CN111498831A - 在碳纳米囊中原位空间限制生长二维MoS2纳米片 - Google Patents

在碳纳米囊中原位空间限制生长二维MoS2纳米片 Download PDF

Info

Publication number
CN111498831A
CN111498831A CN202010487695.6A CN202010487695A CN111498831A CN 111498831 A CN111498831 A CN 111498831A CN 202010487695 A CN202010487695 A CN 202010487695A CN 111498831 A CN111498831 A CN 111498831A
Authority
CN
China
Prior art keywords
mos
hcnc
carbon
resorcinol
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010487695.6A
Other languages
English (en)
Inventor
赵斌元
王礼建
宁月生
赖奕坚
王垒
周洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Economic And Technological Development Zone Construction Investment Co ltd
Shanghai Jiaotong University
Original Assignee
Maanshan Economic And Technological Development Zone Construction Investment Co ltd
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Economic And Technological Development Zone Construction Investment Co ltd, Shanghai Jiaotong University filed Critical Maanshan Economic And Technological Development Zone Construction Investment Co ltd
Priority to CN202010487695.6A priority Critical patent/CN111498831A/zh
Publication of CN111498831A publication Critical patent/CN111498831A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种在碳纳米囊中原位空间限制生长二维MoS2纳米片。其制备方法包括将SiO2作为模板获得不同形貌的碳纳米囊(HCNC),然后通过真空初湿浸渍法将硫代钼酸铵溶液浸渍到碳纳米囊中,通过煅烧制得MoS2@HCNC。本方法制备的MoS2@HCNC尺寸均匀、形貌稳定、比表面积高、高氮和高氧载量以及较高的电导率,HCNC内部的MoS2纳米片尺寸较小、层数较少。

Description

在碳纳米囊中原位空间限制生长二维MoS2纳米片
技术领域
本发明属于纳米材料技术和能源科学领域,具体涉及一种在碳纳米囊中原位空间限制生长二维MoS2纳米片及其制备方法与应用。
背景技术
多孔碳、石墨烯和二维过渡金属二硫化物(TMDC),例如二硫化钼(MoS2)和二硫化钨(WS2),已在光电学、光伏、可充电锂电池、太阳能热能收集以及焦耳加热器等领域得到了广泛研究。基于MoS2的超级电容器除了EDLC和赝电容(由Mo原子的氧化还原反应所致)之外,较大的二维MoS2层间距还可以加速电解质离子(H+,K+,NH4+)在层之间的快速可逆插层,从而有助于嵌入式赝电容。但是,MoS2的电导率远低于碳材料。另外,高度堆叠的MoS2片材使得对于离子插入有效的层间位点受到限制,这阻碍了其理论容量的充分发挥。因此,到目前为止,大多数基于MoS2电极的超级电容器都表现出相对较低的重量比电容或体积比电容。
为了克服这些挑战,目前已经提出了不同的策略,例如掺杂,嵌入或与具有更好电导率的其他材料混合,以改善其电化学性能。将MoS2与碳混合是最有效的方法之一,因为它可以显着提高MoS2基电极的电导率和比表面积。特别地,中空碳纳米囊由于其独特的几何形状,较大的比表面积,较大的内部空隙,低密度,高电导率以及其机械和热稳定性而成为一类有趣的碳材料。中空和核壳结构还可以有效地增加电解质/电极的接触面积,减少离子在电解质中的扩散距离,并有效抑制电化学氧化反应,从而使超级电容器的循环稳定性提高可以改善。然而迄今为止,很少有报道或有效的方法将MoS2空间限制生长生成中空腔体。
此外,尽管已报道的MoS2-纳米碳复合材料可以改善电导率和比电容,但电化学性能的增强仍然不足以用于许多实际应用。例如,当导电性差的MoS2覆盖碳球的表面时,碳与MoS2之间的连接较弱。此外,碳表面上的MoS2纳米薄片或纳米簇仍然很厚(通常≥20nm),并且直接暴露于电解质中,在高电流密度下循环时不稳定。目前,人们对二维MoS2在碳纳米囊内的空间受限增长研究较少。
因此,从合成具有较佳结构的MoS2-纳米囊出发,如何找到一种工艺简单并可以使碳材料和MoS2在超级电容器协同作用的碳纳米囊空间限制生长二维MoS2纳米片的制备方法,是一项很有意义的挑战。
发明内容
本发明的目的在于提供一种在碳纳米囊中原位空间限制生长二维MoS2纳米片及其制备方法与应用,用以解决现有技术的不足。
本申请通过真空初湿浸渍法,在碳纳米囊中(HCNC)的内部空间受限地生长具有少层结构的超小MoS2纳米片。MoS2纳米片具有很少的结构层和超小直径,因此可以在层之间快速可逆地插入电解质离子,这可以贡献一部分嵌入的赝电容。此外,由于HCNC和MoS2纳米片之间的协同作用,在HCNC内部生长的MoS2纳米片可以与碳纳米囊内部的上下碳壳形成连续的导电碳-MoS2-碳网络通道。目前的工作为进一步开发HCNC内部空间限制反应铺平了道路,该反应还可以轻松扩展到其他二维纳米结构(例如金属硫化物/氧化物)的构建,以用于其他应用,例如催化、生物医学、气体储存以及药物输送等多方面应用领域。
为实现上述目的及其他目的,本发明是通过以下技术方案实现的:
一种在碳纳米囊中原位空间限制生长二维MoS2纳米片的制备方法,包括以下步骤:
1)将SiO2纳米球均匀分散在溶剂中,在加热搅拌下加入间苯二酚、乙二胺和甲醛,滴加正硅酸四乙酯,继续在25℃~45℃反应,分离沉淀物并干燥;
将产物在保护气氛围下于300℃~400℃下预碳化,然后在600~900℃煅烧;将得到的产物浸泡在适量的氢氟酸中,制得碳纳米囊HCNC;
2)将步骤1)中得到的产物HCNC置于密闭的容器中并脱气,缓慢加入硫代钼酸铵直到初湿浸渍,干燥;
3)热处理,得到MoS2@HCNC。
横向尺寸为3-5nm的超小型2D MoS2纳米片均匀分散在HCNC内部,且二维MoS2纳米片只有一层,两层或三层MoS2组成少层结构。得到的MoS2@HCNC其比表面积高达734.8m2 g-1,具有微孔,介孔和大孔的分级孔隙,高堆积密度(1.56g cm-3)以及高氮含量(12.37at%)和氧含量(14.82at%)。
所述SiO2纳米球的平均粒径一般为230-300nm;优选为250nm。
优选地,所述步骤1)中溶剂为水和乙醇的混合溶剂,所述混合溶剂中乙醇体积百分比为10-90%,也可以为20-80%、30-70%、40-60%。
优选地,所述步骤1)中加热的温度为25℃~45℃,也可以为25℃~28、28℃~32℃、32℃~35℃、35℃~38℃、38℃~45℃。
优选地,所述步骤1)中二氧化硅:混合溶剂比例为0.3-0.6g:100ml,也可以为0.3-0.4g:100ml、0.4-0.6g:100ml、或0.5-0.6g:100ml。
优选地,所述步骤1)中间苯二酚与溶剂的重量体积比为(0.1~0.2)g:100ml。
优选地,所述步骤1)中间苯二酚:乙二胺:甲醛的配比为(0.125~0.2)g:0.32ml:(0.2~0.3)ml。
优选地,所述步骤1)中间苯二酚、乙二胺以及甲醛依次逐滴加入混合溶液中。
优选地,所述步骤1)中所添加的正硅酸四乙酯与步骤1)中的溶剂的质量体积比为(0.1~0.6)ml:100ml。
优选地,所述步骤1)中正硅酸四乙酯分散在溶剂中,例如乙醇。所述正硅酸四乙酯与乙醇的体积比为1:34~133。
优选地,所述步骤1)中所添加氢氟酸浓度为5%~15vt%。
优选地,所述步骤1)中碳化的时间是1~5h,煅烧的时间为1~5h,浸泡时间为8~48h。
优选地,所述步骤1)中保护气选自惰性气体或者氮气。
优选地,所述步骤2)中硫代钼酸铵溶解在乙醇中,所述硫代钼酸铵与乙醇的质量比为(0.1~4)g:20ml。
优选地,所述步骤2)中采用的浸渍方法为真空初湿浸渍法。
优选地,所述步骤2)中脱气的时间并不限定,只要达到真空状态即可。
优选地,所述步骤2)中干燥的温度为70℃~100℃,时间8-24h。
优选地,所述步骤3)中采用的热处理温度350℃~400℃,时间为1~5h。优选地,所述热处理在保护气氛围下进行。所述保护气为惰性气体或者氮气。
本发明的另一方面提供了上述制备方法制备的MoS2@HCNC材料。
进一步地,所述MoS2@HCNC材料不改变原始碳纳米囊的形貌。
进一步地,所述MoS2@HCNC材料比表面积高达734.8m2 g-1
进一步地,所述MoS2@HCNC材料堆积密度达到1.56g cm-3
进一步地,所述MoS2@HCNC材料氮含量和氧含量分别达到12.37at%和14.82at%。
进一步地,所述MoS2@HCNC材料中的2D MoS2纳米片横向尺寸为3~5nm。
进一步地,所述MoS2@HCNC材料中的2D MoS2纳米片为一层,两层或三层MoS2
本发明的又一方面还在于提供了一种电极,所述电极的集电器上涂覆有上述MoS2@HCNC材料。
本发明的另一方面提供了一种超级电容器,所述超级电容器含有上述电极。
所述电容是可以是本领域内常用的超级电容器。
本发明的另一方面提供了上述MoS2@HCNC材料作为药物载体、电极材料或吸附材料的用途。
与现有技术相比,本发明具有如下优点:
(1)工艺简单,通过简单的真空初湿浸渍和热处理方法,可在纳米囊内部原位空间限制生长二维MoS2纳米片。
(2)本发明所制备的MoS2@HCNC材料比表面积高,具有微孔,介孔和大孔的分级孔隙,堆积密度高以及具有高氮载量和高氧载量。
(3)本发明原料来源广泛,合成成本低廉,设备简单,反应条件温和,可适用于大规模工业化生产。
(4)本发明所制备的MoS2@HCNC材料结合了中空炭纳米囊本身独特的优点(例如良好的导电性,较高比表面积和孔容,多级孔分布和高氮量),以及MoS2材料的独特结构优势。因此,该材料所制备的超级电容器电极和超级电容器不仅具有较高的重量比电容,而且还有良好的体积比电容,倍率性能和循环稳定性。
附图说明
图1a和1b分别为实施例1制备得到的半凹型炭纳米囊以及和半凹型炭纳米囊限制生长MoS2纳米片的SEM图片。
图1c和1d分别为实施例1制备得到的半凹型炭纳米囊限制生长MoS2纳米片的TEM和高分辨TEM图片。
图2为实施例2制备的半凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的XRD图片。
图3为实施例2制备的半凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的XPS图片。
图4为实施例2制备的半凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的BET图片。
图5为实施例3制备的球形炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片。
图6为实施例5制备的低凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片。
图7为实施例7制备的褶皱的圆盘状炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片。
图8为实施例9运用实施例2所制备的半凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC制备电极材料在不同电流密度下进行恒流充放电曲线。
图9为实施例9运用实施例2所制备的半凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC制备电极材料的重量比电容和体积比电容与其他材料之间的比较。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
须知,下列实施例中未具体注明的工艺设备或装置均采用本领域内的常规设备或装置;所有压力值和范围都是指绝对压力。
此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明。
在以下实施例中1、2、3、5、7是优选实施例。使用的SiO2纳米球的平均粒径一般250nm。
实施例1半凹型炭纳米囊限制生长MoS2纳米片的制备
1)将0.5g SiO2纳米球分散在由10ml乙醇和90ml去离子水组成的混合溶液中,在25℃搅拌下将0.125g间苯二酚,0.32ml乙二胺和0.2ml甲醛依次逐滴添加到溶液中,0.3ml的正硅酸四乙酯(分散在20ml乙醇中),继续在35℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在300℃的温度下预碳化3小时,然后以5℃/min的升温速度升温至600℃,并保温3小时。将得到的产物浸泡在15%的氢氟酸中8h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到半凹型炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为0.5g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于350℃进行5h热处理,得到MoS2@HCNC。
本实施例制备的半凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC。图1a为本实施例制备的半凹型炭纳米囊的SEM图片,图1b为本实施例制备的半凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片,由此可以发现,MoS2纳米片的生长在半凹型炭纳米囊内部,对其表面形貌没有改变。图1c TEM清楚地证实横向尺寸为3-5nm的超小型2D MoS2纳米片均匀地分散在HCNC内部(由黄色箭头指示),表明HCNC可以提供空间受限的纳米反应器,从而限制了超小2D MoS2纳米片的动力学生长。HRTEM表征(图1d)直接表明,在HCNC内部生长的二维MoS2纳米片具有几层结构,由一层,两层或三层MoS2组成。
实施例2半凹型炭纳米囊限制生长MoS2纳米片的制备
1)将0.3g SiO2纳米球分散在由20ml乙醇和80ml去离子水组成的混合溶液中,在45℃搅拌下将0.15g间苯二酚,0.32ml乙二胺和0.2ml甲醛依次逐滴添加到溶液中,0.3ml的正硅酸四乙酯(分散在40ml乙醇中),继续在25℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在300℃的温度下预碳化3小时,然后以5℃/min的升温速度升温至900℃,并保温2小时。将得到的产物浸泡在10%的氢氟酸中24h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到半凹型炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为0.3g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于350℃进行5h热处理,得到MoS2@HCNC。
本实施例制备的半凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC。图2,图3和图4分别为本实施例制备的半凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的XRD,XPS以及BET图片,印证MoS2存在于材料中,得到MoS2@HCNC其比表面积高达734.8m2 g-1,具有微孔,介孔和大孔的分级孔隙,高堆积密度(1.56g cm-3)以及高氮含量(12.37at%)和氧含量(14.82at%)。
实施例3球形炭纳米囊限制生长MoS2纳米片的制备
1)将0.4g SiO2纳米球分散在由30ml乙醇和70ml去离子水组成的混合溶液中,在30℃搅拌下将0.2g间苯二酚,0.32ml乙二胺和0.3ml甲醛依次逐滴添加到溶液中,0.45ml的正硅酸四乙酯(分散在20ml乙醇中),继续在45℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在400℃的温度下预碳化2小时,然后以5℃/min的升温速度升温至700℃,并保温2小时。将得到的产物浸泡在10%的氢氟酸中15h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到球形炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为4g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于350℃进行3h热处理,得到MoS2@HCNC。
本实施例制备的球形炭纳米囊限制生长MoS2纳米片MoS2@HCNC。图5为本实施例制备的球形炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片,球形氮载炭纳米囊的粒径为250nm,尺寸均匀,表面光滑。
实施例4球形炭纳米囊限制生长MoS2纳米片的制备
1)将0.5g SiO2纳米球分散在由40ml乙醇和60ml去离子水组成的混合溶液中,在28℃搅拌下将0.2g间苯二酚,0.32ml乙二胺和0.3ml甲醛添加到溶液中,0.3ml的正硅酸四乙酯(分散在20ml乙醇中),继续在35℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在400℃的温度下预碳化1小时,然后以5℃/min的升温速度升温至900℃,并保温3小时。将得到的产物浸泡在5%的氢氟酸中48h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到球形炭纳米囊;
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为2g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于400℃进行2h热处理,得到MoS2@HCNC。
本实施例制备的球形炭纳米囊限制生长MoS2纳米片MoS2@HCNC。球形氮载炭纳米囊的粒径为250nm,尺寸均匀,表面光滑。
实施例5低凹型炭纳米囊限制生长MoS2纳米片的制备
1)将0.5g SiO2纳米球分散在由30ml乙醇和70ml去离子水组成的混合溶液中,在32℃搅拌下将0.15g间苯二酚,0.32ml乙二胺和0.2ml甲醛依次逐滴添加到溶液中,0.15ml的正硅酸四乙酯(分散在20ml乙醇中),继续在35℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在350℃的温度下预碳化2小时,然后以5℃/min的升温速度升温至900℃,并保温2小时。将得到的产物浸泡在10%的氢氟酸中24h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到低凹型炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为2g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于350℃进行2h热处理,得到MoS2@HCNC。
本实施例制备的低凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC。图6为本实施例制备的低凹型炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片,炭纳米囊的粒径为250nm,尺寸均匀,表面光滑。
实施例6低凹型炭纳米囊限制生长MoS2纳米片的制备
1)将0.6g SiO2纳米球分散在由30ml乙醇和70ml去离子水组成的混合溶液中,在40℃搅拌下将0.2g间苯二酚,0.32ml乙二胺和0.3ml甲醛添加到溶液中,0.6ml的正硅酸四乙酯(分散在20ml乙醇中),继续在30℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在350℃的温度下预碳化1小时,然后以5℃/min的升温速度升温至900℃,并保温3小时。将得到的产物浸泡在15%的氢氟酸中24h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到低凹型炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为1g:20ml)直到初湿浸渍,在80℃干燥一夜。
3)在N2气氛下于400℃进行1h热处理,得到MoS2@HCNC。
本实施例制备的低凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC。炭纳米囊的粒径为250nm,尺寸均匀,表面光滑。
实施例7起皱的圆盘状炭纳米囊限制生长MoS2纳米片的制备
1)将0.5g SiO2纳米球分散在由30ml乙醇和70ml去离子水组成的混合溶液中,在38℃搅拌下将0.1g间苯二酚,0.32ml乙二胺和0.15ml甲依次逐滴添加到溶液中,0.6ml的正硅酸四乙酯(分散在20ml乙醇中),继续在35℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在350℃的温度下预碳化2小时,然后以5℃/min的升温速度升温至900℃,并保温2小时。将得到的产物浸泡在10%的氢氟酸中24h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到起皱的圆盘状炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为0.1g:20ml)直到初湿浸渍,在70℃干燥24h。
3)在N2气氛下于400℃进行2h热处理,得到MoS2@HCNC。
本实施例制备的起皱的圆盘状炭纳米囊限制生长MoS2纳米片MoS2@HCNC。图7为本实施例制备的起皱的圆盘状炭纳米囊控制限制生长MoS2纳米片MoS2@HCNC的SEM图片,炭纳米囊的粒径为250nm,尺寸均匀。
实施例8起皱的圆盘状炭纳米囊限制生长MoS2纳米片的制备
1)将0.5g SiO2纳米球分散在由30ml乙醇和70ml去离子水组成的混合溶液中,在35℃搅拌下将0.1g间苯二酚,0.32ml乙二胺和0.1ml甲添加到溶液中,0.1ml的正硅酸四乙酯(分散在20ml乙醇中),继续在35℃下反应24小时,分离沉淀物并烘干;将产物在惰性气氛保护下,先在350℃的温度下预碳化5小时,然后以5℃/min的升温速度升温至900℃,并保温2小时。将得到的产物浸泡在10%的氢氟酸中48h,去除二氧化硅球以及炭壳中的二氧化硅小颗粒,得到起皱的圆盘状炭纳米囊。
2)将步骤1)中得到的产物HCNC 0.5g置于密闭的玻璃容器中并脱气30分钟以获得真空状态。在真空下,逐滴加入溶解在乙醇中的硫代钼酸铵(硫代钼酸铵与乙醇的含量比为0.2g:20ml)直到初湿浸渍,在100℃干燥8h。
3)在N2气氛下于350℃进行3h热处理,得到MoS2@HCNC。
本实施例制备的起皱的圆盘状炭纳米囊限制生长MoS2纳米片MoS2@HCNC。炭纳米囊的粒径为250nm,尺寸均匀。
实施例9
本实施例提供一种超级电容器电极和超级电容器。
本实施例超级电容器包括电极及其其他必要部件,其中,所述电极按照如下方法制备:通过将MoS2@HCNC(实施例2中制备),乙炔黑和聚四氟乙烯(重量比为8:1:1)的均质浆液涂覆在镍泡沫集电器(1×1cm)上,然后在100℃下干燥12小时来制备工作电极。活性物质的质量负载约为2.0mg cm-2。Hg/HgO电极和一块Pt分别用作参比电极和对电极。电化学性能在CHI 660D电化学工作站上,6M KOH电解质中以三电极配置进行测试。
本实施例运用实施例2所制备的半凹型炭纳米囊限制生长MoS2纳米片MoS2@HCNC制备电极材料,如图8所示在不同电流密度下进行恒流充放电曲线。所有恒电流充放电(GCD)曲线也显示出类似的等腰三角形形状,这表明典型的超级电容器行为和充放电过程的优异可逆性。在0.1A g-1的电流密度下,其比电容值高达560.1F g-1,如图9所示,MoS2@HCNC电极的同样具有较大的体积比电容873.8F cm-3。本实例制备的MoS2@HCNC的重量比电容和体积比电容与先前报道的其他材料进行比较,例如多孔碳,碳纳米管,石墨烯,MXene,MoS2基复合材料,验证了这种新的合成策略使MoS2@HCNC可以同时实现出色的重量比电容以及体积比电容。

Claims (11)

1.一种在碳纳米囊中原位空间限制生长二维MoS2纳米片的制备方法,包括以下步骤:
1)将SiO2纳米球均匀分散在溶剂中,在加热搅拌下加入间苯二酚、乙二胺和甲醛,滴加正硅酸四乙酯,继续在25℃~45℃反应,分离沉淀物并干燥;
将产物在保护气氛围下于300℃~400℃下预碳化,然后在600~900℃煅烧;将得到的产物浸泡在适量的氢氟酸中,制得碳纳米囊HCNC;
2)将步骤1)中得到的产物HCNC置于密闭的容器中并脱气,缓慢加入硫代钼酸铵直到初湿浸渍,干燥;
3)热处理,得到MoS2@HCNC。
2.根据权利要求1所述的方法,其特征在于,所述方法包括以下技术特征中的任一种或几种:
a.所述步骤1)中加热的温度为25℃~45℃;
b.所述步骤1)中二氧化硅:乙醇:去离子水的配比为0.5g:30ml:70ml;
c.所述步骤1)中间苯二酚与混合溶液的重量体积比为(0.1~0.2)g:100ml;
d.所述步骤1)中间苯二酚、乙二胺以及甲醛依次加入混合溶液中,所述苯二酚:乙二胺:甲醛的配比为(0.125~0.2)g:0.32ml:(0.2~0.3)ml。
3.根据权利要求2所述的方法,其特征在于,所述步骤1)中间苯二酚:乙二胺:甲醛的配比为(0.125~0.2)g:0.32ml:(0.2~0.3)ml,所述步骤1)中所添加的正硅酸四乙酯与混合溶液的体积比为(0.1~0.6)ml:100ml。
4.根据权利要求1所述的方法,其特征在于,所述步骤1)中所添加氢氟酸浓度为5%~15vt%;浸泡时间为12~48h。
5.根据权利要求1所述的方法,其特征在于,所述步骤2)中硫代钼酸铵与乙醇的质量体积比为(0.1~4)g:20ml。
6.根据权利要求1所述的方法,其特征在于,所述步骤2)中采用的浸渍方法为真空初湿浸渍法。
7.根据权利要求1所述的方法,其特征在于,所述步骤3)中采用的热处理温度350℃~400℃,时间为1~5h。
8.如权利要求1-7任一项所述的方法制备的MoS2@HCNC材料。
9.一种电极,其特征在于,所述电极的集电器上涂覆有如权利要求8所述MoS2@HCNC材料。
10.一种电容器,其特征在于,所述超级电容器上含有如权利要求9所述的电极。
11.如权利要求8所述MoS2@HCNC材料作为药物载体、电极材料或吸附材料的用途。
CN202010487695.6A 2020-06-02 2020-06-02 在碳纳米囊中原位空间限制生长二维MoS2纳米片 Pending CN111498831A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010487695.6A CN111498831A (zh) 2020-06-02 2020-06-02 在碳纳米囊中原位空间限制生长二维MoS2纳米片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010487695.6A CN111498831A (zh) 2020-06-02 2020-06-02 在碳纳米囊中原位空间限制生长二维MoS2纳米片

Publications (1)

Publication Number Publication Date
CN111498831A true CN111498831A (zh) 2020-08-07

Family

ID=71868618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010487695.6A Pending CN111498831A (zh) 2020-06-02 2020-06-02 在碳纳米囊中原位空间限制生长二维MoS2纳米片

Country Status (1)

Country Link
CN (1) CN111498831A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697861A (zh) * 2021-08-11 2021-11-26 上海交通大学 一种复合材料及其制备方法和用途
CN113745010A (zh) * 2021-08-11 2021-12-03 上海交通大学 一种三元复合材料及其制备方法和用途

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430443A (en) * 1982-07-20 1984-02-07 Exxon Research And Engineering Co. Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use
US20010051589A1 (en) * 1998-10-05 2001-12-13 Sasol Technology (Proprietary) Limited Impregnation process for catalysts
CN103764546A (zh) * 2011-06-30 2014-04-30 康奈尔大学 杂化材料和纳米复合材料,其制备方法,及其用途
CN107591527A (zh) * 2017-08-31 2018-01-16 扬州大学 原位生长花瓣状二硫化钼的空心介孔碳球的制备方法
CN107715877A (zh) * 2017-10-16 2018-02-23 太原理工大学 一种中空介孔碳微球壳层限域铜催化剂及制法和应用
CN108091837A (zh) * 2017-11-24 2018-05-29 北京欧美中科学技术研究院 一种二硫化钼/碳复合材料及其制备方法和用途
CN108269982A (zh) * 2018-01-09 2018-07-10 中国科学院福建物质结构研究所 一种复合材料、其制备方法及在锂离子电池中的应用
CN109244492A (zh) * 2018-08-20 2019-01-18 华南理工大学 一种高效二维氮杂炭材料及其制备方法和在能源转化领域中的应用
CN109569651A (zh) * 2018-11-20 2019-04-05 郑州大学第附属医院 一种双功能催化剂RuCo@HCSs及其制备方法和应用
CN109876848A (zh) * 2019-03-11 2019-06-14 南京大学 一种限域型CoCNx@C复合催化剂及其制备方法和应用
CN110687181A (zh) * 2019-10-29 2020-01-14 济南大学 一种基于碳球负载二硫化钼掺杂铜铑双金属构建的电化学免疫传感器的制备及应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430443A (en) * 1982-07-20 1984-02-07 Exxon Research And Engineering Co. Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use
US20010051589A1 (en) * 1998-10-05 2001-12-13 Sasol Technology (Proprietary) Limited Impregnation process for catalysts
CN103764546A (zh) * 2011-06-30 2014-04-30 康奈尔大学 杂化材料和纳米复合材料,其制备方法,及其用途
CN107591527A (zh) * 2017-08-31 2018-01-16 扬州大学 原位生长花瓣状二硫化钼的空心介孔碳球的制备方法
CN107715877A (zh) * 2017-10-16 2018-02-23 太原理工大学 一种中空介孔碳微球壳层限域铜催化剂及制法和应用
CN108091837A (zh) * 2017-11-24 2018-05-29 北京欧美中科学技术研究院 一种二硫化钼/碳复合材料及其制备方法和用途
CN108269982A (zh) * 2018-01-09 2018-07-10 中国科学院福建物质结构研究所 一种复合材料、其制备方法及在锂离子电池中的应用
CN109244492A (zh) * 2018-08-20 2019-01-18 华南理工大学 一种高效二维氮杂炭材料及其制备方法和在能源转化领域中的应用
CN109569651A (zh) * 2018-11-20 2019-04-05 郑州大学第附属医院 一种双功能催化剂RuCo@HCSs及其制备方法和应用
CN109876848A (zh) * 2019-03-11 2019-06-14 南京大学 一种限域型CoCNx@C复合催化剂及其制备方法和应用
CN110687181A (zh) * 2019-10-29 2020-01-14 济南大学 一种基于碳球负载二硫化钼掺杂铜铑双金属构建的电化学免疫传感器的制备及应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANTONIO B. FUERTES ET AL.: "Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell", 《CHEM.MATER》 *
ANTONIO B. FUERTES ET AL.: "Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell", 《CHEM.MATER》, vol. 19, 31 December 2007 (2007-12-31), pages 5418 - 5423 *
FEI PEI ET AL.: "From Hollow Carbon Spheres to N-Doped Hollow Porous Carbon Bowls: Rational Design of Hollow Carbon Host for Li-S Batteries", 《ADVANCED ENERGY MATERIALS》, vol. 6, 31 December 2016 (2016-12-31), pages 1 - 8 *
LIMIN GUO ET AL.: "A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents", 《JOURNAL OF MATERIALS CHEMISTRY》 *
LIMIN GUO ET AL.: "A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 18, 14 April 2008 (2008-04-14), pages 2733 - 2738 *
WANG LJ ET AL.: "Biocompatible Mesoporous Hollow Carbon Nanocapsules for High Performance Supercapacitors", 《SCIENTIFIC REPORTS》 *
WANG LJ ET AL.: "Biocompatible Mesoporous Hollow Carbon Nanocapsules for High Performance Supercapacitors", 《SCIENTIFIC REPORTS》, vol. 10, 9 March 2020 (2020-03-09), pages 7 *
刘玉荣: "《碳材料在超级电容器中的应用》", vol. 1, 国防工业出版社, pages: 172 *
宁平等, 冶金工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697861A (zh) * 2021-08-11 2021-11-26 上海交通大学 一种复合材料及其制备方法和用途
CN113745010A (zh) * 2021-08-11 2021-12-03 上海交通大学 一种三元复合材料及其制备方法和用途
CN113745010B (zh) * 2021-08-11 2023-01-31 上海交通大学 一种三元复合材料及其制备方法和用途

Similar Documents

Publication Publication Date Title
Li et al. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices
Ke et al. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation
Sun et al. Status and prospects of porous graphene networks for lithium–sulfur batteries
Su et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage
Wang et al. Catalyzing polysulfide conversion by gC 3 N 4 in a graphene network for long-life lithium-sulfur batteries
Tang et al. Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries
Zhu et al. Hard-template synthesis of three-dimensional interconnected carbon networks: rational design, hybridization and energy-related applications
Liu et al. In situ synthesis of CoSx@ carbon core-shell nanospheres decorated in carbon nanofibers for capacitor electrodes with superior rate and cycling performances
Zheng et al. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries
Zhang et al. Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries
Liu et al. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities
Lei et al. Formation of CoS2/N, S-codoped porous carbon nanotube composites based on bimetallic zeolitic imidazolate organic frameworks for supercapacitors
Seo et al. Metal-organic-framework-derived 3D crumpled carbon nanosheets with self-assembled CoxSy nanocatalysts as an interlayer for lithium-sulfur batteries
Chen et al. Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity
Li et al. A novel approach to prepare Si/C nanocomposites with yolk–shell structures for lithium ion batteries
Jia et al. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes
Liu et al. N-doped microporous carbon hollow spheres with precisely controlled architectures for supercapacitor
Yang et al. In situ implanting fine ZnSe nanoparticles into N-doped porous carbon nanosheets as an exposed highly active and long-life anode for lithium-ion batteries
Díez et al. Dense (non-hollow) carbon nanospheres: synthesis and electrochemical energy applications
Li et al. Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets
Yu et al. Designed synthesis of ordered mesoporous graphene spheres from colloidal nanocrystals and their application as a platform for high-performance lithium-ion battery composite electrodes
Sui et al. Nickel metal-organic framework microspheres loaded with nickel-cobalt sulfides for supercapacitor electrode materials
Liu et al. Self-templated formation of (NiCo) 9 S 8 yolk–shelled spheres for high-performance hybrid supercapacitors
Xu et al. All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers
Qian et al. Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807