CN111492652B - 用于生成光场模拟的方法和介质、投影系统及其控制器 - Google Patents

用于生成光场模拟的方法和介质、投影系统及其控制器 Download PDF

Info

Publication number
CN111492652B
CN111492652B CN201880082541.XA CN201880082541A CN111492652B CN 111492652 B CN111492652 B CN 111492652B CN 201880082541 A CN201880082541 A CN 201880082541A CN 111492652 B CN111492652 B CN 111492652B
Authority
CN
China
Prior art keywords
phase
slm
light field
modulating slm
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880082541.XA
Other languages
English (en)
Other versions
CN111492652A (zh
Inventor
T·戴维斯
M·J·理查兹
B·利佩伊
J·P·佩蒂耶拉
C·J·奥利克
P·F·范凯塞尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby Laboratories Licensing Corp
Original Assignee
Dolby Laboratories Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby Laboratories Licensing Corp filed Critical Dolby Laboratories Licensing Corp
Publication of CN111492652A publication Critical patent/CN111492652A/zh
Application granted granted Critical
Publication of CN111492652B publication Critical patent/CN111492652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/50Optics for phase object visualisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • H04N9/3126Driving therefor for spatial light modulators in series
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3197Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using light modulating optical valves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only

Abstract

双调制投影系统(100)包括光源(102)、相位调制器(104)、幅度调制器(106)和具有时间光场模拟能力(114)的控制器(110)。相位调制器(104)在空间上对来自光源(102)的光场进行调制,以在幅度调制器(106)上生成中间图像。幅度调制器(106)在空间上对中间图像进行调制,以形成最终图像。控制器(110)对相位调制器(104)在相位调制器帧之间的转换期间的相位状态进行建模,并且生成中间图像在转换期间的光场模拟。控制器(110)利用光场模拟以比相位调制器(104)能够切换的速率更快的速率生成幅度驱动值集并将幅度驱动值集提供给幅度调制器(106)。

Description

用于生成光场模拟的方法和介质、投影系统及其控制器
相关申请的交叉引用
本申请要求于2017年12月22日提交的美国临时专利申请62/609,635以及于2018年4月12日提交的欧洲专利申请18166944.1的优先权的权益,这两份申请通过引用整体并入本文。
技术领域
本发明总体涉及多调制投影系统,并且更具体地涉及用于提高多调制投影系统中的图像质量的系统和方法。
背景技术
多调制投影系统是已知的。典型的系统使用两个(或更多个)幅度调制空间光调制器(SLM)来产生高动态范围图像。第一SLM(预调制器)在第二SLM(主调制器)上创建低分辨率图像。这两个图像在光学上相乘以创建非常高的对比度。在双调制投影系统中,通过阻挡在两个调制器中的光来实现图像的暗区域。然而,由于某些SLM只能衰减幅度,所以小图像部分的最大亮度与完整图像的最大亮度相同(即,漫反射白色)。
另一方法利用光束调向而不是幅度调制以在第二SLM上生成低分辨率图像。使用光束调向SLM(例如,相位调制SLM,倾斜俯仰镜设备等)作为预调制器,将光调向至需要更大强度的位置,而不是导向光转储(light dump)。例如,如果在暗背景上需要小的高光区域,则光束调向预调制器可以将未使用的光从暗背景调向到高光区域中。因此,可以以比漫反射白色强度级更亮的强度级来显示高亮区域。由于大部分图像仅在小区域中使用高亮度,所以光束调向预调制器有助于减少成本(减少对于相同有效峰亮度的光通量需求)和/或改善性能(例如,动态范围,色彩深度等),从而创建更明亮,并因此更引人注目的图像。
然而,当与大部分幅度预调制器和主调制器相比时,光束调向SLM往往以相对缓慢的频率切换。光束调向SLM通常以比幅度调制器更低的帧速率运行,并且光束调向SLM可以在发送给其的图像(即,空间相位分布)之间相对缓慢地改变状态。此外,由于光束调向SLM使用光学相位调制以及导致的干涉来对光进行调向,所以两个图像之间的转换可能无法表现出到达主调制器的两个图像之间的平滑的交叉渐变。
某些双调制系统使用光场模拟来对到达主调制器上的图像进行建模并确定如何驱动主调制器以实现预期的图像。在光束调向系统中,光场模拟涉及对离开相位调制器的光的行为进行建模。由于到达主调制器的物理图像在预调制器帧之间显著变化,并且由于光场模拟是基于驱动预调制器的相位图像(以及导致的复杂干涉图样)的,所以在转换期间的光场模拟是不准确的并可能导致视觉伪像。
发明内容
本发明由独立权利要求限定。从属权利要求限定优选的实施例。本发明通过提供用于使用光束调向(例如,相位调制)空间光调制器(SLM)的时间模型来生成光场模拟的系统和方法,克服了与现有技术相关联的问题。本发明的方面促进了以比将相位调制数据加载到光束调向SLM中的速率更高的帧速率生成光场模拟。作为结果,可以以比光束调向SLM的最大帧速率高得多的数据帧速率来驱动主调制器。
示例方法(例如,在投影系统中)包括利用第一驱动值集来驱动光束调向空间光调制器(SLM),以将光束调向SLM放置在第一时间处的第一状态中。该示例方法另外包括利用第二驱动值集来驱动光束调向SLM,该第二驱动值集使得光束调向SLM从光束调向SLM的第一状态转换为光束调向SLM在第二时间处的第二状态。对光束调向SLM从第一状态到第二状态的转换进行建模,并且该方法另外包括至少部分地基于光束调向SLM的转换的模型,确定光束调向SLM在第三时间处的第三状态。第三时间在第一时间和第二时间之间发生。然后,生成光场模拟。光场模拟是至少部分地基于光束调向SLM的第三状态,由光束调向SLM在第三时间处生成的光场。任选地,该示例方法另外包括至少部分地基于光束调向SLM的转换的模型确定光束调向SLM在多个时间处的多个状态,多个时间中的每个时间在第一时间和第二时间之间发生。
对光束调向SLM从第一状态到第二状态的转换进行建模的步骤可以基于若干因素。例如,可以至少部分地基于光束调向SLM的龄值来对光束调向SLM的转换进行建模。作为另一示例,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤可以包括至少部分地基于光束调向SLM的第一状态(和/或甚至更早的状态)和第二状态来对光束调向SLM的转换进行建模。作为另一示例,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤可以包括至少部分地基于光束调向SLM的液晶层的物理特性来对光束调向SLM的转换进行建模。在又一示例方法中,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤可以包括至少部分地基于光束调向SLM的温度来对光束调向SLM的转换进行建模。
在特定的示例方法中,光束调向SLM包括多个像素,并且对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括逐像素地对光束调向SLM的转换进行建模。在更特定的示例方法中,光束调向SLM包括多个像素,并且对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括至少部分地基于多个像素中的像素之间的串扰(crosstalk)来对光束调向SLM的转换进行建模。
对光束调向SLM的转换进行建模的步骤还可以取决于入射在SLM上的照明场。在示例方法中,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括至少部分地基于入射在光束调向SLM上的光场的强度来对光束调向SLM的转换进行建模。在另一示例方法中,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括至少部分地基于入射在光束调向SLM上的光场的物理属性来对光束调向SLM的转换进行建模。在又一示例方法中,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括至少部分地基于在光束调向SLM的寿命期内入射在光束调向SLM上的光的总量来对光束调向SLM的转换进行建模。
在另一示例方法中,对光束调向SLM从第一状态到第二状态的转换进行建模的步骤包括生成转换函数。转换函数指示时间和由光束调向SLM的像素赋予(impart)入射光场的相位延迟之间的关系。然后,确定转换函数在第三时间处的值。任选地,确定转换函数在第三时间处的值的步骤包括确定转换函数在包括第三时间的时间段内的平均值。
还公开了用于控制投影系统的示例控制器。示例控制器包括被配置为执行代码的处理单元,耦接以接收指示要显示的至少一个图像的图像数据的接口,以及电耦接以存储数据和代码的存储器。数据和代码包括光束调向驱动模块。光束调向驱动模块被配置为利用第一驱动值集来驱动光束调向空间光调制器(SLM),以将光束调向SLM放置在第一时间处的第一状态中,并且利用第二驱动值集来驱动光束调向SLM,该第二驱动值集使得光束调向SLM从光束调向SLM的第一状态转换为光束调向SLM在第二时间处的第二状态。数据和代码另外包括时间光场模拟模块,该时间光场模拟模块被配置为对光束调向SLM从第一状态到第二状态的转换进行建模并且至少部分地基于光束调向SLM的转换的模型来确定光束调向SLM在第三时间处的第三状态。第三时间在第一时间和第二时间之间发生。时间光场模拟模块另外被配置为至少部分地基于光束调向SLM的第三状态来生成由光束调向SLM在第三时间处生成的光场的光场模拟。任选地,时间光场模拟模块另外被配置为至少部分地基于光束调向SLM的转换的模型来确定光束调向SLM在多个时间处的多个状态,多个时间中的每个时间在第一时间和第二时间之间发生。
在特定的示例控制器中,时间光场模拟模块可以被配置为至少部分地基于光束调向SLM的龄值来对光束调向SLM的转换进行建模。任选地,时间光场模拟模块可以被配置为至少部分地基于光束调向SLM的第一状态和第二状态来对光束调向SLM的转换进行建模。时间光场模拟模块还可以被配置为至少部分地基于光束调向SLM的液晶层的物理特性来对光束调向SLM的转换进行建模。时间光场模拟模块还可以被配置为至少部分地基于光束调向SLM的温度来对光束调向SLM的转换进行建模。
在特定的示例控制器中,光束调向SLM包括多个像素,并且时间光场模拟模块被配置为逐像素地对光束调向SLM的转换进行建模。在另一特定的示例控制器中,光束调向SLM包括多个像素,并且时间光场模拟模块被配置为至少部分地基于多个像素中的像素之间的串扰来对光束调向SLM的转换进行建模。
在特定的示例控制器中,时间光场模拟模块被配置为至少部分地基于入射在光束调向SLM上的光场的强度来对光束调向SLM的转换进行建模。时间光场模拟模块可以被配置为至少部分地基于入射在光束调向SLM上的光场的一个或多个其他物理属性来对光束调向SLM的转换进行建模。作为另一示例,时间光场模拟模块可以被配置为至少部分地基于在光束调向SLM的寿命期内入射在光束调向SLM上的光的总量来对光束调向SLM的转换进行建模。
在另一示例控制器中,时间光场模拟模块可以被配置为生成转换函数并确定转换函数在第三时间处的值。转换函数指示时间和由光束调向SLM的像素赋予入射光场的相位延迟之间的关系。在特定的示例控制器中,时间光场模拟模块被配置为确定转换函数在包括第三时间的时间段期间的平均值。
还公开了用于(例如,在投影系统中)生成图像的示例方法。一个示例方法包括接收第一图像数据帧,并且生成用于驱动相位调制空间光调制器(SLM)的第一相位驱动值集。第一相位驱动值集是至少部分地基于第一图像数据帧的。该方法另外包括在第一时间段期间利用第一相位驱动值集来驱动相位调制SLM、接收第二图像数据帧、以及生成用于驱动相位调制SLM的第二相位驱动值集。第二相位驱动值集是至少部分地基于第二图像数据帧的。该示例方法另外包括在第二时间段期间利用第二相位驱动值集来驱动相位调制SLM,并且在第二时间段期间对相位调制SLM的转换状态进行建模。转换状态是至少部分地基于第一相位驱动值集和第二相位驱动值集的。该示例方法另外包括生成由相位调制SLM生成并入射在幅度调制SLM上的光场的光场模拟集。光场模拟集中的第一子集与第一相位驱动值集相对应,光场模拟集中的第二子集与第二相位驱动值集相对应。光场模拟集中的第三子集与相位调制SLM的转换状态中的一个或多个相对应。该示例方法另外包括生成用于驱动幅度调制SLM的幅度驱动值集,以及利用幅度驱动值集来驱动幅度调制SLM。幅度驱动值集中的每个幅度驱动值集与光场模拟中的相关联的一个光场模拟相对应。
在特定的示例方法中,第一帧和第二帧在时间上是顺序的,并且光场模拟的第三子集恰好包括一个光场模拟。可替代地,光场模拟的第三子集包括多于一个光场模拟。作为另一替代,第一帧和第二帧在时间上不是顺序的,并且光场模拟的第三子集与在时间上位于第一帧和第二帧之间的至少一个间插(intervening)帧相对应。
在特定的示例方法中,生成第二相位驱动值集的步骤包括利用第一相位驱动值集作为第二相位驱动值集的初始近似并且基于第三图像数据帧改变初始近似。
在另一特定的示例方法中,相位调制SLM包括多个像素,并且在第二时间段期间对相位调制SLM的转换状态进行建模的步骤包括对多个像素中的各自像素的各自转换状态进行建模。在更特定的方法中,利用第一相位驱动值集来驱动相位调制SLM的步骤包括确立(assert)跨多个像素的第一组电压,第一组电压中的每个电压由第一相位驱动值集中的相关联的值指示。利用第二相位驱动值集来驱动相位调制SLM的步骤包括确立跨多个像素的第二组电压,第二组电压中的每个电压由第二相位驱动值集中的相关联的值指示。对多个像素的各自转换状态进行建模的步骤包括确定多个像素中的每个像素从第一组电压中的相对应的电压到第二组电压中的相对应的电压的各自转换。在甚至更特定的示例方法中,对相位调制SLM的转换状态进行建模的步骤包括确定多个像素中的每个像素在每个像素的各自转换期间的特定时间处的转换状态。可替换地,对相位调制SLM的转换状态进行建模的步骤可以包括确定多个像素中的像素中的每个像素在每个像素的各自转换期间的一段时间内的平均状态。
对相位调制SLM的转换状态进行建模的步骤可以包括至少部分地基于相位调制SLM的物理特性来对相位调制SLM的转换状态进行建模。对相位调制SLM的转换状态进行建模的步骤还可以包括至少部分地基于相位调制SLM的液晶层的物理特性来对相位调制SLM的转换状态进行建模。
对相位调制SLM的转换状态进行建模的步骤还可以包括至少部分地基于入射在相位调制SLM上的光场的物理特性来对相位调制SLM的转换状态进行建模。至少部分地基于入射在相位调制SLM上的光场的物理特性来对相位调制SLM的转换状态进行建模的步骤可以包括至少部分地基于光场的历史记录对相位调制SLM的转换状态进行建模。
在特定的示例方法中,生成光场模拟集的步骤包括将相位调制SLM的多个像素中的每个像素建模为具有相位延迟的球面波源,该相位延迟是基于转换状态中的相对应的一个转换状态来至少部分地确定的。可替代地,生成光场模拟集的步骤可以包括将相位调制SLM的多个像素中的每个像素建模为相对于相位调制SLM的表面具有角度的光线的起始点。基于转换状态中的相对应的一个来至少部分地确定该角度。
还公开了用于控制投影系统的示例控制器。一个示例控制器包括被配置为执行代码的处理单元、耦接以接收第一图像数据帧、第二图像数据帧和第三图像数据帧的接口以及电耦接以存储数据和代码的存储器。数据和代码包括相位驱动模块、时间光场模拟模块和幅度驱动模块。
相位驱动模块被配置为生成用于驱动相位调制空间光调制器(SLM)的第一相位驱动值集。该第一相位驱动值集是至少部分地基于第一图像数据帧的。相位驱动模块还被配置为生成用于驱动相位调制SLM的第二相位驱动值集。该第二相位驱动值集是至少部分地基于第二图像数据帧的。相位驱动模块还被配置为在第一时间段期间利用第一相位驱动值集来驱动相位调制SLM,并在第二时间段期间利用第二相位驱动值集来驱动相位调制SLM。
时间光场模拟模块被配置为在第二时间段期间对相位调制SLM的转换状态进行建模。转换状态是至少部分地基于第一相位驱动值和第二相位驱动值的。时间光场模拟模块还被配置为生成由相位调制SLM生成并入射在幅度调制SLM上的光场的光场模拟集。光场模拟集中的第一子集与第一相位驱动值集相对应,光场模拟集中的第二子集与第二相位驱动值集相对应,并且光场模拟集中的第三子集与相位调制SLM的转换状态中的一个或多个转换状态相对应。
幅度驱动模块被配置为生成用于驱动幅度调制SLM的幅度驱动值集。幅度驱动值集中的每个与光场模拟集中的一个光场模拟相对应。幅度驱动模块另外被配置为利用幅度驱动值集来驱动幅度SLM。
在特定的示例控制器中,第一帧和第二帧在时间上是顺序的,并且光场模拟的第三子集恰好包括一个光场模拟。可替代地,光场模拟的第三子集包括多于一个光场模拟。作为另一替代,第一帧和第二帧在时间上不是顺序的,并且光场模拟的第三子集与在时间上位于第一帧和第二帧之间的至少一个间插帧相对应。
在特定的示例控制器中,相位驱动模块被配置为当生成第二相位驱动值集时利用第一相位驱动值集作为第二相位驱动值集的初始近似。相位驱动模块还被配置为基于第三图像数据帧来改变第二相位驱动值集的初始近似。
在另一特定的示例控制器中,相位调制SLM包括多个像素,并且时间光场模拟模块被配置为对多个像素中的像素的各自转换状态进行建模。相位驱动模块被配置为确立跨多个像素的第一组电压。第一组电压中的每个电压是基于第一相位驱动值集的。相位驱动模块还被配置为确立跨多个像素的第二组电压。第二组电压中的每个电压是基于第二相位驱动值集的。时间光场模拟模块被配置为确定多个像素中的每个像素从第一组电压中的相对应的电压到第二组电压中的相对应的电压的各自转换。时间光场模拟模块可以被配置为确定多个像素中的每个像素在各自转换期间的特定时间处的转换状态。可替代地,时间光场模拟模块可以被配置为确定多个像素中的每个像素在各自转换期间的一段时间内的平均转换状态。
在示例控制器中,时间光场模拟模块被配置为至少部分地基于相位调制SLM的物理特性来对相位调制SLM的转换状态建模。例如,时间光场模拟模块可以被配置为至少部分地基于相位调制SLM的液晶层的物理特性来对相位调制SLM的转换状态建模。作为另一选择,时间光场模拟模块可以被配置为至少部分地基于入射在相位调制SLM上的光场的特性(例如强度、波长、带宽等)来对相位调制SLM的转换状态进行建模。例如,时间光场模拟模块被配置为至少部分地基于光场的历史记录来对相位调制SLM的转换状态进行建模。
在特定的示例控制器中,时间光场模拟模块将相位调制SLM的多个像素中的每个像素建模为具有相位延迟的球面波源,该相位延迟是通过转换状态中的相对应的一个转换状态来至少部分地确定的。在另一特定的示例控制器中,时间光场模拟模块将相位调制SLM的多个像素中的每个像素建模为相对于相位调制SLM的表面具有角度的光线的起始点。该角度是通过转换状态中的相对应的一个转换状态来至少部分地确定的。
公开了用于(例如,在投影系统中)生成图像的另一示例方法。该示例方法包括接收(n个)图像数据帧。该示例方法另外包括生成(m个)相位驱动值帧。每个相位驱动值帧是至少部分地基于相关联的图像数据帧。每个相位驱动值帧还使得相位调制空间光调制器(SLM)处于相关联的相位状态中,以生成与相关联的图像数据帧相对应的光场。该示例方法另外包括确定相位调制SLM的(p个)转换相位状态(其中p>0)。转换相位状态中的每个指示由相位调制SLM在与相位驱动值相关联的相位状态中的顺序相位状态之间进行转换期间生成的光场。该示例方法另外包括基于相位驱动值和转换相位状态来生成光场模拟集。光场模拟中的每个指示由相位调制SLM生成并入射在幅度调制SLM上的光场。该示例方法还包括基于光场模拟集和图像数据帧来生成幅度驱动值帧集。
在一个示例方法中,相位驱动值帧的数量(m)加上确定的转换状态的数量(p)等于图像数据帧的数量(n)(即,m+p=n)。为每个图像数据帧生成一个光场模拟,并且每个光模拟是基于相位驱动值帧或转换相位状态的。在特定的示例方法中,相位驱动数据帧的数量(m)等于确定的转换相位状态的数量(p)(即,m/p=1)。任选地,可以有多于一个确定的转换相位状态交错在相位驱动值的连续帧之间(即,m/p<1)。
在另一示例方法中,相位驱动值帧的数量(m)等于图像数据帧的数量(n)(即,m=n)。任选地,确定的转换相位状态的数量(p)等于图像数据帧的数量(n)(即,p=n)。确定的转换相位状态的数量(p)可以大于相位驱动值帧的数量(m)(即p/m>1)。在特定的示例方法中,对于每个相位驱动值帧(m个)恰好存在三个确定的转换相位状态(p个)(即,p/m=3)。
还公开了示例非暂态计算机可读介质。一种示例非暂态计算机可读介质具有包含于其中的代码,该代码用于使得投影系统接收(n个)图像数据帧。该代码另外使得投影系统生成(m个)相位驱动值帧,其中m<n。每个相位驱动值帧是至少部分地基于相关联的图像数据帧的并且使得相位调制空间光调制器(SLM)处于相关联的相位状态中,以生成与图像数据帧中的一个帧相对应的光场。该代码另外使得投影系统确定相位调制SLM的(p个)转换相位状态,其中p>0。转换相位状态中的每个指示由相位调制SLM在与相位驱动值相关联的相位状态中的顺序相位状态之间进行转换期间生成的光场。该代码另外使得投影系统基于相位驱动值和转换相位状态来生成光场模拟集,光场模拟中的每个指示由相位调制SLM生成并入射在幅度调制SLM上的光场。该代码另外使得投影系统基于光场模拟集和图像数据帧集来生成幅度驱动值帧集。
事实上,本文所公开的方法中的任何一个都可以利用暂态或非暂态电子可读介质来实施,该暂态或非暂态电子可读介质具有包含于其中的代码,该代码当被执行时将使得电子设备执行所公开的方法。非暂态电子可读介质的示例包括但不限于易失性存储器、非易失性存储器、硬件、软件、固件和/或前述示例的任何组合。
另一示例投影系统包括光束调向空间光调制器(SLM),该光束调向空间光调制器被配置为在第一时间处利用第一光束调向驱动值集来驱动并且在第二时间处利用第二光束调向驱动值集来驱动。第一光束调向驱动值集使得光束调向SLM处于第一状态中,并且第二光束调向驱动值集使得光束调向SLM处于第二状态中。示例投影系统另外包括用于对光束调向SLM从第一状态到第二状态的转换进行建模并且至少部分地基于光束调向SLM的转换的模型确定光束调向SLM在第三时间处的第三状态的装置。第三时间在第一时间和第二时间之间发生。示例投影系统还包括光场模拟器,该光场模拟器被配置为至少部分地基于光束调向SLM的第三状态来生成由光束调向SLM在第三时间处生成的光场的光场模拟。
附图说明
参考以下附图来描述本发明,其中相似的附图标记表示实质上类似的元素:
图1是示例双调制投影系统的框图;
图2A是示出了用于在图1的投影系统中生成图像的示例方法的时序图;
图2B是示出了用于在图1的投影系统中生成图像的另一示例方法的时序图;
图2C是示出了用于在图1的投影系统中生成图像的又一示例方法的时序图;
图3是更详细地示出了图1的控制器的框图;
图4A是示出了在图3的控制器的模块之间用于驱动图1的投影系统的其他组件的示例数据流的框图;
图4B是示出了在图3的控制器的模块之间用于驱动图1的投影系统的其他组件的另一示例数据流的框图;
图4C是示出了在图3的控制器的模块之间用于驱动图1的投影系统的其他组件的又一示例数据流的框图;
图5A是示出了从图像数据生成驱动值、相位状态和光场模拟的图;
图5B是示出了在示例系统中接收图像数据与从图像数据生成驱动值、相位状态和光场模拟的相对时序的时序图;
图5C是概述了用于从图像数据生成驱动值、相位状态和光场模拟的示例方法的流程图;
图5D是示出了从图像数据替代地生成驱动值、相位状态和光场模拟的图;
图5E是示出了在另一示例系统中接收图像数据与从图像数据生成驱动值、相位状态和光场模拟的相对时序的时序图;
图5F是示出了在又一示例系统中接收图像数据与从图像数据生成驱动值、相位状态和光场模拟的相对时序的时序图;
图5G是概述了用于从图像数据生成驱动值、相位状态和光场模拟的另一示例方法的流程图;
图6是示出了图1的相位调制器的转换相位状态的框图;
图7A是示出了针对图1的相位调制器的代表像素的示例转换相位函数的曲线图;
图7B是示出了针对图1的相位调制器的代表像素的另一示例转换相位函数的另一曲线图;
图8是概述了用于生成光场模拟的示例方法的流程图;
图9是概述了用于生成图像的示例方法的流程图;并且
图10是概述了用于生成图像的另一示例方法的流程图。
具体实施方式
本发明通过提供一种系统和方法来克服与先前的技术相关联的问题,所述系统和方法用于生成对由相位调制SLM在转换时期期间产生的光场的光场模拟。在以下描述中,阐述了许多具体细节(例如,调制器的切换频率),以便提供对本发明的深入理解。然而,本领域技术人员将认识到,除去这些具体细节,也可以实践本发明。在其他实例中,已经省略了众所周知的投影实践的细节(例如,数据操作,例程优化等)和组件的细节,以免不必要地使本发明晦涩不清。
图1是双调制投影系统100的框图。投影系统100从图像数据生成高质量图像,并且包括光源102、相位调制器104、幅度调制器106、投影光学器件108和控制器110。光源102将平光场照射到相位调制器104上。相位调制器104是模拟液晶相位调制器,该模拟液晶相位调制器选择性地把包含该平光场的光的一部分调向(即,在空间上对光的该部分的相位进行调制)通过一组中间光学器件112并且到达幅度调制器106上,以在幅度调制器106的表面上形成中间图像。相位调制器104可以是数字调制器,但至少在本申请中,模拟调制器提供了优于数字调制器的某些优势。幅度调制器106在空间上对该中间图像进行调制以形成朝向投影光学器件108导向的最终图像。投影光学器件108包括将最终图像朝向显示屏或其他表面(未示出)导向以供观众观看的一组透镜、棱镜和/或反射镜。
