CN111500074A - 一种共轭有机聚合物膜及其制备方法和应用 - Google Patents

一种共轭有机聚合物膜及其制备方法和应用 Download PDF

Info

Publication number
CN111500074A
CN111500074A CN202010350527.2A CN202010350527A CN111500074A CN 111500074 A CN111500074 A CN 111500074A CN 202010350527 A CN202010350527 A CN 202010350527A CN 111500074 A CN111500074 A CN 111500074A
Authority
CN
China
Prior art keywords
polymer film
solution
organic polymer
conjugated organic
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010350527.2A
Other languages
English (en)
Other versions
CN111500074B (zh
Inventor
庄小东
陈振营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Information Technology Research Institute Shanghai Jiaotong University
Shanghai Jiaotong University
Original Assignee
Yantai Information Technology Research Institute Shanghai Jiaotong University
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Information Technology Research Institute Shanghai Jiaotong University, Shanghai Jiaotong University filed Critical Yantai Information Technology Research Institute Shanghai Jiaotong University
Priority to CN202010350527.2A priority Critical patent/CN111500074B/zh
Publication of CN111500074A publication Critical patent/CN111500074A/zh
Application granted granted Critical
Publication of CN111500074B publication Critical patent/CN111500074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2385/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2385/04Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种共轭有机聚合物膜及其制备方法和应用,涉及共轭有机聚合物膜领域,所述共轭有机聚合物膜由含有BF2基团对的单体在表面活性剂和紫外光的共同作用下聚合而成,并可直接转移到传感器上作为气体传感器使用。本发明所使用的单体具有聚合温度低,反应速率快,可控性强和操作简单等特点,可以进行大面积制备,而且作为气体传感器的应用对氨气和二氧化氮气体都具有响应。

