CN111505342B - A plasmonic probe combining tapered optical fibers with nanowires and its working method - Google Patents
A plasmonic probe combining tapered optical fibers with nanowires and its working method Download PDFInfo
- Publication number
- CN111505342B CN111505342B CN202010340370.5A CN202010340370A CN111505342B CN 111505342 B CN111505342 B CN 111505342B CN 202010340370 A CN202010340370 A CN 202010340370A CN 111505342 B CN111505342 B CN 111505342B
- Authority
- CN
- China
- Prior art keywords
- plasmon
- probe
- tapered
- nanowire
- nanowires
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 78
- 239000002070 nanowire Substances 0.000 title claims abstract description 62
- 239000013307 optical fiber Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000000835 fiber Substances 0.000 claims abstract description 19
- 239000010408 film Substances 0.000 claims description 22
- 239000010931 gold Substances 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 23
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 abstract description 5
- 238000003384 imaging method Methods 0.000 abstract description 5
- 238000010183 spectrum analysis Methods 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract 1
- 238000012876 topography Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 22
- 238000005530 etching Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/18—SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
- G01Q60/22—Probes, their manufacture, or their related instrumentation, e.g. holders
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种锥形光纤结合纳米线的等离激元探针及其工作方法,该探针包括锥形探针纤芯、金属薄膜覆盖层、环形狭缝等离激元增强结构和纳米线,金属薄膜覆盖层均匀分布在锥形探针纤芯的外表面,环形狭缝等离激元增强结构刻蚀在金属薄膜覆盖层上,纳米线生长或组装在金属薄膜覆盖层针尖位置。本发明利用等离激元增强结构,能够在针尖实现更大局域场增强,具有更高的分辨率和信号探测灵敏度,同时结合大长径比纳米线结构,能够实现表面和高深宽比复杂三维结构形貌和光学信息测量。在纳米极限加工、光谱分析和超分辨成像等领域具有广阔的应用前景。
The invention discloses a plasmon probe with a tapered optical fiber combined with nanowires and a working method thereof. The probe comprises a tapered probe fiber core, a metal film covering layer, an annular slit plasmon enhancement structure and a working method. Nanowires, the metal film cover layer is uniformly distributed on the outer surface of the tapered probe core, the annular slit plasmon enhancement structure is etched on the metal film cover layer, and the nanowires are grown or assembled at the tip of the metal film cover layer. . The invention utilizes the plasmon enhancement structure, can achieve greater local field enhancement at the needle tip, has higher resolution and signal detection sensitivity, and at the same time combines the nanowire structure with a large aspect ratio, can realize the complex three-dimensional surface and high aspect ratio. Structural topography and optical information measurements. It has broad application prospects in the fields of nano-limit processing, spectral analysis and super-resolution imaging.
Description
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010340370.5A CN111505342B (en) | 2020-04-26 | 2020-04-26 | A plasmonic probe combining tapered optical fibers with nanowires and its working method |
PCT/CN2020/138715 WO2021218200A1 (en) | 2020-04-26 | 2020-12-23 | Conical optical fiber and nanowire combined plasmon probe and working method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010340370.5A CN111505342B (en) | 2020-04-26 | 2020-04-26 | A plasmonic probe combining tapered optical fibers with nanowires and its working method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111505342A CN111505342A (en) | 2020-08-07 |
CN111505342B true CN111505342B (en) | 2021-07-13 |
Family
ID=71864866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010340370.5A Active CN111505342B (en) | 2020-04-26 | 2020-04-26 | A plasmonic probe combining tapered optical fibers with nanowires and its working method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111505342B (en) |
WO (1) | WO2021218200A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111505342B (en) * | 2020-04-26 | 2021-07-13 | 西安交通大学 | A plasmonic probe combining tapered optical fibers with nanowires and its working method |
CN112858729A (en) * | 2021-02-04 | 2021-05-28 | 西安交通大学 | Plasmon probe with conical optical fiber combined with semi-ring asymmetric nano slit and working method thereof |
CN112964908B (en) * | 2021-02-04 | 2022-05-20 | 西安交通大学 | Scattering type tapered tip optical fiber probe for exciting and collecting near-field optical signals and working method thereof |
CN113390790A (en) * | 2021-05-24 | 2021-09-14 | 西安交通大学 | Optical fiber nano probe with large length-diameter ratio and preparation method and application thereof |
CN113376405A (en) * | 2021-06-04 | 2021-09-10 | 西安交通大学 | Optical fiber probe and assembling method thereof |
CN114624483B (en) * | 2022-05-13 | 2022-08-02 | 苏州联讯仪器有限公司 | Telescopic chip probe and chip test system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6408123B1 (en) * | 1999-11-11 | 2002-06-18 | Canon Kabushiki Kaisha | Near-field optical probe having surface plasmon polariton waveguide and method of preparing the same as well as microscope, recording/regeneration apparatus and micro-fabrication apparatus using the same |
CN102658373A (en) * | 2012-05-23 | 2012-09-12 | 武汉大学 | Preparation method of silver nanoring |
CN102798735A (en) * | 2012-08-14 | 2012-11-28 | 厦门大学 | Pinpoint enhanced dark-field microscope, electrochemical testing device and leveling system |
CN105510640A (en) * | 2015-11-27 | 2016-04-20 | 武汉大学 | Metal nanowire surface plasmon nano light source-based optical microscope |
CN108535514A (en) * | 2018-03-01 | 2018-09-14 | 东南大学 | A kind of multifunctional near-field optical probe based on phasmon nanometer pin structure |
CN207882154U (en) * | 2018-03-14 | 2018-09-18 | 南京信息工程大学 | Optical fiber surface based on surface phasmon effect enhances Raman microprobe |
CN108614130A (en) * | 2018-04-20 | 2018-10-02 | 华中科技大学 | A kind of nanometer annular near-field optical probe and preparation method thereof of enhancing transmission |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111505342B (en) * | 2020-04-26 | 2021-07-13 | 西安交通大学 | A plasmonic probe combining tapered optical fibers with nanowires and its working method |
-
2020
- 2020-04-26 CN CN202010340370.5A patent/CN111505342B/en active Active
- 2020-12-23 WO PCT/CN2020/138715 patent/WO2021218200A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6408123B1 (en) * | 1999-11-11 | 2002-06-18 | Canon Kabushiki Kaisha | Near-field optical probe having surface plasmon polariton waveguide and method of preparing the same as well as microscope, recording/regeneration apparatus and micro-fabrication apparatus using the same |
CN102658373A (en) * | 2012-05-23 | 2012-09-12 | 武汉大学 | Preparation method of silver nanoring |
CN102798735A (en) * | 2012-08-14 | 2012-11-28 | 厦门大学 | Pinpoint enhanced dark-field microscope, electrochemical testing device and leveling system |
CN105510640A (en) * | 2015-11-27 | 2016-04-20 | 武汉大学 | Metal nanowire surface plasmon nano light source-based optical microscope |
CN108535514A (en) * | 2018-03-01 | 2018-09-14 | 东南大学 | A kind of multifunctional near-field optical probe based on phasmon nanometer pin structure |
CN207882154U (en) * | 2018-03-14 | 2018-09-18 | 南京信息工程大学 | Optical fiber surface based on surface phasmon effect enhances Raman microprobe |
CN108614130A (en) * | 2018-04-20 | 2018-10-02 | 华中科技大学 | A kind of nanometer annular near-field optical probe and preparation method thereof of enhancing transmission |
Non-Patent Citations (3)
Title |
---|
"Focusing characteristics optimization of composite near-field fiber probe based on surface plasmon;Yang Xiaokai et al;《Proc. SPIE,Sixth Asia Pacific Conference on Optics Manufacture》;20200106;第113830A/1-5页 * |
Creation of strongly localized and strongly enhanced optical near-field on;Tanaka K;《Optics Express》;20061231;832-846 * |
表面等离激元纳米聚焦研究进展;李盼;《物理学报》;20190723;59-74 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021218200A1 (en) | 2021-11-04 |
CN111505342A (en) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111505342B (en) | A plasmonic probe combining tapered optical fibers with nanowires and its working method | |
Zhang et al. | Near-field Raman spectroscopy with aperture tips | |
Zhang et al. | Tip-enhanced Raman spectroscopy | |
WO2019165715A1 (en) | Plasmon nanonail structure-based multifunctional near-field optical probe | |
Lindquist et al. | Tip‐based plasmonics: squeezing light with metallic nanoprobes | |
CN101447235B (en) | A localized surface plasmon resonance enhanced near-field optical probe | |
WO2014138660A1 (en) | Method and apparatus of physical property measurement using a probe-based nano-localized light source | |
Zhang et al. | Quantitative imaging of rapidly decaying evanescent fields using plasmonic near-field scanning optical microscopy | |
JP2010539548A (en) | Solid immersion lens and manufacturing method thereof | |
Roy et al. | Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode | |
CN110426535B (en) | Single quantum dot scanning near-field optical microprobe and system, detection device and method | |
CN105973846A (en) | MIM type nanorod dimer capable of realizing triple Fano resonance | |
JP2019007756A (en) | Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method | |
JP5246667B2 (en) | Ultraviolet near-field optical microscopy and tip-enhanced Raman spectroscopy | |
Minn et al. | New development of nanoscale spectroscopy using scanning probe microscope | |
Lu et al. | Tip-based plasmonic nanofocusing: vector field engineering and background elimination | |
CN109374928B (en) | Near-field scanning probe based on plasma focusing | |
Zhang et al. | Principle, system, and applications of tip-enhanced Raman spectroscopy | |
Katebi Jahromi et al. | Modeling electric field increment in the Tip-Enhanced Raman Spectroscopy by using grating on the probe of atomic force nanoscope | |
KR101497208B1 (en) | Raman Spectroscopy System and Scanning Probe Microscopy System With Noble Metal Particle and Polarization Dependence Meaasurement in Nano-Scale | |
WO2022165927A1 (en) | Scattering tapered-tip fiber optic probe used for exciting and collecting near-field optical signal and working method therefor | |
CN113933282A (en) | Medium probe for near-field optical detection and near-field microscope | |
Hayazawa et al. | Development of tip-enhanced near-field optical spectroscopy and microscopy | |
Weihao et al. | Overview of the Development of Near-Field Optical Microscopy | |
Chen et al. | Scanning probe microscopy by localized surface plasmon resonance at fiber taper tips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240416 Address after: Room 050, F2004, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, 710086 Patentee after: Xi'an Mingchuang Zhongce Technology Co.,Ltd. Country or region after: China Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241202 Address after: Room 8612, 2nd Floor, Building 4, Zhenghe Fourth Road Free Trade Industrial Park, Fengdong New City, Xixian New Area, Xi'an City, Shaanxi Province 710000 Patentee after: Xi'an Mingchuang Zhongyi Technology Co.,Ltd. Country or region after: China Address before: Room 050, F2004, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, 710086 Patentee before: Xi'an Mingchuang Zhongce Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |