CN111500594A - 调控玉米种胚大小的相关基因及其筛选方法和应用 - Google Patents

调控玉米种胚大小的相关基因及其筛选方法和应用 Download PDF

Info

Publication number
CN111500594A
CN111500594A CN202010317100.2A CN202010317100A CN111500594A CN 111500594 A CN111500594 A CN 111500594A CN 202010317100 A CN202010317100 A CN 202010317100A CN 111500594 A CN111500594 A CN 111500594A
Authority
CN
China
Prior art keywords
leu
embryo
zmppr
seq
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010317100.2A
Other languages
English (en)
Inventor
赵天永
张玉民
付俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202010317100.2A priority Critical patent/CN111500594A/zh
Publication of CN111500594A publication Critical patent/CN111500594A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/50Mutagenesis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Organic Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Evolutionary Computation (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了调控玉米种胚大小的相关基因及其筛选方法和应用,所述调控玉米种胚大小的相关基因包括ZmCT2(GRMZM2G064732)和ZmPPR(GRMZM2G406746),所述ZmCT2的核苷酸如SEQ ID NO:1所示,氨基酸如SEQ ID NO:2所示,所述ZmPPR的核苷酸如SEQ ID NO:3所示,氨基酸如SEQ ID NO:4所示。本发明还公开调控玉米种胚大小的相关基因的筛选方法和应用。本发明利用337个玉米自交系材料的群体差异,以胚占整个种子质量的百分比PEWMK为性状,运用全基因组关联分析的方法,发现了影响玉米种胚大小的候选基因。

Description

调控玉米种胚大小的相关基因及其筛选方法和应用
技术领域
本发明属于生物育种技术领域,具体地说,涉及调控玉米种胚大小的相关基因及其筛选方法和应用。
背景技术
种子大小直接关系到农作物的产量,在水稻,玉米等单子叶植物中已鉴定到35个基因直接参与调控种子大小。水稻或玉米种子主要由胚(Embryo)和胚乳(Endosperm)组成。相较于种子大小性状的研究,关于种胚大小的研究仅有几篇报道,Nobuhiro Nagasawa在2013年报道了OsCYP78A13基因突变后会导致水稻种胚增大;Masaharu Suzuki在2015年报道了一个MATE转运体影响种胚大小;Gileung Lee在2019年报道了C3HC4-type RINGfinger protein对水稻种胚大小有影响。在不同玉米品系中,种胚大小的差异显著,见图1中的图1A。因此本发明针对控制玉米胚占种子质量百分比这一性状的关键基因进行了鉴定。
发明内容
本发明的目的在于提供调控玉米种胚大小的相关基因及其筛选方法和应用。以胚占整个种子质量的百分比(The Percentage of Embryo Weight in Maize Kernel:PEWMK)为指标,测定337份玉米自交系材料的PEWMK值,运用全基因组关联分析的方法,获得了11个影响玉米种胚大小的候选基因。并对ZmCT2(GRMZM2G064732)和ZmPPR(GRMZM2G406746)进行功能验证。证实ZmCT2和ZmPPR基因及其相关SNP控制玉米种胚大小。
其具体技术方案为:
调控玉米种胚大小的相关基因,包括ZmCT2和ZmPPR,所述ZmCT2的核苷酸如SEQ IDNO:1所示,氨基酸如SEQ ID NO:2所示,所述ZmPPR的核苷酸如SEQ ID NO:3所示,氨基酸如SEQ ID NO:4所示。
调控玉米种胚大小的相关基因的筛选方法,包括以下步骤;
步骤1、以胚占整个种子质量的百分比PEWMK为衡量指标,对337份玉米自交系材料进行评测
取收获后充分晾晒的种子分离胚和胚乳,每个株系取3至6个种子进行分离,分别统计胚和胚乳的重量,作为一个重复,每个自交系3个重复。计算胚占种子质量百分比,计算公式如下:
Figure BDA0002459964260000021
WEm:表示胚的重量;WEn:表示胚乳的重量。
步骤2、全基因组关联分析
使用TASSEL 5.0软件对PEWMK进行分析,为消除假阳性对分析结果产生的影响,将群体结构(K)和亲缘关系(Q)考虑进去,使用Q+K模型即混合线性模型(MLM)对表型进行分析。对分析结果绘制Manhattan图,并对显著的SNP位点在玉米B73基因组(https://maizegdb.org/genome/assembly/B73%20RefGen_v2)中查找并注释。
步骤3、自交系群体中ZmCT2、ZmPPR编码区SNP位点与PEWMK相关性分析
根据GWAS结果比对并查找ZmCT2、ZmPPR编码区显著的SNP位点,分析SNP位点是否引起编码氨基酸发生变化,并分析自交系中引起氨基酸改变的SNP位点对PEWMK的效应。
步骤4、玉米突变体株系鉴定及PEWMK测定
zmct2突变体鉴定及表型测定:根据zmct2突变位点设计引物核苷酸序列如SEQ IDNO:5-SEQ ID NO:6所示,提取基因组DNA,使用相应引物进行PCR扩增,确定突变体及分离的野生型株系(NS)。将收获的zmct2突变体和野生型材料测定其PEWMK值,进行比较。
zmppr突变体鉴定及表型测定:因zmppr突变后直接影响到后代籽粒的发育,根据zmppr突变位点设计引物核苷酸序列如SEQ ID NO:7-SEQ ID NO:8所示,提取基因组DNA,使用相应引物进行PCR扩增,确定杂合突变体及分离的野生型株系(NS)。将从zmppr杂合株系自交后代收获的zmppr纯合突变体籽粒和野生型籽粒,进行比较,纵切后,查看zmppr对籽粒发育的影响。
本发明所述调控玉米种胚大小的相关基因在玉米种质资源的选育过程中的应用。
与现有技术相比,本发明的有益效果为:
本发明利用337个玉米自交系材料的群体差异,以胚占整个种子质量的百分比(PEWMK)为性状,运用全基因组关联分析的方法,发现了影响玉米种胚大小的候选基因。
附图说明
图1是不同自交系材料的PEWMK;其中,A是选取的10个代表性株系,显示其种子大小,PEWMK值和单个胚重量,Bar=1cm;B是337份玉米材料的PEWMK值分布,按照PEWMK值从低到高排列。PEWMK,胚占种子质量百分比。
图2是全基因组关联分析后的Manhattan图,将ZmCT2和ZmPPR基因在Manhattan图中标注。
图3是ZmCT2上的SNP位点在基因上的分布及对PEWMK的影响。其中,A是ZmCT2上的SNP位点在基因上的分布。第一行对应的单倍型和B73一致,第二行对应的单倍型和B73不一致。B是ZmCT2中SNP位点chr1.S_16355055对PEWMK的效应。用箱线图比较PEWMK在chr1.S_16355055位点各单倍型间的差异,“n”代表每个单倍型对应自交系的数量,显著性通过Student's two-sided t-test确定,**代表p<0.01。PEWMK,胚占种子质量百分比。
图4是ZmPPR上的SNP位点在基因上的分布及对PEWMK的影响。其中,A是ZmPPR上的SNP位点在基因上的分布。第一行对应的单倍型和B73一致,第二行对应的单倍型和B73不一致。用箱线图比较PEWMK在B chr7.S_9794647,C chr7.S_9795518,D chr7.S_9795829,各单倍型之间的差异,“n”代表每个单倍型对应自交系的数量,显著性通过Student's two-sided t-test确定,**代表p<0.01。PEWMK,胚占种子质量百分比。
图5是zmct2突变体鉴定及表型测定;其中,A是ZmCT2基因结构示意图及突变位点示意图;灰色方框代表UTR区,黑色方框代表外显子,黑色细线代表内含子,三角形代表突变位点;B是PCR鉴定zmct2突变体;C是zmct2突变体野生型和突变体成熟种子表型及PEWMK值统计,Bar=5mm;数据为均值±标准误(三个生物学重复),星号表示和对照相比差异显著;(Student’s T-test,**p<0.01)。PEWMK,胚占种子质量百分比。
图6是zmppr突变体鉴定及表型分析;其中,A是ZmPPR基因结构示意图及突变位点示意图;白色方框代表UTR区,黑色方框代表编码区;B是PCR鉴定zmppr突变体;C是zmppr突变体野生型和突变体成熟种子表型,Bar=1cm;D是zmppr突变体野生型和突变体成熟种子纵切示意图,Bar=1cm。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步详细地说明。
1、以胚占整个种子质量的百分比(PEWMK)为衡量指标,对337份玉米自交系材料进行评测
取收获后充分晾晒的种子分离胚和胚乳,每个株系取3至6粒种子进行分离,分别统计胚和胚乳的重量,作为一个重复,每个自交系3个重复。计算胚占种子的质量百分比(Percentage of Embryo Weight in Maize Kernel,PEWMK),计算公式如下:
Figure BDA0002459964260000041
WEm:表示胚的重量;WEn:表示胚乳的重量。不同自交系材料的PEWMK如图1所示。
2、全基因组关联分析
使用TASSEL 5.0软件对PEWMK进行分析,群体的SNP数据来源于已公开发表的论文(Fu,J.,et al.,2013.RNA sequencing reveals the complex regulatory network inthe maize kernel.Nat Commun,4:1-12),采用混合线性模型(MLM)以避免假阳性结果,并结合亲缘关系和群体结构进行全基因组关联分析,对分析结果绘制Manhattan图,如图2所示,并对显著的SNP位点在玉米基因组中查找并注释。共获得11个影响玉米种胚大小的候选基因,如表1所示。
表1控制种胚大小相关基因列表
候选基因 染色体编号 功能注释
GRMZM2G064732 1 G protein alpha subunit 1
GRMZM2G017941 2 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
GRMZM2G177518 3 Tetratricopeptide repeat(TPR)-like protein
GRMZM2G034453 3 DNA binding protein
GRMZM2G133756 4 SNARE associated Golgi protein family
GRMZM2G439195 5 Nicotianamine synthase 3
GRMZM2G001724 5 Peroxisomal membrane 22kDa(Mpv17/PMP22)family prote
GRMZM2G146190 6 cyclophilin 59
GRMZM2G007190 7 zinc ion binding
GRMZM2G406746 7 Pentatricopeptide repeat(PPR-like)protein
GRMZM2G097103 8 NEFA-interacting nuclear protein
3、自交系群体中ZmCT2、ZmPPR编码区SNP位点与PEWMK相关性分析
根据GWAS结果比对发现ZmCT2编码区有2个显著的SNP位点chr1.S_16355055和chr1.S_16354830,其中chr1.S_16355055引起编码氨基酸由精氨酸(Arg)突变为半胱氨酸(Cys),按照chr1.S_16355055位点SNP分类后发现PEWMK差异显著,结果如图3所示。
根据GWAS结果比对发现ZmPPR编码区有4个显著的SNP位点chr7.S_9794647、chr7.S_9795518、chr7.S_9795829和chr7.S_9796764,其中3个SNP位点(chr7.S_9794647、chr7.S_9795518和chr7.S_9795829)导致编码氨基酸发生改变,SNP位点chr7.S_9794647突变在ZmPPR的N端,编码氨基酸由丙氨酸(Ala)突变为丝氨酸(Ser)。SNP位点chr7.S_9795518编码氨基酸由甲硫氨酸(Met)突变为苏氨酸(Thr)突变位点在不同基序相对保守。SNP位点chr7.S_9795829编码氨基酸由精氨酸(Arg)突变为甘氨酸(Gly)。337个自交系按上述三个位点SNP进行分类后,比较与其对应自交系的PEWMK值,发现均存在显著差异,结果如图4所示。
4、玉米突变体株系鉴定及PEWMK测定
zmct2突变体鉴定及表型测定:根据zmct2突变位点设计引物(F1:5’-TGAGGAGCTCTACTTCCAAAGC-3和R1:5’-TGGCTTATAACACCACATCCTC-3’),提取基因组DNA,使用相应引物进行PCR扩增,确定突变体及分离的野生型株系(NS)。将收获的zmct2突变体和野生型材料测定其PEWMK值,进行比较。鉴定结果如图5所示。
zmppr突变体鉴定及表型测定:因zmppr突变后直接影响到后代籽粒的发育,根据zmppr突变位点设计引物(F1:5’-GGGACTCACTAAGCAAAGCCAAAG-3’,R1:5’-CACCCCATCCTTTTCCATTTCGTCC-3’及TIR:5’-AGAGAAGCCAACGCCAWCGC CTCYATTTCGTC-3’),提取基因组DNA,使用相应引物进行PCR扩增,确定杂合突变体及分离的野生型株系(NS)。将从zmppr杂合株系自交后代收获的zmppr纯合突变体籽粒和野生型籽粒,进行比较,纵切后,查看zmppr对籽粒发育的影响。鉴定结果如图6所示。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到技术方案的简单变化或等效替换均属于本发明的保护范围内。
序列表
<110> 西北农林科技大学
<120> 调控玉米种胚大小的相关基因及其筛选方法和应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1173
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtctgtgc ttacctgcgt gattgaaagc atgggctcat cctgtagcag atcccattct 60
ttcgacgagg ctgaagcagc tgaaaatgca aagtctgcag acattgaccg gaggattttg 120
caagaaacaa aagccgaaca acacatccac aagctcttac ttctcggtgc tggagaatcg 180
gggaagtcta caatatttaa acaaataaag cttcttttcc aaactggctt tgacgaggca 240
gagcttagga gctacacatc agtcatccat gctaatgtgt atcagacaat taaaatatta 300
tatgagggag ctaaagagtt agcccaagtg gaaccagatt cttcaaaata tgtcttatct 360
ccagataatc aggagattgg agaaaaacta tcagaaattg gtgccagatt ggaataccca 420
tcgttgaaca aagaacgtgt acaggatgta agaaaactat ggcaagatcc agccattcag 480
gaaacttatt cacgtgggag tattctgcaa gtcccagact gtgcacagta cttcatggaa 540
aatttggaca aattatctga agaagattat gtaccgacaa aggaggatgt gcttcatgca 600
agagtacgga caaatggtgt ggtagaaact cagtttagcc ctctaggaga gagcaaaaga 660
ggcggagagg tctataggct gtacgatgta ggaggccaga gaaacgagag aaggaaatgg 720
atccatcttt tcgaaggtgt taatgctgta atattctgtg ctgccattag cgagtatgat 780
cagatgttat ttgaggatga gacaaagaac agaatgatgg agactaaaga actctttgat 840
tgggtgctaa agcaaagatg ttttgagaaa acctcattca tgttatttct taacaaattt 900
gacatatttg agagaaaaat acaaaaggtc cctttaagcg tgtgcgagtg gtttaaagat 960
taccagccca ctgcacctgg caaacaggag gtggaacacg cctacgagtt tgtaaaaaag 1020
aagtttgagg agctctactt ccaaagcagc aagcctgacc gtgtcgaccg agtgttcaag 1080
atctacagaa caacagccct ggatcagaaa cttgtaaaga agacattcaa gctgatcgac 1140
gagagcatga ggcgttccag agaaggaact tga 1173
<210> 2
<211> 390
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Ser Val Leu Thr Cys Val Ile Glu Ser Met Gly Ser Ser Cys Ser
1 5 10 15
Arg Ser His Ser Phe Asp Glu Ala Glu Ala Ala Glu Asn Ala Lys Ser
20 25 30
Ala Asp Ile Asp Arg Arg Ile Leu Gln Glu Thr Lys Ala Glu Gln His
35 40 45
Ile His Lys Leu Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr
50 55 60
Ile Phe Lys Gln Ile Lys Leu Leu Phe Gln Thr Gly Phe Asp Glu Ala
65 70 75 80
Glu Leu Arg Ser Tyr Thr Ser Val Ile His Ala Asn Val Tyr Gln Thr
85 90 95
Ile Lys Ile Leu Tyr Glu Gly Ala Lys Glu Leu Ala Gln Val Glu Pro
100 105 110
Asp Ser Ser Lys Tyr Val Leu Ser Pro Asp Asn Gln Glu Ile Gly Glu
115 120 125
Lys Leu Ser Glu Ile Gly Ala Arg Leu Glu Tyr Pro Ser Leu Asn Lys
130 135 140
Glu Arg Val Gln Asp Val Arg Lys Leu Trp Gln Asp Pro Ala Ile Gln
145 150 155 160
Glu Thr Tyr Ser Arg Gly Ser Ile Leu Gln Val Pro Asp Cys Ala Gln
165 170 175
Tyr Phe Met Glu Asn Leu Asp Lys Leu Ser Glu Glu Asp Tyr Val Pro
180 185 190
Thr Lys Glu Asp Val Leu His Ala Arg Val Arg Thr Asn Gly Val Val
195 200 205
Glu Thr Gln Phe Ser Pro Leu Gly Glu Ser Lys Arg Gly Gly Glu Val
210 215 220
Tyr Arg Leu Tyr Asp Val Gly Gly Gln Arg Asn Glu Arg Arg Lys Trp
225 230 235 240
Ile His Leu Phe Glu Gly Val Asn Ala Val Ile Phe Cys Ala Ala Ile
245 250 255
Ser Glu Tyr Asp Gln Met Leu Phe Glu Asp Glu Thr Lys Asn Arg Met
260 265 270
Met Glu Thr Lys Glu Leu Phe Asp Trp Val Leu Lys Gln Arg Cys Phe
275 280 285
Glu Lys Thr Ser Phe Met Leu Phe Leu Asn Lys Phe Asp Ile Phe Glu
290 295 300
Arg Lys Ile Gln Lys Val Pro Leu Ser Val Cys Glu Trp Phe Lys Asp
305 310 315 320
Tyr Gln Pro Thr Ala Pro Gly Lys Gln Glu Val Glu His Ala Tyr Glu
325 330 335
Phe Val Lys Lys Lys Phe Glu Glu Leu Tyr Phe Gln Ser Ser Lys Pro
340 345 350
Asp Arg Val Asp Arg Val Phe Lys Ile Tyr Arg Thr Thr Ala Leu Asp
355 360 365
Gln Lys Leu Val Lys Lys Thr Phe Lys Leu Ile Asp Glu Ser Met Arg
370 375 380
Arg Ser Arg Glu Gly Thr
385 390
<210> 3
<211> 2199
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggcctctc cgtccccgtc ctctcccact gaccgccgcc gcaggcacac catctaccac 60
ggccaccgcc gcgcctcgcc gcaccggccc acagtccgcg gcggcctctt cactgatctc 120
cgcttcccct ccactataca ccgcccttcc tcctccccct ccaccgccac cgccttccgc 180
ctccgtgact gggatccaca ctcgccctct tcctcgtcgt ctgctcgctc tccgtcacct 240
ccttccgcct cctcctcctc ctccacatcc gcctccgctc gccgcctctc cccgctcgcg 300
cgcttcctcc tcgacgcgct ccgccgccac cagcgctggg gaccgcccgt tgtcgccgat 360
ctctccaagc tccgccgcgt ccctccatcc ctcgtcgctg aggtcctcac cgcgcgccct 420
cccccgccgc ctccgctcgc gctcccgttc ttcctctggg cgggccgcca gaagggcttc 480
cgtcactgct tcccagcttt ccatgccctc gcctcgctac tgtccgcggc gggcctccca 540
gccgcggctg accagctccc cgacctcatg cgcgcgcacg gcagaccgat ctcccacccg 600
cagctcaccc tcctcgtccg cctccacacc gccgcgcgcc gccccctccg cgctctgcac 660
gcgcttcgcc gcttccgcca cgagttcgac gtccaacccc aggtccacgc gtgcaaccgc 720
gtccttggcg cgctggctgc tgcgggccac gttgaggacg cgctcaagct gttcgatgaa 780
atgtcggagg gtggtgtgca gcccatccca gtgacgtttg ccatcatggt tcgtgcacta 840
gcacacgccg gaatggttga taggcttctg gagatgattg ggaggatgcg gaacgaggtg 900
tgtcggcctg atgtctttgt gtacactgca ctggtgaaga caatggtgcg gagggggtat 960
atggatggct gcatgagggt ttgggacgaa atggaaaagg atggggtgga gccagacaca 1020
atggcatatg ctactatggt cgggggactc tgcaaggctg ggatggtgga ggaagcagca 1080
gaattgttca aggagatgag gagcaagggg ttactggtgg acaggatggt gtatgcatcg 1140
ctcattgatg ggtatgttgc tgttggcagg gttggggatg ggtgtaggtt gttgaacgag 1200
ttggttgatg ctggctaccg tgctgacctg gggatatata acacacttat tattgggctg 1260
tgtggcatag gtagggagga taaggctcat aagttatttc agattgttct tcaggaggac 1320
cttatgccaa gttctgatac tgtttcaccg ttgctagctt gttatgccga aaagggtgaa 1380
atggttacat tttttgggtt ggttaacaaa ctggcagaga tgggcttgtc tgttgttgaa 1440
atgttagtag attttatgaa gctccttgca ggaaaggatg gtagggtatt gaaggctgtg 1500
gaagtgtttg atgcattgag acaaaaacag tattgtagtg ttggcattta taatattctt 1560
attgaaaatc tgctgaagat caaggatagg aagaaatcac ttttgttgtt tgaagaaatg 1620
caaagctcag ttgattttaa accagattca tgtacatata gtcatatgat cccatgtttc 1680
gtggatgaag gaaatgtcaa agaggcctgc tcatgctaca acaccatgat gaaggaaaat 1740
tggataccaa gtatgtcagc ctactgtgtt cttgtgaaag ggctttgcaa gatgggggag 1800
atcaacacag ccatatcact tgttaaagat tgtcttggaa atatagaaaa tgggccagct 1860
gaatttaaat acaccttgac tattctggaa gcttgcagat caaaaagacc agagaaagtc 1920
atcaatgtgg tgtatgagat gattgaagta ggttgttcaa tggaagaaat tgtctattct 1980
gctatcatat atggcttctg caagtatgca agttcaactg aggcgagaca ggtattcact 2040
atcatgagag atcaaaatat cttatcagaa gccaatttta ttgtttacga ggacatgctg 2100
aacgagcact taaagaaggc cactgcagac ttggtgatat ctggattgaa gttttttgac 2160
cttgaatcaa aattgaaatg gagaaccaga attgattga 2199
<210> 4
<211> 732
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ala Ser Pro Ser Pro Ser Ser Pro Thr Asp Arg Arg Arg Arg His
1 5 10 15
Thr Ile Tyr His Gly His Arg Arg Ala Ser Pro His Arg Pro Thr Val
20 25 30
Arg Gly Gly Leu Phe Thr Asp Leu Arg Phe Pro Ser Thr Ile His Arg
35 40 45
Pro Ser Ser Ser Pro Ser Thr Ala Thr Ala Phe Arg Leu Arg Asp Trp
50 55 60
Asp Pro His Ser Pro Ser Ser Ser Ser Ser Ala Arg Ser Pro Ser Pro
65 70 75 80
Pro Ser Ala Ser Ser Ser Ser Ser Thr Ser Ala Ser Ala Arg Arg Leu
85 90 95
Ser Pro Leu Ala Arg Phe Leu Leu Asp Ala Leu Arg Arg His Gln Arg
100 105 110
Trp Gly Pro Pro Val Val Ala Asp Leu Ser Lys Leu Arg Arg Val Pro
115 120 125
Pro Ser Leu Val Ala Glu Val Leu Thr Ala Arg Pro Pro Pro Pro Pro
130 135 140
Pro Leu Ala Leu Pro Phe Phe Leu Trp Ala Gly Arg Gln Lys Gly Phe
145 150 155 160
Arg His Cys Phe Pro Ala Phe His Ala Leu Ala Ser Leu Leu Ser Ala
165 170 175
Ala Gly Leu Pro Ala Ala Ala Asp Gln Leu Pro Asp Leu Met Arg Ala
180 185 190
His Gly Arg Pro Ile Ser His Pro Gln Leu Thr Leu Leu Val Arg Leu
195 200 205
His Thr Ala Ala Arg Arg Pro Leu Arg Ala Leu His Ala Leu Arg Arg
210 215 220
Phe Arg His Glu Phe Asp Val Gln Pro Gln Val His Ala Cys Asn Arg
225 230 235 240
Val Leu Gly Ala Leu Ala Ala Ala Gly His Val Glu Asp Ala Leu Lys
245 250 255
Leu Phe Asp Glu Met Ser Glu Gly Gly Val Gln Pro Ile Pro Val Thr
260 265 270
Phe Ala Ile Met Val Arg Ala Leu Ala His Ala Gly Met Val Asp Arg
275 280 285
Leu Leu Glu Met Ile Gly Arg Met Arg Asn Glu Val Cys Arg Pro Asp
290 295 300
Val Phe Val Tyr Thr Ala Leu Val Lys Thr Met Val Arg Arg Gly Tyr
305 310 315 320
Met Asp Gly Cys Met Arg Val Trp Asp Glu Met Glu Lys Asp Gly Val
325 330 335
Glu Pro Asp Thr Met Ala Tyr Ala Thr Met Val Gly Gly Leu Cys Lys
340 345 350
Ala Gly Met Val Glu Glu Ala Ala Glu Leu Phe Lys Glu Met Arg Ser
355 360 365
Lys Gly Leu Leu Val Asp Arg Met Val Tyr Ala Ser Leu Ile Asp Gly
370 375 380
Tyr Val Ala Val Gly Arg Val Gly Asp Gly Cys Arg Leu Leu Asn Glu
385 390 395 400
Leu Val Asp Ala Gly Tyr Arg Ala Asp Leu Gly Ile Tyr Asn Thr Leu
405 410 415
Ile Ile Gly Leu Cys Gly Ile Gly Arg Glu Asp Lys Ala His Lys Leu
420 425 430
Phe Gln Ile Val Leu Gln Glu Asp Leu Met Pro Ser Ser Asp Thr Val
435 440 445
Ser Pro Leu Leu Ala Cys Tyr Ala Glu Lys Gly Glu Met Val Thr Phe
450 455 460
Phe Gly Leu Val Asn Lys Leu Ala Glu Met Gly Leu Ser Val Val Glu
465 470 475 480
Met Leu Val Asp Phe Met Lys Leu Leu Ala Gly Lys Asp Gly Arg Val
485 490 495
Leu Lys Ala Val Glu Val Phe Asp Ala Leu Arg Gln Lys Gln Tyr Cys
500 505 510
Ser Val Gly Ile Tyr Asn Ile Leu Ile Glu Asn Leu Leu Lys Ile Lys
515 520 525
Asp Arg Lys Lys Ser Leu Leu Leu Phe Glu Glu Met Gln Ser Ser Val
530 535 540
Asp Phe Lys Pro Asp Ser Cys Thr Tyr Ser His Met Ile Pro Cys Phe
545 550 555 560
Val Asp Glu Gly Asn Val Lys Glu Ala Cys Ser Cys Tyr Asn Thr Met
565 570 575
Met Lys Glu Asn Trp Ile Pro Ser Met Ser Ala Tyr Cys Val Leu Val
580 585 590
Lys Gly Leu Cys Lys Met Gly Glu Ile Asn Thr Ala Ile Ser Leu Val
595 600 605
Lys Asp Cys Leu Gly Asn Ile Glu Asn Gly Pro Ala Glu Phe Lys Tyr
610 615 620
Thr Leu Thr Ile Leu Glu Ala Cys Arg Ser Lys Arg Pro Glu Lys Val
625 630 635 640
Ile Asn Val Val Tyr Glu Met Ile Glu Val Gly Cys Ser Met Glu Glu
645 650 655
Ile Val Tyr Ser Ala Ile Ile Tyr Gly Phe Cys Lys Tyr Ala Ser Ser
660 665 670
Thr Glu Ala Arg Gln Val Phe Thr Ile Met Arg Asp Gln Asn Ile Leu
675 680 685
Ser Glu Ala Asn Phe Ile Val Tyr Glu Asp Met Leu Asn Glu His Leu
690 695 700
Lys Lys Ala Thr Ala Asp Leu Val Ile Ser Gly Leu Lys Phe Phe Asp
705 710 715 720
Leu Glu Ser Lys Leu Lys Trp Arg Thr Arg Ile Asp
725 730
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tgaggagctc tacttccaaa gc 22
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tggcttataa caccacatcc tc 22
<210> 7
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gggactcact aagcaaagcc aaag 24
<210> 8
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
caccccatcc ttttccattt cgtcc 25
<210> 9
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
agagaagcca acgccawcgc ctcyatttcg tc 32

Claims (3)

1.调控玉米种胚大小的相关基因,其特征在于,包括ZmCT2和ZmPPR,所述ZmCT2的核苷酸如SEQ ID NO:1所示,氨基酸如SEQ ID NO:2所示,所述ZmPPR的核苷酸如SEQ ID NO:3所示,氨基酸如SEQ ID NO:4所示。
2.一种权利要求1所述调控玉米种胚大小的相关基因的筛选方法,其特征在于,包括以下步骤;
步骤1、以胚占整个种子质量的百分比PEWMK为衡量指标,对337份玉米自交系材料进行评测
取收获后充分晾晒的种子分离胚和胚乳,每个株系取3至6粒种子进行分离,分别统计胚和胚乳的重量,作为一个重复,每个自交系3个重复;计算胚占种子的质量百分比,计算公式如下:
Figure FDA0002459964250000011
WEm:表示胚的重量;WEn:表示胚乳的重量;
步骤2、全基因组关联分析
使用TASSEL 5.0软件对PEWMK进行分析,为避免假阳性对分析结果产生的影响,将群体结构K和亲缘关系Q考虑进去,使用Q+K模型即混合线性模型MLM对表型进行分析;对分析结果绘制Manhattan图,并对显著的SNP位点在玉米基因组中查找并注释;
步骤3、自交系群体中ZmCT2、ZmPPR编码区SNP位点与PEWMK相关性分析
根据GWAS结果比对并查找ZmCT2、ZmPPR编码区显著的SNP位点,分析SNP位点是否引起编码氨基酸发生变化,并分析自交系中引起氨基酸改变的SNP位点对PEWMK的效应;
步骤4、玉米突变体株系鉴定及PEWMK测定
zmct2突变体鉴定及表型测定:根据zmct2突变位点设计引物核苷酸序列如SEQ ID NO:5-SEQ ID NO:6所示,提取基因组DNA,使用相应引物进行PCR扩增,确定突变体及分离的野生型株系NS;将收获的zmct2突变体和野生型材料测定其PEWMK值,进行比较。
zmppr突变体鉴定及表型测定:因zmppr突变后直接影响到后代籽粒的发育,根据zmppr突变位点设计引物核苷酸序列如SEQ ID NO:7-SEQ ID NO:8所示,提取基因组DNA,使用相应引物进行PCR扩增,确定杂合突变体及分离的野生型株系NS;将从zmppr杂合株系自交后代收获的zmppr纯合突变体籽粒和野生型籽粒,进行比较,纵切后,查看zmppr对籽粒发育的影响。
3.一种权利要求1所述调控玉米种胚大小的相关基因在玉米种质资源的选育过程中的应用。
CN202010317100.2A 2020-04-21 2020-04-21 调控玉米种胚大小的相关基因及其筛选方法和应用 Pending CN111500594A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010317100.2A CN111500594A (zh) 2020-04-21 2020-04-21 调控玉米种胚大小的相关基因及其筛选方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010317100.2A CN111500594A (zh) 2020-04-21 2020-04-21 调控玉米种胚大小的相关基因及其筛选方法和应用

Publications (1)

Publication Number Publication Date
CN111500594A true CN111500594A (zh) 2020-08-07

Family

ID=71865899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010317100.2A Pending CN111500594A (zh) 2020-04-21 2020-04-21 调控玉米种胚大小的相关基因及其筛选方法和应用

Country Status (1)

Country Link
CN (1) CN111500594A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090217414A1 (en) * 1998-06-16 2009-08-27 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN102757488A (zh) * 2012-06-18 2012-10-31 中国农业大学 提高植物种子脂肪酸含量的转录因子及其编码基因与应用
CN107858360A (zh) * 2017-09-21 2018-03-30 河南农业大学 玉米籽粒大小基因ZmUrb2、其表达产物、其克隆引物、其表达载体及应用
WO2018172785A1 (en) * 2017-03-24 2018-09-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Methods for increasing grain yield

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090217414A1 (en) * 1998-06-16 2009-08-27 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN102757488A (zh) * 2012-06-18 2012-10-31 中国农业大学 提高植物种子脂肪酸含量的转录因子及其编码基因与应用
WO2018172785A1 (en) * 2017-03-24 2018-09-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Methods for increasing grain yield
CN107858360A (zh) * 2017-09-21 2018-03-30 河南农业大学 玉米籽粒大小基因ZmUrb2、其表达产物、其克隆引物、其表达载体及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER BOMMERT ET AL.: "The maize Ga gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size", 《NATURE》 *
白光红等: "基于ZmDEP1基因的玉米籽粒性状关联分析", 《新疆农业大学学报》 *

Similar Documents

Publication Publication Date Title
Sardos et al. A genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop
Teng et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3. 1, for plant height in maize
Li et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice
CA2547323C (en) High lysine maize compositions and methods for detection thereof
CN103249845B (zh) 玉米细胞质雄性不育(cms)c型恢复系rf4基因、分子标志物及其用途
Bai et al. Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China
AU3221699A (en) A method for obtaining a plant with a genetic lesion in a gene sequence
Zhao et al. Genetic variation and association mapping of seed-related traits in cultivated peanut (Arachis hypogaea L.) using single-locus simple sequence repeat markers
CN109628480A (zh) 玉米孤雌生殖单倍体诱导基因ZmPLA1E及其应用
CA3175033A1 (en) Autoflowering markers
Yang et al. Identification of QTL for maize grain yield and kernel-related traits
CN110295246A (zh) 与对非生物胁迫的响应相关联的基因座
CN111763684B (zh) Ghd7基因在调节和筛选稻米中蛋白质含量的应用
Terao et al. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei
CN105073994A (zh) 包含突变da1等位基因的芸苔属植物
Guo et al. Fine mapping and target gene identification of qSE4, a QTL for stigma exsertion rate in rice (Oryza sativa L.)
Shao et al. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.)
CN111500594A (zh) 调控玉米种胚大小的相关基因及其筛选方法和应用
Zhang et al. Genome-wide DNA polymorphism analysis and molecular marker development for the Setaria italica variety “SSR41” and positional cloning of the Setaria white leaf sheath gene SiWLS1
CN111363751B (zh) 水稻粒宽和粒重基因gw5.1的克隆与应用
CN113528539A (zh) 一种玉米苗期斑马叶及白粒基因zb10及其连锁的分子标记和应用
CN114752601A (zh) 调控水稻柱头外露的基因及其应用
CN113005214B (zh) 筛选毛白杨抗旱新品种的分子标记及其组合、方法和应用
CN114807212B (zh) 调控或鉴定植物籽粒粒型或产量性状的基因及其应用
Ougham et al. The genetic control of senescence revealed by mapping quantitative trait loci

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807