Description

一种共轭有机聚合物膜及其制备方法和应用
技术领域
本发明涉及共轭聚合物薄膜领域,尤其涉及一种共轭有机聚合物膜及其制备方法和应用。
背景技术
伴随工业的发展,对于环境的检测尤为重要,空气中存在的有害组分更需要被精确的检测,所以气体传感器的研究迫切而且需要。气体传感器根据测试原理可以分为电阻式、电容式、浓差电池式,声表面波式等。常用的无机或者有机传感器材料主要为粉末,通过涂覆的方式转移到传感基底上面,在增加工作量的同时,很难保证涂覆厚度的均匀性。
共轭聚合物薄膜具有长周期共价键合结构,可调的带隙结构和半导体性质受到了不同领域科学家的特别关注。通过适当的分子设计,在能源存储、能源转化及气体传感领域已被广泛的研究。对于共轭聚合物而言,会和气体发生电子的转移,从而改变自身的导电性,通过测试电阻的变化,检测传感器对气体的响应,对于得电子或给电子能力的气体,响应强度也会不同,从而分析传感器对不同气体的传感灵敏性。界面法制备聚合物薄膜操作简单,可进行大面积超薄薄膜的制备。包括固-液界面、液-液界面、液-气界面。通过界面法制备的聚合物薄膜可以直接转移到器件载体上面,工艺操作性强。
此外,NH3和NO2是给电子型和得电子型的两种不同性质的气体,很多气体传感器只对其中一类有响应。常用的方法有对材料本身进行杂原子的掺杂,如掺杂石墨烯或者碳纳米管等,实现对不同气体的响应,制作过程较为复杂。而对于聚合物的研究,除了掺杂或者构建异质结结构等后期改性方式,还可以对聚合单体进行选择和调控,从而合成具有不同响应的传感器薄膜。
因此,本领域的技术人员致力于开发一种可以大面积制备并具有多种气体响应的气体传感器薄膜的简易方法。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何实现一种可以大面积制备并具有多种气体响应的薄膜气体传感器的简易制作方法。
为实现上述目的,本发明提供了一种共轭有机聚合物膜及其制备方法,所述共轭有机聚合物膜包含如下单体结构:
Figure BDA0002471781300000021
进一步地,所述单体中的alkyl为-C6H13
所述的共轭有机聚合物膜的制备方法包括以下步骤:
步骤1、合成所述单体(I);
步骤2、将表面活性剂溶解于去离子水中,记为A;
步骤3、将所述单体(I)溶于有机溶剂中,记为B;
步骤4、使用移液枪取所述B溶液滴入到所述A溶液表面;
步骤5、使用紫外灯照射步骤4中溶液表面,形成所述共轭有机聚合物膜。
进一步地,步骤2所述表面活性剂为正四丁基溴化铵或十六烷基三甲基溴化铵中的任意一种。
进一步地,步骤2所述A溶液浓度为5-15mg/ml。
进一步地,步骤3所述有机溶剂为氯苯。
进一步地,步骤3所述B溶液浓度为0.5-1.5mg/ml。
进一步地,步骤4所述移液枪取所述B溶液体积为20-100μl。
进一步地,步骤5所述紫外灯光波长为100~400nm,照射时间为40-90min。
所述共轭有机聚合物膜在气体传感器中的应用,将所述聚合物薄膜置于叉指电极上,真空60℃烘干,形成气体传感器。
本发明的技术效果如下:
1)本发明使用的含有BF2基团对的单体(I)在光刺激下会通过BF2基团发生交联,具有聚合温度低,反应速率快,可控性强和操作简单等特点,可以进行大面积制备;
2)本发明制备的气体传感器使用薄膜材料可以暴露更多的接触面积,检测效果更好;
3)本发明制备的气体传感器对氨气和二氧化氮气体多种气体具有响应。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的共轭有机聚合物薄膜的制备流程和气体传感器的组装流程;
图2是本发明的一个较佳实施例的成膜照片;
图3是本发明的一个较佳实施例的共轭有机聚合物薄膜的扫描电镜图和透射电镜图;
图4是本发明的一个较佳实施例的共轭有机聚合物薄膜的原子力显微镜图;
图5是本发明的一个较佳实施例的共轭有机聚合物薄膜和单体(I)的傅里叶变换红外光谱(FTIR);
图6是本发明的一个较佳实施例的共轭有机聚合物薄膜和单体(I)的X射线光电子能谱分析图;
图7是本发明的一个较佳实施例的共轭有机聚合物薄膜传感器性能测试结果。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
实施例1
如图1,共轭有机聚合物膜的制备及其传感器的应用是按下述方式进行:
步骤1:合成功能性单体(I),其中烷基基团-C6H13
步骤2:取250ml的烧杯中加入2g正四丁基溴化铵,再加入200ml的去离子水,,充分搅拌溶解,记为A;配制1ml的单体(I)的氯苯溶液,浓度为1mg/ml,记为B。
步骤3:使用移液枪取50μl的B溶液滴入到A溶液表面。
步骤4:使用紫外灯(30W,365nm)垂直照射步骤三中溶液60min。
步骤5:使用叉指电极捞起聚合物薄膜,真空60℃烘干,用于气体传感研究。
如图2(a,d)为只加正四丁基溴化铵而不使用紫外光照的成膜情况,图2(b,e)为不加正四丁基溴化铵而只用紫外光照射的情况,图2(c,f)为添加正四丁基溴化铵和使用紫外光照射的情况。结果显示只有图2(c,f)的最后形成了聚合物膜,表明缺少表面活性剂正四丁基溴化铵和紫外光中的任意一种,都不会形成完整的聚合物膜。
如图3,制备的聚合物膜具有非常好的连续性,说明可以进行大面积的制备,同时具备很高的均一性,聚合物膜可以直接转移到气体传感电极表面,操作简单。
如图4,制备的聚合物膜的厚度在40nm左右。
如图5,通过比较单体(I)和聚合物膜的FTIR谱图,C-N键与B-N键的位置没有发生偏移,说明在光聚合发生后,分子中C-N键和B-N键的化学并未发生改变,说明C-N键和B-N并非交联位点。
如图6,C1s和N1s的谱图在聚合前后没有发生变化,可以证明单体(I)聚合的反应位点不在C,N原子上面。通过比较单体(I)和聚合物的F1s谱图可以发现,F1s的谱图向高场发生偏移。在B1s的图谱可以拟合出不同于单体(I)位置的另外两个峰。综上所述证明单体(I)的交联活性位点在B-F键。
如图7,采用下述实验证明传感器效果:测试气体和空气混合气的流速控制为0.1L/min,在测试前或恢复阶段,以高纯度干燥空气作为背景平衡气体在传感材料表面的吸附-解吸。灵敏度在0.5V下电流改变计算:S=|ΔI|/I,ΔI=Ig-Ia,Ig为干净空气时的电流,Ia为通入待测气体和空气混合气时的电流。结果表明CPFs组装的传感器对NO2和NH3的响应强度可以低至1ppm,在气体浓度为1-50ppm的范围下,传感器可以对不同浓度的气体做出不同的响应强度。同时,图7b和图7d是在20ppm的浓度下侧得的传感器的稳定性,反复七次注入测试气体,循环响应基本一致,说明本发明制备的共轭聚合物薄膜作为气体传感器的重复性和稳定性好。
实施例2
步骤1:合成功能性单体(I),其中烷基基团为-C6H13
步骤2:取250ml的烧杯中加入2g正四丁基溴化铵,再加入200ml的去离子水,充分搅拌溶解,记为A;配制1ml的单体(I)的氯苯溶液,浓度为1mg/ml,记为B。
步骤3:使用移液枪取50μl的B溶液滴入到A溶液表面。
步骤4:使用紫外灯(30W,365nm)垂直照射步骤三中溶液60min。
步骤5:使用叉指电极捞起聚合物薄膜,真空60℃烘干,用于气体传感研究。
实施例3
步骤1:合成功能性单体(I),其中烷基基团为-C6H13
步骤2:取250ml的烧杯中加入1g十六烷基三甲基溴化铵,再加入200ml的去离子水,充分搅拌溶解,记为A;配制1ml的单体(I)的氯苯溶液,浓度为1mg/ml,记为B。
步骤3:使用移液枪取50μl的B溶液滴入到A溶液表面。
步骤4:使用紫外灯(30W,365nm)垂直照射步骤三中溶液60min。
步骤5:使用叉指电极捞起聚合物薄膜,真空60℃烘干,用于气体传感研究。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种共轭有机聚合物膜,其特征在于,所述共轭有机聚合物膜包含如下单体结构:
Figure FDA0002471781290000011
2.如权利要求1所述的共轭有机聚合物膜,其特征在于,所述单体中的alkyl为-C6H13
3.一种如权利要求1所述的共轭有机聚合物膜的制备方法,其特征在于,所述方法包括以下步骤:
步骤1、合成所述单体;
步骤2、将表面活性剂溶解于去离子水中,记为A;
步骤3、将所述单体溶于有机溶剂中,记为B;
步骤4、使用移液枪取所述B溶液滴入到所述A溶液表面;
步骤5、使用紫外灯照射步骤4中的溶液表面,形成所述共轭有机聚合物膜。
4.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤2所述表面活性剂为正四丁基溴化铵或十六烷基三甲基溴化铵中的任意一种。
5.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤2所述A溶液浓度为5-15mg/ml。
6.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤3所述有机溶剂为氯苯。
7.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤3所述B溶液浓度为0.5-1.5mg/ml。
8.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤4所述移液枪取所述B溶液体积为20-100μl。
9.如权利要求3所述的共轭有机聚合物膜的制备方法,其特征在于,步骤5所述紫外灯光波长为100~400nm,照射时间为40-90min。
10.如权利要求1或3所述的共轭有机聚合物膜在气体传感器中的应用,其特征在于,将所述聚合物薄膜置于叉指电极上,真空60℃烘干,形成所述气体传感器。
CN202010350527.2A 2020-04-28 2020-04-28 一种共轭有机聚合物膜及其制备方法和应用 Active CN111500074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010350527.2A CN111500074B (zh) 2020-04-28 2020-04-28 一种共轭有机聚合物膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010350527.2A CN111500074B (zh) 2020-04-28 2020-04-28 一种共轭有机聚合物膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111500074A true CN111500074A (zh) 2020-08-07
CN111500074B CN111500074B (zh) 2022-03-25

Family

ID=71866518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010350527.2A Active CN111500074B (zh) 2020-04-28 2020-04-28 一种共轭有机聚合物膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111500074B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089514A (ja) * 2001-09-12 2003-03-28 Mitsui Chemicals Inc 表面が平滑な多孔質シリカフィルムの製造方法
CN1643702A (zh) * 2002-03-19 2005-07-20 加利福尼亚大学董事会 半导体-纳米晶体/共轭聚合物薄膜
CN104845052A (zh) * 2015-05-08 2015-08-19 苏州大学 发射波长可控的聚对亚苯基亚乙烯共轭高分子荧光纳米粒子及制备方法
CN110872730A (zh) * 2018-08-29 2020-03-10 天津大学 利用黏性基底和表面活性剂调控生长二维有机单晶膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089514A (ja) * 2001-09-12 2003-03-28 Mitsui Chemicals Inc 表面が平滑な多孔質シリカフィルムの製造方法
CN1643702A (zh) * 2002-03-19 2005-07-20 加利福尼亚大学董事会 半导体-纳米晶体/共轭聚合物薄膜
CN104845052A (zh) * 2015-05-08 2015-08-19 苏州大学 发射波长可控的聚对亚苯基亚乙烯共轭高分子荧光纳米粒子及制备方法
CN110872730A (zh) * 2018-08-29 2020-03-10 天津大学 利用黏性基底和表面活性剂调控生长二维有机单晶膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIU, FENG等: ""Triple Boron-Cored Chromophores Bearing Discotic 5,11,17-Triazatrinaphthylene-Based Ligands"", 《ORGANIC LETTERS》 *
SQUILLACI, MARCO A等: ""Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents"", 《ADVANCED MATERIALS》 *

Also Published As

Publication number Publication date
CN111500074B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Pirsa Chemiresistive gas sensors based on conducting polymers
Sharma et al. Chloroform vapour sensor based on copper/polyaniline nanocomposite
Navale et al. Room temperature NO2 sensing properties of polythiophene films
Pirsa et al. Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents
Tang et al. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography
Chaudhary et al. Enhanced room temperature sulfur dioxide sensing behaviour of in situ polymerized polyaniline–tungsten oxide nanocomposite possessing honeycomb morphology
Alizadeh et al. A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapor
Navale et al. Highly sensitive, reproducible, selective and stable CSA-polypyrrole NO2 sensor
Zhu et al. A new and high response gas sensor for methanol using molecularly imprinted technique
Zhang et al. Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives
Koudehi et al. Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2, 4‐DNT vapor recognition
Alizadeh et al. Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor
Airoudj et al. Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite
Pirsa et al. Nanoporous conducting polypyrrole gas sensor coupled to a gas chromatograph for determination of aromatic hydrocarbons using dispersive liquid–liquid microextraction method
CN106317091B (zh) 三明治型混杂卟啉酞菁双层金属配合物纳米管及其制备方法和应用
Pirsa et al. Application of nano-sized poly N-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography
Gao et al. Solution-processed thin films based on sandwich-type mixed (phthalocyaninato)(porphyrinato) europium triple-deckers: Structures and comparative performances in ammonia sensing
Tohidi et al. Electrodeposition of polyaniline/three-dimensional reduced graphene oxide hybrid films for detection of ammonia gas at room temperature
Kamble et al. Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application
Pirsa Fabrication of 1, 1-dimethylhydrazine gas sensor based on nano structure conducting polyaniline
Pirsa et al. Selective hydrogen peroxide gas sensor based on nanosized polypyrrole modified by CuO nanoparticles
Harale et al. Facile synthesis of nanofibrous polyaniline thin films for ammonia gas detection
Pirsa Fast determination of water content of some organic solvents by smart sensor based on PPy-Ag nanoco
CN111500074B (zh) 一种共轭有机聚合物膜及其制备方法和应用
US20180180584A1 (en) Ethylenic compound sensor including an organic semiconductor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant