二进制数字码DIN_DAC输入至反馈数模转换器,反馈数模转换器将N位二进制数字码DIN_DAC进行数模转换,输出模拟差分信号,并将模拟差分信号输入运算放大器U1的模拟输入差分端;The N-bit binary digital code DIN_DAC is input to the feedback digital-to-analog converter, and the feedback digital-to-analog converter performs digital-to-analog conversion on the N-bit binary digital code DIN_DAC, outputs an analog differential signal, and inputs the analog differential signal to the analog input differential terminal of the operational amplifier U1 ;

由运算放大器U1和其反馈元件S3、S4、C1、C2、R3和R4组成了跨导放大器(OTA)形式的积分器,将反馈数模转换器的输出模拟差分信号转换成模拟差分电压信号VON_DAC和VOP_DAC;The operational amplifier U1 and its feedback elements S3, S4, C1, C2, R3 and R4 form an integrator in the form of a transconductance amplifier (OTA), which converts the output analog differential signal of the feedback digital-to-analog converter into an analog differential voltage signal VON_DAC and VOP_DAC;

DAC工作模式下输入信号为选择器第二选择端输入的数字信号DIN_DAC,输出为积分器输出的模拟差分电压信号VON_DAC和VOP_DAC,所述新型Sigma-Delta调制器实现的是数模转换器DAC功能;In the DAC working mode, the input signal is the digital signal DIN_DAC input by the second selection terminal of the selector, and the output is the analog differential voltage signals VON_DAC and VOP_DAC output by the integrator. The new Sigma-Delta modulator realizes the digital-to-analog converter DAC function ;

需要说明的是,所述第一可调节电容C1、第二可调节电容C2用于调节积分器的信号带宽,在两种模式下都是可调的,C1和C2均采用二进制电容阵列进行调节,以覆盖工艺角下电容变化很大而导致积分器的信号带宽变化过大,电容阵列如图7所示。It should be noted that the first adjustable capacitor C1 and the second adjustable capacitor C2 are used to adjust the signal bandwidth of the integrator, and are adjustable in both modes, and both C1 and C2 are adjusted using a binary capacitor array. , in order to cover the process angle, the capacitance changes greatly and the signal bandwidth of the integrator changes too much. The capacitance array is shown in Figure 7.

本领域技术人员可以明白,这里结合所公开的实施例描述的各种示例性的方法步骤和装置单元均可以电子硬件、软件或二者的结合来实现。为了清楚地示出硬件和软件之间的可交换性,以上对各种示例性的步骤和单元均以其功能性的形式进行总体上的描述。这种功能性是以硬件实现还是以软件实现依赖于特定的应用和整个系统所实现的设计约束。本领域技术人员能够针对每个特定的应用,以多种方式来实现所描述的功能性,但是这种实现的结果不应解释为背离本发明的范围。Those skilled in the art can understand that various exemplary method steps and device units described herein in conjunction with the disclosed embodiments can be implemented by electronic hardware, software or a combination of the two. To clearly illustrate the interchangeability between hardware and software, various exemplary steps and elements have been described above generally in terms of their functionality. Whether this functionality is implemented in hardware or software depends on the particular application and design constraints implemented by the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but the results of such implementations should not be interpreted as departing from the scope of the present invention.

结合上述公开的实施例所描述的方法的步骤可直接体现为硬件、由处理器执行的软件模块或者这二者的组合。软件模块可能存在于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域熟知的任何其他形式的存储媒质中。一种典型存储媒质与处理器耦合,从而使得处理器能够从该存储媒质中读信息,且可向该存储媒质写信息。在替换实例中,存储媒质是处理器的组成部分。处理器和存储媒质可能存在于一个ASIC中。该ASIC可能存在于一个用户站中。在一个替换实例中,处理器和存储媒质可以作为用户站中的分立组件存在。The steps of the methods described in conjunction with the above disclosed embodiments may be directly embodied in hardware, software modules executed by a processor, or a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In an alternative example, the storage medium is an integral part of the processor. The processor and storage medium may exist in an ASIC. The ASIC may exist in a subscriber station. In an alternative example, the processor and storage medium may exist as separate components in the subscriber station.

根据所述公开的实施例,可以使得本领域技术人员能够实现或者使用本发明。对于本领域技术人员来说,这些实施例的各种修改是显而易见的,并且这里定义的总体原理也可以在不脱离本发明的范围和主旨的基础上应用于其他实施例。以上所述的实施例仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Based on the disclosed embodiments, those skilled in the art may be enabled to implement or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope and spirit of the invention. The above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the within the protection scope of the present invention.

Claims (7)

1. A novel Sigma-Delta modulator is characterized by comprising an integrator, a quantizer, a selector and a feedback digital-to-analog converter;
the output end of the integrator is connected with the input end of the quantizer; the first input end of the selector is connected with the output end of the quantizer, the second input end of the selector is connected with the port of the second input signal line, and the output end of the selector is connected with the input end of the feedback digital-to-analog converter; the output end of the feedback digital-to-analog converter is connected with the input end of an operational amplifier of the integrator;
the integrator includes: a first switch (S1) connected to the first resistor (R1) and the positive input end of the operational amplifier, a second switch (S2) connected to the second resistor (R2) and the negative input end of the operational amplifier, a third switch (S3), a fourth switch (S4), a first feedback resistor (R3) and a second feedback resistor (R4); the third switch (S3) is connected in series with the first feedback resistor (R3) and then connected in parallel with the first feedback capacitor (C1), and the fourth switch (S4) is connected in series with the second feedback resistor (R4) and then connected in parallel with the second feedback capacitor (C2);
the first switch (S1) and the second switch (S2) are closed, the third switch (S3) and the fourth switch (S4) are opened, the control end of the selector selects the first input end, and the Sigma-Delta modulator works in an analog-to-digital conversion working mode;
the first switch (S1) and the second switch (S2) are opened, the third switch (S3) and the fourth switch (S4) are closed, the control end of the selector selects the second input end, and the Sigma-Delta modulator works in a digital-to-analog conversion working mode.
2. The novel Sigma-Delta modulator of claim 1 wherein,
the input end of the integrator is connected with a first input signal line port;
the first switch (S1) and the second switch (S2) are used for controlling the connection and disconnection between the integrator and the first input signal.
3. The novel Sigma-Delta modulator of claim 1 wherein,
the first input signal is an analog differential input signal in an analog-to-digital conversion working mode;
the second input signal is an input digital signal in a digital-to-analog conversion working mode.
4. The novel Sigma-Delta modulator of claim 1 wherein,
the quantizer is configured to quantize the analog differential voltage signal output by the integrator, output an N-bit digital signal, and configure the N-bit digital signal to the selector;
the selector is configured to selectively input the N-bit digital signal output by the quantizer or the second input signal to the input end of the feedback digital-to-analog converter;
and the feedback digital-to-analog converter is configured to perform digital-to-analog conversion on the N-bit digital signal input by the selector or the second input signal and feed back the output analog signal to the integrator.
5. The novel Sigma-Delta modulator of claim 4, wherein the integrator is configured to:
in the analog-to-digital conversion operation mode, a first input signal is input to the operational amplifier through the first switch (S1), the second switch (S2), the first resistor (R1) and the second resistor (R2); the operational amplifier, the first feedback capacitor (C1) and the second feedback capacitor (C2) integrate the first input signal according to the feedback analog signal output by the feedback digital-to-analog converter;
in the digital-to-analog conversion working mode, the first feedback resistor (R3) and the second feedback resistor (R4) are connected to the operational amplifier through the third switch (S3) and the fourth switch (S4), and form an integrator with the first feedback capacitor (C1), the second feedback capacitor (C2) and the operational amplifier to integrate the output signal of the feedback digital-to-analog converter.
6. The novel Sigma-Delta modulator of claim 4 wherein the selector,
when the analog-digital conversion is in a working mode, the control end selects the first input end, and the N-bit digital signal output by the quantizer is input to the input end of the feedback digital-analog converter;
and when the digital-to-analog conversion work mode is adopted, the second input end is selected by the control end to access the second input signal, and the second input signal is input to the input end of the feedback digital-to-analog converter.
7. The novel Sigma-Delta modulator of claim 4 wherein the feedback digital-to-analog converter,
when in the analog-to-digital conversion working mode, the digital-to-analog conversion device is used for feeding back the integrator, performing digital-to-analog conversion on the N-bit digital signal input by the selector, and feeding back the output analog signal to the integrator;
and when the digital-to-analog conversion work mode is adopted, the digital-to-analog conversion work mode is used for carrying out digital-to-analog conversion on the second input signal and inputting the output analog signal to the integrator.
CN202010316984.XA 2020-04-21 2020-04-21 A New Sigma-Delta Modulator Active CN111510150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010316984.XA CN111510150B (en) 2020-04-21 2020-04-21 A New Sigma-Delta Modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010316984.XA CN111510150B (en) 2020-04-21 2020-04-21 A New Sigma-Delta Modulator

Publications (2)

Publication Number Publication Date
CN111510150A true CN111510150A (en) 2020-08-07
CN111510150B CN111510150B (en) 2024-11-15

Family

ID=71864888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010316984.XA Active CN111510150B (en) 2020-04-21 2020-04-21 A New Sigma-Delta Modulator

Country Status (1)

Country Link
CN (1) CN111510150B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164802A1 (en) * 2022-03-01 2023-09-07 南开大学 Reconfigurable high-precision analog-to-digital or digital-to-analog converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375507A (en) * 2006-01-25 2009-02-25 Nxp股份有限公司 Continuous-time sigma-delta analog-to-digital converter with capacitor and/or resistance digital self-calibration means for RC spread compensation
CN102638268A (en) * 2012-04-19 2012-08-15 北京工业大学 Third-order feedforward Sigma-Delta modulator based on successive comparison quantizer
CN102723953A (en) * 2012-06-22 2012-10-10 江南大学 Variable Sigma-Delta modulator
CN102832948A (en) * 2012-09-07 2012-12-19 复旦大学 Reconfigurable continuous time type high-speed low-power consumption sigma-delta modulator
US8421660B1 (en) * 2011-11-25 2013-04-16 Hong Kong Applied Science & Technology Research Institute Company., Ltd. Configurable cascading sigma delta analog-to digital converter (ADC) for adjusting power and performance
CN103957010A (en) * 2014-05-20 2014-07-30 石家庄数英仪器有限公司 High-precision analog-to-digital converter and analog-to-digital conversion method
CN103986469A (en) * 2014-03-31 2014-08-13 天津大学 A sigma-delta ADC with two-step processing and hardware multiplexing
CN106027060A (en) * 2016-05-20 2016-10-12 复旦大学 Input feedforward type Delta-Sigma modulator
CN110875742A (en) * 2020-01-19 2020-03-10 浙江大学 Discrete low-power-consumption integrator for delta-sigma modulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375507A (en) * 2006-01-25 2009-02-25 Nxp股份有限公司 Continuous-time sigma-delta analog-to-digital converter with capacitor and/or resistance digital self-calibration means for RC spread compensation
US8421660B1 (en) * 2011-11-25 2013-04-16 Hong Kong Applied Science & Technology Research Institute Company., Ltd. Configurable cascading sigma delta analog-to digital converter (ADC) for adjusting power and performance
CN102638268A (en) * 2012-04-19 2012-08-15 北京工业大学 Third-order feedforward Sigma-Delta modulator based on successive comparison quantizer
CN102723953A (en) * 2012-06-22 2012-10-10 江南大学 Variable Sigma-Delta modulator
CN102832948A (en) * 2012-09-07 2012-12-19 复旦大学 Reconfigurable continuous time type high-speed low-power consumption sigma-delta modulator
CN103986469A (en) * 2014-03-31 2014-08-13 天津大学 A sigma-delta ADC with two-step processing and hardware multiplexing
CN103957010A (en) * 2014-05-20 2014-07-30 石家庄数英仪器有限公司 High-precision analog-to-digital converter and analog-to-digital conversion method
CN106027060A (en) * 2016-05-20 2016-10-12 复旦大学 Input feedforward type Delta-Sigma modulator
CN110875742A (en) * 2020-01-19 2020-03-10 浙江大学 Discrete low-power-consumption integrator for delta-sigma modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU-MAN FANG;XIANG-YAN XU;JIN-SHOU TIAN;CHENG-QUAN PEI;: "Design of a control system with high stability for a streak camera using isolated ADC", NUCLEAR SCIENCE AND TECHNIQUES, no. 02, 15 February 2018 (2018-02-15), pages 144 - 150 *
魏琦;殷秀梅;杨斌;杨华中;: "采用改进电流调制功耗缩放的精度和速度可编程流水线模数转换器", 半导体学报, no. 05, 15 May 2008 (2008-05-15), pages 312 - 317 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164802A1 (en) * 2022-03-01 2023-09-07 南开大学 Reconfigurable high-precision analog-to-digital or digital-to-analog converter

Also Published As

Publication number Publication date
CN111510150B (en) 2024-11-15

Similar Documents

Publication Publication Date Title
US6577258B2 (en) Adaptive sigma-delta data converter for mobile terminals
US7161520B2 (en) High precision analog to digital converter
JP4829695B2 (en) A / D converter
EP1766782B1 (en) A hybrid tuning circuit for continuous-time sigma-delta analog-to-digital converter
US7450046B2 (en) Delta-sigma modulator and A/D converter
US7049990B2 (en) Single loop feed-forward modulator with summing flash quantizer and multi-bit feedback
US7515079B2 (en) Method of controlling delta-sigma modulator and delta-sigma modulator
US7796071B2 (en) Processing signals of a capacitive feedforward filter
WO2007107188A1 (en) Electronic device and integrated circuit comprising a delta-sigma converter and method therefor
JP2008517511A (en) Signal receiver and mobile communication device
WO2008115166A1 (en) Programmable loop filter for use with a sigma delta analog-to-digital converter
Brewer et al. A 100dB SNR 2.5 MS/s output data rate/spl Delta//spl Sigma/ADC
US7098834B2 (en) Multi-mode analog to digital converter
Leene et al. A 0.016 mm2 12 b $\Delta\Sigma $ SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays
CN111510150A (en) A Novel Sigma-Delta Modulator
KR101348662B1 (en) Active rc integrator and continuous time sigma-delta modulator with gain control function
US8199040B2 (en) Analog-to-digital converter
EP1367722A2 (en) Apparatus for generating at least one digital output signal representative of an analog signal
JP2005519560A (en) Delta-sigma modulator with feedforward path
Prasad et al. A 120db 300mw stereo audio a/d converter with 110db thd+ n
Crombez et al. A 500kHz-10MHz multimode power-performance scalable 83-to-67dB DR CTΔΣ in 90 nm digital CMOS with flexible analog core circuitry
Saalfeld et al. A 2.3 mW quadrature bandpass continuous-time ΔΣ modulator with reconfigurable quantizer
CN217883396U (en) Analog-digital converter, chip and electronic equipment thereof
KR101887808B1 (en) Analog to digital converter
JPH0629856A (en) Oversampling mode ad converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20250618

Address after: 100084 a1604, 16th floor, building 8, yard 1, Zhongguancun East Road, Haidian District, Beijing

Patentee after: New Shoreline (Beijing) Science and Technology Group Co.,Ltd.

Country or region after: China

Address before: 100084 Building 8, yard 1, Zhongguancun East Road, Haidian District, Beijing

Patentee before: BEIJING NUFRONT MOBILE MULTIMEDIA TECH. Co.,Ltd.

Country or region before: China