控制器110基于从数据源(未示出)接收的图像数据来控制和协调投影系统100的其他元件。控制器100至少部分地基于接收的图像数据向光源102、相位调制器104和幅度调制器106提供控制指令。控制指令包括,例如,分别发送到相位调制器104和幅度调制器106的相位驱动值和幅度驱动值。每个相位驱动值是与要施加于相位调制器104的相对应的像素的电压相对应的数字值,以便使得该像素对入射于其上的光赋予特定的相位延迟(例如,π弧度)。每个幅度驱动值是与要施加于幅度调制器106的相对应的像素的时间平均电压(例如,脉冲宽度调制)相对应的多位值,以便使得该像素对入射于其上的光赋予特定的幅度变化(例如,灰度级)。相位驱动值集或幅度驱动值集是多个相位驱动值或多个幅度驱动值,每个相位驱动值或幅度驱动值分别与相位调制器104或幅度调制器106的像素相对应并且由具有与相位调制器104或幅度调制器106相同的分辨率的矩阵表示。对于调制器的每个像素具有驱动值的一个控制指令集通常被称为控制/图像数据帧。这些控制指令驱动相位调制器104和幅度调制器106,以便生成中间图像和最终图像。
控制器110包括下面详细讨论的时间光场模拟模块114,以对相位调制器104的相位状态进行建模并基于所建模的相位状态来生成中间图像的光场模拟。相位调制器104的相位状态是由相位调制器104的每个像素在特定时间处赋予的物理相位延迟的集合,由具有与相位调制器104相同的分辨率的矩阵表示。由于相位调制器104是模拟设备,所以每个相位驱动值与特定的相位延迟相对应,但每个相位延迟不一定与特定的相位驱动值相对应。可替代地,相位调制器104可以是数字设备。
在该示例实施例中,光源102是包括可调谐激光器阵列的低光学扩展量光源。在替代性实施例中,光源102可以由发光二极管(LED)阵列、可调光灯泡或任何其他合适的光源(包括那些现在已知或将要发明的光源)结合合适的光学器件来代替,以提供低光学扩展量光源。另外,相位调制器104和幅度调制器106可以分别是液晶相位空间光调制器(SLM)和液晶幅度空间光调制器(SLM)。在替代性实施例中,幅度调制器106可以是数字微镜设备(DMD)、反射硅基液晶(LCOS)设备或任何其他合适的幅度调制设备,包括那些现在已知或将要发明的幅度调制设备。
在示例实施例的描述中,为了区分用于对光进行调向以在主调制器上创建光场的SLM(相位调制器104)和对光场的所选部分进行调制以创建用于观看的图像的SLM(幅度调制器106),因此命名了相位调制器104和幅度调制器106。然而,这些术语不是用于限制意义的。例如,虽然DMD选择性地把光调向沿着或离开光学路径,但是该DMD通过对被调向进入或离开图像的光量进行时间复用以创建中间灰度级(感知上的幅度调制)而被用作幅度调制器。作为另一示例,液晶SLM选择性地更改光的相位并因此可以被认为是相位调制或光束调向设备。然而,由于液晶的双折射属性也会导致偏振旋转,所以液晶SLM可以与内部偏振器或外部偏振器一起使用以提供幅度调制。因此,被称为“幅度调制器”、“相位调制器”或“光束调向调制器”的设备被理解为包括能够单独或与其他设备组合地执行发明名称功能的任何设备。此外,尽管相位调制器104和幅度调制器106在图1中表现为透射设备,但相位调制器104和幅度调制器106也可以是,并且更可能是反射设备。
图2A是示出了用于在投影系统100中生成图像的示例方法的时序图。首先,控制器110以60帧每秒(fps)的速率接收图像数据。然后,由于相位调制器104不能足够快的切换来以与接收图像数据相同的速率接收相位驱动值集,所以控制器110使用图像数据帧中的一半(例如,每隔一帧)以减小的速率(在该示例实施例中为30fps)来生成相位驱动值集。控制器110将相位驱动值集发送到相位调制器104,以使得相位调制器104在幅度调制器106上产生中间图像(图1)。接下来,控制器110至少部分地基于相位驱动值以60fps的速率对相位调制器104的相位状态进行建模。如本文所使用的,术语“建模”包括基于相位调制器104的像素的响应的现有模型来确定特定的相位状态。相位状态中被称为稳定相位状态的一半相位状态指示当在稳定状态下(即,在相位调制器104的所有像素已完全响应了由相位驱动值指示的施加的电压之后)由相位驱动值驱动相位调制器104时在相位调制器104上的空间相位延迟分布。相位状态中被称为转换相位状态的另一半相位状态指示当相位调制器104在一个相位驱动值集和下一个相位驱动值集之间(例如,在连续的稳定状态之间)转换时在相位调制器104上的空间相位延迟分布。有效地,控制器110将相位驱动值集转变为稳定相位状态,并且基于相位调制器104在连续的稳定相位状态之间的转换,通过以30fps的速率生成另外的转换相位状态来对相位状态在时间上进行上采样,以便为每个图像数据帧生成相位状态(60fps)。接下来,控制器110利用相位状态来以60fps的速率生成由相位调制器104生成并入射在幅度调制器106上的中间图像的光场模拟。由于相位状态指示相位调制器104将如何对入射光场进行调制,所以可以使用相位状态来可靠地估计所产生的中间图像(即,入射在幅度调制器106上的光场)。最后,控制器110利用光场模拟以60fps的速率生成用于驱动幅度调制器106的幅度驱动值集,以便根据图像数据生成最终图像。
图2B是示出了用于在投影系统100中生成图像的替代性方法的时序图。控制器110以24fps的速率(用于几乎所有电影摄影学的帧速率)接收图像数据,使用所有图像数据帧以相等的速率(24fps)生成相位驱动值,并且将相位驱动值提供给相位调制器104。控制器110还从相位驱动值生成相位状态,但是以增加的速率(在该示例中为48fps)。有效地,控制器110以24fps的速率将相位驱动值集转变为稳定相位状态,并且通过以24fps的速率生成另外的转换相位状态来对相位状态在时间上进行上采样,以便为每个图像数据帧生成两个相位状态(48fps)。接下来,控制器110利用相位状态以48fps的速率生成由相位调制器104生成并入射在幅度调制器106上的中间图像的光场模拟。最后,控制器110利用光场模拟以48fps的速率生成用于驱动幅度调制器106的幅度驱动值集,以便生成没有伪像的最终图像,该伪像否则可能通过相位调制器104的转换而导致。
图2C是示出了用于在投影系统100中生成图像的又一替代性方法的时序图。图2C实质上与图2B类似,除了控制器110(以96fps的速率)为接收的每个图像数据帧生成4个相位状态。控制器110还以96fps的速率生成光场模拟和幅度驱动值集,从而提供增强的图像质量。可以针对每个图像数据帧生成任意数量的相位状态。随着SLM的切换频率和当前计算技术这两者的提高,相位状态的数量可以无限地增加。另外,可以期望以比幅度调制器106能够切换的频率更高的频率生成相位状态。例如,在具有能够以相位调制器两倍快的频率切换的幅度调制器的系统中,可以期望以1:4的比率生成相位驱动值集和相位状态,并且当生成光场模拟时计算转换相位状态的平均值。
图3是示出控制器110的框图,该控制器110包括数据传递接口302,非易失性数据存储装置304,一个或多个处理单元306以及工作存储器308。控制器110的组件经由在控制器110的组件之间互联的系统总线310彼此通信。数据传递接口302控制包括图像数据和控制指令的数据去往控制器110和来自控制器110的传递。非易失性数据存储装置304存储数据和代码,并且即使当控制器110断电时也可以留存数据和代码。一个或多个处理单元306通过执行存储在非易失性数据存储装置304和/或工作存储器308中的代码来将功能赋予给控制器110。
工作存储器308为数据和代码提供暂时存储。控制器110的某个功能通过在工作存储器308内示出的数据和代码模块表示。如通过一个或多个处理单元306执行代码所确定的,将数据和代码模块被从非易失性数据存储装置304(全部或部分地)传递到工作存储器308中并且传递出工作存储器308。数据和代码模块可以例如利用硬件、软件和/或固件的任何组合来实施。
工作存储器308包括控制/协调模块312、数据缓冲器314、通信模块316、系统配置设置318、相位驱动模块320、时间光场模拟模块114以及幅度驱动模块322。控制/协调模块312是提供控制器110的其他功能方面的整体协调和控制的更高级别的程序。数据缓冲器314暂时存储要由控制器110的其他组件利用的数据。通信模块316促进与外部设备的通信,以便发送/接收代码和/或控制指令。系统信息模块318包括被控制器110的其他组件利用的关于投影系统100的信息(例如,光学设定、组件的龄值、组件的技术规格等)。相位驱动模块320包括用于从图像数据生成相位驱动值集的数据和算法。时间光场模拟模块114包括用于对相位调制器104的相位状态进行建模并且基于相位状态生成由相位调制器104产生的中间图像的光场模拟的数据和算法。幅度驱动模块322包括用于从图像数据和光场模拟生成幅度驱动值集的数据和算法。
图4A是示出图1的控制器的模块中的某些模块之间的示例数据流的框图。在该示例实施例中,图4A中所示的模块在控制器110的工作存储器308(图3)内存储并执行。首先,相位驱动模块320从数据传递接口302(图3)接收图像数据。相位驱动模块320通过使用各种方法和/或算法中的一种(或多种)基于图像数据生成用于驱动相位调制器104(图1)的相位驱动值集。相位驱动值集被提供给驱动相位调制器104并且还被提供给时间光场模拟模块114,以用于生成相位状态以及生成对在幅度调制器106上的相对应的光场的模拟。光场模拟模块114通过使用各种方法和/或算法中的一种(或多种)基于相位驱动值集确定相位驱动模块104的相位状态并且基于相位状态生成相对应的光场模拟。直接将光场模拟提供给幅度驱动模块322。幅度驱动模块322使用一种(或多种)方法和/或算法基于光场模拟和图像数据生成用于驱动幅度调制器106的幅度驱动值集。经由数据传递接口302(图3)提供幅度驱动值集以驱动幅度调制器106。
在该示例实施例中,相位驱动模块320、时间光场模拟模块114和幅度驱动模块322各自利用来自系统信息模块318的有关数据。例如,时间光场模拟模块114可以利用来自系统信息模块318的关于相位调制器104的信息来对相位调制器104在连续的稳定相位状态之间的相位转换进行建模。关于相位调制器104的有关信息的示例包括但不限于相位调制器104的龄值、相位调制器104的液晶层的物理特性、相位调制器104的温度、电压/相位延迟转换曲线等。相位驱动模块320和时间光场模拟模块114还可以利用来自系统信息模块318的描述光学器件112和/或光源102的特性的数据,以便对由相位调制器104生成的光场进行模拟。关于光学器件112和/或光源102的有关信息的示例包括但不限于入射在相位调制器104上的光场的物理特性(例如,强度、一个或多个波长等)、光场的历史记录(例如,在相位调制器104的寿命期内入射光的总量)等。光场模拟模块114还可以结合相位驱动值来使用关于相位调制器104的信息,以生成改进的光场模拟。例如,光场模拟模块可以基于特定的相位驱动值集来估计相位调制器104的相邻像素之间的串扰的影响。通过使用前述信息中的任何信息或其组合,相位驱动模块320、时间光场模拟模块114以及幅度驱动模块322一起能够生成经由投影系统100产生更高质量图像的光束调向和幅度驱动值。
图4B是示出了当根据以上参考图2B描述的方法进行操作时,控制器110的模块中的某些模块之间的数据流的框图。具体地,相位驱动模块320以24fps的速率接收图像数据并且以24fps的速率输出相位驱动值集。相位驱动值集由时间光场模拟模块114接收并用于以48fps的速率生成光场模拟(例如,针对每个相位驱动值集生成两个光场模拟)。光场模拟连同原始图像数据帧由幅度驱动模块322接收。幅度驱动模块322利用光场模拟和图像数据帧以48fps的速率生成幅度驱动值。
图4C是示出了当根据以上参考图2C描述的方法进行操作时,控制器110的模块中的某些模块之间的数据流的框图。具体地,相位驱动模块320以24fps的速率接收图像数据并且以24fps的速率输出相位驱动值集。相位驱动值集由时间光场模拟模块114接收并用于以96fps的速率生成光场模拟(例如,针对每个相位驱动值集生成四个光场模拟)。光场模拟连同原始图像数据帧由幅度驱动模块322接收。幅度驱动模块322利用光场模拟和图像数据帧以96fps的速率生成幅度驱动值。
图5A是示出了生成与多个视频数据502(1-5)帧相对应的驱动值、相位状态和光场模拟的图。正如将变得清楚的是,各种驱动值、相位状态和光场模拟布置于相关联的图像数据帧之下,各种驱动值、相位状态和光场模拟出于显示目的而与相关联的图像数据帧相对应。然而,图5A不是时序图。因此,驱动值、相位状态和光场模拟不必需在帧时间(在图5A中驱动值、相位状态和光场模拟显示于该帧时间中)期间生成。然而,时间是用于确定中间相位状态的因素,并且因此,基于那些中间相位状态来影响光场模拟和幅度驱动值。例如,可以部分地基于一个或多个随后接收的图像数据帧来确定用于针对特定的图像数据帧计算光场模拟的某些转换相位状态。下面将参考图5B解释用于生成这些值的相对时序的示例。
在第一帧列502(1)中,图像数据504(1)帧被接收并被用于生成相位驱动值506(1)集。相位驱动值506(1)用于确定稳定相位状态508(1)。稳定相位状态508(1)用于生成光场模拟510(1),并且光场模拟510(1)用于连同图像数据504(1)生成幅度驱动值512(1)集。
在第二帧列502(2)中,第二图像数据504(2)帧被接收,但由于相位调制器104不能以接收图像数据的相对更高频率进行切换,所以不基于第二图像数据504(2)帧生成相位驱动值。代替地,基于稳定相位状态508(1)和第三帧列502(3)的稳定相位状态508(3)来确定转换相位状态508(2)。稳定相位状态508(3)被以与稳定相位状态508(1)相同的方式确定(即,从图像数据504(3)生成稳定相位状态508(3))。转换相位状态508(2)指示相位调制器104在由相位驱动值506(1)和相位驱动值506(3)驱动之间的转换期间的相位状态。
所有奇数帧列(例如,帧502(1)、帧502(3)、帧502(5)等)是类似的,因为它们包括相位驱动值506。所有偶数帧列(例如,帧502(2)、帧502(4)等)是类似的,因为它们不包括相位驱动值506。相位驱动值506中的每个被用作初始驱动状态(用于随后的帧)和最终驱动状态(用于先前的帧),以用于对相位调制器104的转换进行建模。这种模式在所有图像数据504帧上继续。
图5B是示出了接收图像数据并由此生成驱动值、相位状态和光场模拟的相对时序的时序图。针对每隔一图像数据帧生成相位驱动值(标记为PDV)集。针对每个图像数据帧计算相位调制器104的相位状态(标记为PS),计算光场模拟(标记为LFS),计算幅度驱动值(标记为ADV)集,在相位调制器104上确立PDV,并且在幅度调制器106上确立ADV。然而,由于需要与特定的帧相对应的PDV来计算先前的帧的PS,所以对于给定的帧,并非所有这些步骤都顺序地发生。
图5B示出了用于执行用于在投影系统100中显示图像所必需的动作中的每个动作的相对时序。多个列514中的每一列(标记为“TI”、“T2”等)指的是时间段(例如,帧时间)。多个行516中的每一行(标记为“接收数据”、“生成PDV”等)指的是作为显示图像的一部分所执行(在该示例实施例中由控制器110执行)的动作。在第一时间段T1期间接收第一图像数据帧(帧1)。然后,在第二时间段T2期间接收第二图像数据帧并且生成和/或计算都与帧1相对应的PDV1、PS1、LFS1和ADV1。在时间段T2期间(或者至少到T3开始),PDV1也被确立至相位调制器104上。由于在相位调制器104上确立相位驱动值和相位调制器104达到稳定状态之间存在延迟,所以直到第三时间段T3 ADV1才被确立至幅度调制器106上。代替地,幅度调制器106利用零状态驱动。可替代地,基于相位调制器104的初始状态和PDV1可以计算转换相位状态,其中,在第二时间段T2期间基于转换相位状态计算并确立ADV1。
接下来,在第四时间段T4期间接收第四图像数据帧,并且生成与帧3的图像数据相对应的PDV3以及都与帧2的图像数据相对应的PS2、LFS2和ADV2。由于PS2由PDV1和PDV3共同确定,所以PS2可以在确定PDV3之后被生成。另外,在相位调制器104上确立PDV3,从而发起PS1与PS3之间的转换(建模为确定PS2的一部分),并且在幅度调制器106上确立(与PS2和LFS2相对应的)ADV2。
然后,在第五时间段T5期间接收第五图像数据帧,生成PS3、LFS3和ADV3,并且在幅度调制器106上确立ADV3。显示图像的过程继续以这种方式进行,其中每个相位状态(以及相对应的光场模拟和幅度驱动值集)的生成在接收到相对应的图像数据帧之后滞后了两个时间段。另外,每个幅度驱动值集的确立在接收到相对应的图像数据之后滞后了两个时间段,并且在确立相对应的相位驱动值集之后滞后了一个时间段。
图5C是概述了用于从图像数据生成驱动值、相位状态和光场模拟的示例方法520的流程图。在以下说明中,当前PDV与在步骤522中接收的最新图像数据帧相对应,而先前的PS、先前的LFS和先前的ADV与在步骤522中接收的最新图像数据帧之前接收的图像数据帧相对应。在第一步骤522中,接收图像数据帧。然后,在第二步骤524中,确定是否针对先前的帧生成了相位驱动值集。如果针对先前的帧生成了相位驱动值集,则方法520继续到第三步骤526,在该步骤526中,基于先前的帧的相位驱动值来计算/确定先前的相位状态、先前的光场模拟和先前的幅度驱动值集。然后,在第四步骤528中,在幅度调制器上确立先前的幅度驱动值,并且在第五步骤530中,确定是否存在任何更多即将到来的图像数据。如果没有更多即将到来的图像数据,则方法520结束。否则,方法520返回到接收下一图像数据帧的第一步骤522。
如果在第二步骤524中确定没有针对先前的帧生成相位驱动值集,则方法520进行到第六步骤532,在该步骤532中,基于当前图像数据帧(即,在步骤522的最新迭代中接收的帧)生成相位驱动值集。接下来,在第七步骤534中,至少部分地基于当前相位驱动值集来计算先前的相位状态、先前的光场模拟和先前的幅度驱动值集。在第七步骤534中,所计算的先前的相位状态是相位调制器从在先的相位状态转换为与在第六步骤532中生成的相位驱动值相对应的相位状态的转换相位状态。然后,在第八步骤536中,在相位调制器上确立当前相位驱动值集,并且方法520进行到第四步骤528。
图5D是示出了根据以上参考图2B和图2C描述的方法生成与两个视频数据504(6-7)帧相对应的驱动值、相位状态和光场模拟的图。类似于图5A,图5D不是时序图,并且仅仅示出了如何利用数据/利用哪些数据生成用于显示与输入图像数据相对应的图像的驱动值、相位状态和光场模拟。然而,时间是用于确定中间相位状态的因素,并且因此,基于那些中间相位状态来影响光场模拟和幅度驱动值。
图像数据504(6)的第六帧用于生成相位驱动值506(6)集。相位驱动值506(6)用于确定稳定相位状态508(6.1)。稳定相位状态508(6.1)用于生成光场模拟510(6.1),并且光场模拟510(6.1)用于连同图像数据504(6)生成幅度驱动值512(6.1)集。
图像数据504(7)的第七帧用于生成相位驱动值506(7)集。相位驱动值506(7)用于确定稳定相位状态508(7.1)。稳定相位状态508(7.1)用于生成光场模拟510(7.1),并且光场模拟510(7.1)用于连同图像数据504(7)生成幅度驱动值512(7.1)集。
另外,利用相位驱动值506(6)和相位驱动值506(7)生成至少一个转换相位状态508(6.2)。还可以生成另外的转换相位状态508(6.n)。转换相位状态508(6.2-6.n)描述相位调制器104在用稳定相位状态508(6.1)驱动相位调制器104时和用稳定状态508(7.1)驱动相位调制器104时之间的各个时间处的相位状态。基于投影系统100的特定应用程序,可以生成任何数量的转换相位状态508。转换相位状态508(6.2-6.n)中的每个用于生成相对应的光场模拟510(6.2-6.n)。最后,光场模拟510(6.2-6.n)中的每个用于连同图像数据504(6)生成相对应的幅度驱动值512(6.2-6.n)。
图5E是示出了在顺序图像数据帧之间生成单个转换相位状态的情况下接收图像数据并生成驱动值、相位状态和光场模拟的相对时序的时序图。针对每个图像数据帧计算一个相位驱动值(PDV)集、两个相位状态(PS)、两个光场模拟(LFS)和两个幅度驱动值(ADV)集。在相位调制器104上确立PDV,并且在幅度调制器106上确立ADV。然而,由于需要与特定的帧相对应的PDV来计算先前的帧的PS,所以对于给定的帧,并非所有这些步骤都顺序地发生。
图5E示出了用于执行用于在投影系统100中显示图像所必需的动作中的每个动作的相对时序。列514中的每列与幅度调制器106的特定的帧时间(在该示例中为48fps)相对应。在第一时间段T1期间接收第一图像数据帧(帧1)。然后,在第二时间段T2期间生成和/或计算PDV1。任选地,可以利用PDV1和相位调制器104的初始(先前的)状态(例如,开、关等)来计算转换相位状态PS0.2。也可以计算相对应的LFS0.2和ADV0.2。在时间段T2期间(或者至少到T3开始),分别在相位调制器104和幅度调制器106上确立PDV1和ADV0.2。
在第三时间段T3期间,接收第二图像数据帧。另外,在时间段T3期间,生成PS1.1(与在稳定状态下的PDV1相对应)、LFS1.1和ADV1.1并且在幅度调制器106上确立ADV1.1。接下来,在第四时间段T4期间,生成与帧2的图像数据相对应的PDV2以及都与相位调制器104在帧1和帧2之间的转换状态相对应的PS1.2、LFS1.2和ADV1.2。由于PS1.2由PDV1和PDV2两者确定,所以只有在确定PDV2之后才可以生成PS1.2。另外,在相位调制器104上确立PDV2,从而发起PS1.1和PS2.1之间的转换(建模为确定PS1.2的一部分),并且在幅度调制器106上确立ADV1.2(与PS1.2和LFS1.2相对应)。
然后,在第五时间段T5期间,接收第三图像数据帧,生成PS2.1、LFS2.1和ADV2.1,并且在幅度调制器106上确立ADV2.1。显示图像的过程继续以这种方式进行,其中每个稳定相位状态(以及相对应的光场模拟和幅度驱动值集)的生成在接收到相对应的图像数据帧之后滞后了两个时间段。另外,确立与稳定状态相对应的幅度驱动值在确立相对应的相位驱动值集之后滞后了一个时间段。
图5F是示出了在顺序图像数据帧之间生成三个转换相位状态的情况下接收图像数据以及生成驱动值、相位状态和光场模拟的相对时序的时序图。针对每个图像数据帧计算一个相位驱动值集、四个相位状态、四个光场模拟和四个幅度驱动值集。在相位调制器104上确立PDV,并且在幅度调制器106上确立ADV。然而,由于需要与特定的帧相对应的PDV来计算先前的帧的PS,所以对于给定的帧,并非所有这些步骤都顺序地发生。
图5F示出了用于执行用于在投影系统100中显示图像所必需的动作中的每个动作的相对时序。列514中的每列与幅度调制器106的帧速率(在该示例中为96fps)相对应。在第一时间段T1期间,接收第一图像数据帧(帧1)。然后,在第二时间段T2期间,生成和/或计算PDV1。任选地,可以利用PDV1和相位调制器104的初始状态(例如,开,关等)来计算转换相位状态PS0.2。还计算了相对应的LFS0.2和ADV0.2。在时间段T2期间(或者至少到T3开始),分别在相位调制器104和幅度调制器106上确立PDV1和ADV0.2。接下来,在第三时间段T3期间,生成另一转换相位状态PS0.3以及相对应的LFS0.3和ADV0.3,并且在幅度调制器106上确立ADV0.3。然后,在第四时间段T4期间,生成又一转换相位状态PS0.4以及相对应的LFS0.4和ADV0.4,并且在幅度调制器106上确立ADV0.4。
在第五时间段T5期间,接收第二图像数据帧。另外,在时间段T5期间生成PS1.1(与在稳定状态下的PDV1相对应)、LFS1.1和ADV1.1,并且在幅度调制器106上确立ADV1.1。接下来,在第六时间段T6期间,生成与帧2的图像数据相对应的PDV2以及都与相位调制器104在帧1与帧2之间的转换状态相对应的PS1.2、LFS1.2和ADV1.2。由于PS1.2由PDV1和PDV2两者确定,所以只有在确定PDV2之后才可以生成PS1.2。另外,在相位调制器104上确立PDV2,从而发起PS1.1和PS2.1之间的转换(建模为确定PS1.2的一部分),并且在幅度调制器106上确立ADV1.2(与PS1.2和LFS1.2相对应)。然后,在第七时间段T7期间,生成另一转换相位状态PS1.3以及相对应的LFS1.3和ADV1.3,并且在幅度调制器106上确立ADV1.3。然后,在第八时间段T8期间,生成又一转换相位状态PS1.4以及相对应的LFS1.4和ADV1.4,并且在幅度调制器106上确立ADV1.4。
然后,在第九时间段T9期间,接收第三图像数据帧,生成PS2.1、LFS2.1和ADV2.1,并且在幅度调制器106上确立ADV2.1。显示图像的过程继续以这种方式进行,其中每个稳态相位状态(例如,PS x.1)(以及相对应的光场模拟和幅度驱动值集)的生成在接收到相对应的图像数据帧之后滞后了四个时间段。另外,确立与稳定状态相对应的幅度驱动值在确立相对应的相位驱动值集之后滞后了三个时间段。
图5G是概述了用于从图像数据生成驱动值、相位状态和光场模拟的示例方法540的流程图。在第一步骤542中,接收图像数据帧。然后,在第二步骤544中,基于当前图像数据帧生成当前相位驱动值(PDV)集。接下来,在第三步骤546中,在相位调制器上确立当前PDV。然后,在第四步骤548中,基于当前PDV集和先前的PDV集中的至少一个来生成相位状态。接下来,在第五步骤550中,基于相位状态来生成光场模拟(LFS)。然后,在第六步骤552中,基于LFS生成幅度驱动值(ADV)集。接下来,在第七步骤554中,在幅度调制器上确立ADV。然后,在第八步骤556中,确定是否有更多的中间相位状态要生成。如果有更多的中间相位状态要生成,则方法540返回到步骤548。如果没有更多的中间相位状态要生成,则方法540继续到第九步骤558,在该步骤558中确定是否有更多的图像数据帧要接收。如果有更多的图像数据帧要接收,则方法540返回到步骤542。否则,方法540终止。
图6是示出了相位调制器104的转换相位状态的框图。相位调制器104包括排列在n行604和m列606中的多个像素组602。在稳定相位状态之间的转换期间,每组像素根据相位方程
Figure GDA0003401430900000201
在初始相位延迟(与先前的相位驱动值集相对应)和最终相位延迟(与下一个相位驱动值集相对应)之间转换。相位方程指示像素的相位延迟随着转换的时间段如何变化。每组像素(或每个像素,取决于组大小)具有各自的相位方程,该相位方程基于多种因素,包括但不限于来自相邻像素的空间串扰、用于施加驱动电压(例如,跨液晶单元的恒定或变化的电压)的驱动方案、相位调制器104的液晶层厚度、相位调制器104的温度、液晶材料的属性(例如化学成分、粘度、导向等)、相位调制器104的龄值、入射在相位调制器104上的光场的属性(例如波长、功率等)以及在相位调制器104的寿命期内入射于其上的光的总量。时间光场模拟模块114利用数据基于这些因素中的至少一个子集来使用和/或生成用于每个像素的相位方程。投影系统100的用户/制造商可以基于计算效率和图像质量之间的权衡来决定将哪些因素包括在相位方程中以生成具有期望准确度的方程。
在转换期间的任何时间处,相位调制器104的相位状态可以通过以下矩阵数学地表示:
Figure GDA0003401430900000211
其中
Figure GDA0003401430900000212
与分辨率为n×m像素的相位调制器上的第i行和第j列中的像素的相位延迟相对应。向矩阵输入特定的时间(即,在特定时间处对每个相位函数进行求值)提供了相位调制器在该时间处的相位状态。然后,可以使用该相位状态来确定由相位调制器在该时间处生成的光场。
图7A是示出了示例相位函数702的曲线图700。相位函数702示出了相对应的像素随着时间对新的、更高的驱动电压的相位延迟响应。在初始时间ti之前,利用初始电压驱动与相位函数702相对应的像素,从而与初始(稳定状态)相位延迟
Figure GDA0003401430900000213
相对应。在时间ti处,在像素上确立新的电压,使得像素的液晶层被驱动到与新的电压相对应的状态。作为结果,由像素赋予的相位延迟也作出改变。在最终时间tf处,像素已达到新的稳定状态,从而赋予最终相位延迟
Figure GDA0003401430900000214
在该示例实施例中,相位函数702具有以下形式:
Figure GDA0003401430900000215
其中,
Figure GDA0003401430900000216
是像素在时间t处的相位延迟,并且A,B和C是由时间光场模拟模块114基于所计算的影响转换的因素确定/使用的常数。可以例如通过在各种条件下对调制器像素进行测试以确定所计算的因素中的每个对转换的影响来凭经验地确定常数A,B和C。然后,光场模拟模块114可以基于调制器的特性以及由此产生的对转换的影响来确定常数。
在该示例实施例中,相位函数702可以用于确定用于生成转换相位状态的转换相位延迟。中间时间(例如,ti和tf之间的中途时间)被选择用于对相位函数702进行求值。中间时间被选择以与幅度调制器106的时序相一致。然后,将中间时间输入到输出相位延迟的相位函数702。输出相位延迟是像素在中间时间处的相位延迟。事实上,相位函数702可以提供像素在初始时间和最终时间之间的任何时间处的相位延迟并且可以用于确定在无限多个时间处的无限多个相位延迟。作为替代,可以通过对以下积分进行求值对相位函数702在时间段内进行平均:
Figure GDA0003401430900000221
其中,t1和t2分别是该时间段的下边界和上边界。
图7B是示出了另一示例相位函数706的曲线图704。相位函数706示出了相对应的像素随着时间对新的、更低的驱动电压的相位延迟响应。在初始时间ti之前,利用初始电压驱动与相位函数706相对应的像素,从而与初始(稳定状态)相位延迟
Figure GDA0003401430900000222
相对应。在时间ti处,在像素上确立新的电压,使得像素的液晶层松弛(relax)到与新的电压相对应的状态。作为结果,由像素赋予的相位延迟也作出改变。在最终时间tf处,像素已达到新的稳定状态,从而赋予最终相位延迟
Figure GDA0003401430900000223
在该示例实施例中,相位函数702具有以下形式:
Figure GDA0003401430900000224
其中,
Figure GDA0003401430900000225
是像素在时间t处的相位延迟,并且A,B和C是由时间光场模拟模块114基于所计算的影响转换的因素确定/使用的常数。
在相位驱动值集之间的转换期间,可以基于是否分别用高于或低于先前驱动电压的电压驱动像素通过相位函数702或相位函数706的形式的相位函数来描述相位调制器104的任何像素的相位延迟。时间光场模拟模块114确定利用哪种形式以及所需常数的值以针对每个像素确定特定的相位函数。然后,时间光场模拟模块114可以在转换期间的任何时间处为每个像素计算相位延迟(或者在任何时间段内针对每个像素计算平均相位延迟),以确定相位调制器104在转换期间的任何时间处的相位状态。
图8是概述了用于生成光场模拟的示例方法800的流程图。在第一步骤802中,利用第一驱动值集来驱动光束调向SLM,以将光束调向SLM放置在第一时间处的第一状态中。接下来,在第二步骤804中,利用第二驱动值集来驱动光束调向SLM,该第二驱动值集使得光束调向SLM从光束调向SLM的第一状态转换为在第二时间处的第二状态。光束调向SLM的第二状态与第二驱动值集相关联。然后,在第三步骤806中,对光束调向SLM从第一状态到第二状态的转换进行建模。接下来,在第四步骤808中,至少部分地基于光束调向SLM的转换的模型来确定光束调向SLM在第三时间处(在第一时间和第二时间之间发生)的第三状态。然后,在第五步骤810中,至少部分地基于光束调向SLM的第三状态,生成由光束调向SLM在第三时间处生成的光场的光场模拟。
图9是概述了用于在多调制投影系统中生成图像的示例方法900的流程图。在第一步骤902中,接收第一图像数据帧。然后,在第二步骤904中,接收第二图像数据帧。接下来,在第三步骤906中,生成用于驱动相位调制空间光调制器(SLM)的第一相位驱动值集。该第一相位驱动值集是至少部分地基于第一图像数据帧的。然后,在第四步骤908中,在第一时间段期间,利用第一相位驱动值集来驱动相位调制SLM。接下来,在第五步骤910中,接收第三图像数据帧。然后,在第六步骤912中,生成用于驱动相位调制SLM的第二相位驱动值集。该第二相位驱动值集是至少部分地基于第三图像数据帧的。接下来,在第七步骤914中,在第二时间段期间,利用第二相位驱动值集来驱动相位调制SLM。然后,在第八步骤916中,在第二时间段期间对相位调制SLM的转换状态进行建模。转换状态是至少部分地基于第一相位驱动值集和第二相位驱动值集的。接下来,在第九步骤918中,生成光场模拟集。该光场模拟集包括光场模拟集中与第一相位驱动值集相对应的第一子集、光场模拟集中与第二相位驱动值集相对应的第二子集以及光场模拟集中与相位调制SLM的转换状态中的一个或多个转换状态相对应的第三子集。然后,在第十步骤920中,生成用于驱动幅度调制SLM的幅度驱动值集。幅度驱动值集中的每个幅度驱动值集基于和/或对应于光场模拟集中的一个光场模拟集。然后,在第十一步骤922中,利用幅度驱动值集来驱动幅度调制SLM。
图10是概述了在多调制投影系统中生成图像的示例方法1000的流程图。在第一步骤1002中,接收(n个)图像数据帧。图像数据帧包括与第二组帧交错的第一组帧。然后,在第二步骤1004中,生成(m个)相位驱动值帧。每个相位驱动值帧是至少部分地基于第一组帧中相关联的图像数据帧的并使得相位调制空间光调制器(SLM)处于相关联的相位状态中,以生成与相关联的图像数据帧相对应的光场。接下来,在第三步骤1006中,确定相位调制SLM的(p个)转换相位状态。转换相位状态中的每个指示由相位调制SLM在转换时期期间生成的光场并且与第二组帧中的图像数据帧中的一个图像数据帧相对应。然后,在第四步骤1008中,基于相位驱动值和转换相位状态生成光场模拟集。光场模拟中的每个指示由相位调制SLM生成并入射在幅度调制SLM上的光场。然后,在第五步骤1010中,基于光场模拟集和图像数据帧生成幅度驱动值集。幅度驱动值集中的每个使得幅度SLM在空间上对入射在幅度SLM上的光场中的相对应的一个光场进行调制,以生成与图像数据相对应的图像。
现已完成对本发明的特定实施例的描述。在不脱离本发明的范围的情况下,所描述的特征中的许多特征可以被替代,改变或省略。例如,当对相位调制SLM的像素的相位函数进行建模时,可以使用可替代的因素。作为另一示例,可以利用可替代的系统架构(例如,具有附加的调制器的那些系统架构)。事实上,本发明可以结合到任何系统中,在该系统中以高于调制器本身能够切换的频率来对调制器的光场进行模拟将是有用的。与所示的特定实施例的这些和其他偏差对于本领域技术人员而言将是显而易见的,特别是鉴于前述公开。从以下列举的示例实施例(EEE)中可以理解本发明的各个方面:
EEE 1.在投影系统中,一种用于生成光场模拟的方法,所述方法包括:
利用第一驱动值集来驱动光束调向空间光调制器(SLM),以将所述光束调向SLM放置在第一时间处的第一状态中;
利用第二驱动值集来驱动所述光束调向SLM,所述第二驱动值集使得所述光束调向SLM从所述光束调向SLM的所述第一状态转换为所述光束调向SLM在第二时间处的第二状态;
对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模;
至少部分地基于所述光束调向SLM的所述转换的所述模型确定所述光束调向SLM在第三时间处的第三状态,所述第三时间在所述第一时间与所述第二时间之间发生;并且
至少部分地基于所述光束调向SLM的所述第三状态生成由所述光束调向SLM在所述第三时间处生成的光场的光场模拟。
EEE 2.根据EEE 1所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于所述光束调向SLM的龄值来对所述光束调向SLM的所述转换进行建模。
EEE 3.根据EEE 1或EEE 2所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于所述光束调向SLM的所述第一状态和所述第二状态来对所述光束调向SLM的所述转换进行建模。
EEE 4.根据EEE 1-3中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于所述光束调向SLM的液晶层的物理特性来对所述光束调向SLM的所述转换进行建模。
EEE 5.根据EEE 1-4中任一项所述的方法,其中:
所述光束调向SLM包括多个像素;并且
对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:逐像素地对所述光束调向SLM的所述转换进行建模。
EEE 6.根据EEE 1-5中任一项所述的方法,其中:
所述光束调向SLM包括多个像素;并且
对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于所述多个像素中的像素之间的串扰来对所述光束调向SLM的所述转换进行建模。
EEE 7.根据EEE 1-6中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于所述光束调向SLM的温度来对所述光束调向SLM的所述转换进行建模。
EEE 8.根据EEE 1-7中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于入射在所述光束调向SLM上的光场的强度来对所述光束调向SLM的所述转换进行建模。
EEE 9.根据EEE 1-8中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于入射在所述光束调向SLM上的光场的物理属性来对所述光束调向SLM的所述转换进行建模。
EEE 10.根据EEE 1-9中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:至少部分地基于在所述光束调向SLM的寿命期内入射在所述光束调向SLM上的光的总量来对所述光束调向SLM的所述转换进行建模。
EEE 11.根据EEE 1-10中任一项所述的方法,其中,对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模的所述步骤包括:
生成转换函数,所述转换函数指示时间和由所述光束调向SLM的像素赋予入射光场的相位延迟之间的关系;并且
确定所述转换函数在所述第三时间处的值。
EEE 12.根据EEE 11所述的方法,其中,确定所述转换函数在所述第三时间处的值的所述步骤包括:确定所述转换函数在包括所述第三时间的时间段内的平均值。
EEE 13.根据EEE 1-12中任一项所述的方法,还包括至少部分地基于所述光束调向SLM的所述转换的所述模型来确定所述光束调向SLM在多个时间处的的多个状态,所述多个时间中的每个时间在所述第一时间和所述第二时间之间发生。
EEE 14.一种用于控制投影系统的控制器,所述控制器包括:
处理单元,所述处理单元被配置为执行代码的;
接口,所述接口耦接以接收指示要显示的至少一个图像的图像数据;以及
存储器,所述存储器电耦接以存储数据和所述代码,所述数据和所述代码包括:
光束调向驱动模块,所述光束调向驱动模块被配置为:
利用第一驱动值集来驱动光束调向空间光调制器(SLM),以将所述光束调向SLM放置在第一时间处的第一状态中,并且
利用第二驱动值集来驱动所述光束调向SLM,所述第二驱动值集使得所述光束调向SLM从所述光束调向SLM的所述第一状态转换为所述光束调向SLM在第二时间处的第二状态,以及
时间光场模拟模块,所述时间光场模拟模块被配置为:
对所述光束调向SLM从所述第一状态到所述第二状态的所述转换进行建模;
至少部分地基于所述光束调向SLM的所述转换的所述模型确定所述光束调向SLM在第三时间处的第三状态,所述第三时间在所述第一时间与所述第二时间之间发生;并且
至少部分地基于所述光束调向SLM的所述第三状态生成由所述光束调向SLM在所述第三时间处生成的光场的光场模拟。
EEE 15.根据EEE 14所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光束调向SLM的龄值来对所述光束调向SLM的所述转换进行建模。
EEE 16.根据EEE 14或EEE 15所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光束调向SLM的所述第一状态和所述第二状态来对所述光束调向SLM的所述转换进行建模。
EEE 17.根据EEE 14-16中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光束调向SLM的液晶层的物理特性来对所述光束调向SLM的所述转换进行建模。
EEE 18.根据EEE 14-17中任一项所述的控制器,其中:
所述光束调向SLM包括多个像素;并且
所述时间光场模拟模块被配置为:逐像素地对所述光束调向SLM的所述转换进行建模。
EEE 19.根据EEE 14-18中任一项所述的控制器,其中:
所述光束调向SLM包括多个像素;并且
所述时间光场模拟模块被配置为:至少部分地基于所述多个像素中的像素之间的串扰来对所述光束调向SLM的所述转换进行建模。
EEE 20.根据EEE 14-19中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光束调向SLM的温度来对所述光束调向SLM的所述转换进行建模。
EEE 21.根据EEE 14-20中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于入射在所述光束调向SLM上的光场的强度来对所述光束调向SLM的所述转换进行建模。
EEE 22.根据EEE 14-21中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于入射在所述光束调向SLM上的光场的物理属性来对所述光束调向SLM的所述转换进行建模。
EEE 23.根据EEE 14-22中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于在所述光束调向SLM的寿命期内入射在所述光束调向SLM上的光的总量来对所述光束调向SLM的所述转换进行建模。
EEE 24.根据EEE 14-23中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:
生成转换函数,所述转换函数指示时间和由所述光束调向SLM的像素赋予入射光场的相位延迟之间的关系;并且
确定所述转换函数在所述第三时间处的值。
EEE 25.根据EEE 24所述的控制器,所述时间光场模拟模块被配置为:确定所述转换函数在包括所述第三时间的时间段内的平均值。
EEE 26.根据EEE 14-25中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光束调向SLM的所述转换的所述模型来确定所述光束调向SLM在多个时间处的多个状态,所述多个时间中的每个时间在所述第一时间和所述第二时间之间发生。
EEE 27.在投影系统中,一种用于生成图像的方法,所述方法包括:
接收第一图像数据帧;
生成用于驱动相位调制空间光调制器(SLM)的第一相位驱动值集,所述第一相位驱动值集是至少部分地基于所述第一图像数据帧的;
在第一时间段期间利用所述第一相位驱动值集来驱动所述相位调制SLM;
接收第二图像数据帧;
生成用于驱动所述相位调制SLM的第二相位驱动值集,所述第二相位驱动值集是至少部分地基于所述第二图像数据帧的;
在第二时间段期间利用所述第二相位驱动值集来驱动所述相位调制SLM;
在所述第二时间段期间对所述相位调制SLM的转换状态进行建模,所述转换状态是至少部分地基于所述第一相位驱动值集和所述第二相位驱动值集的;
生成由所述相位调制SLM生成并入射在幅度调制SLM上的光场的光场模拟集,所述光场模拟集中的第一子集与所述第一相位驱动值集相对应,所述光场模拟集中的第二子集与所述第二相位驱动值集相对应,并且所述光场模拟集中的第三子集与所述相位调制SLM的所述转换状态中的一个或多个相对应;
生成用于驱动所述幅度调制SLM的幅度驱动值集,所述幅度驱动值集中的每个幅度驱动值集与所述光场模拟中的相关联的一个光场模拟相对应;并且
利用所述幅度驱动值集来驱动所述幅度调制SLM。
EEE 28.根据EEE 27所述的方法,其中,生成第二相位驱动值集的所述步骤包括:
利用所述第一相位驱动值集作为所述第二相位驱动值集的初始近似;并且
基于所述第三图像数据帧改变所述初始近似。
EEE 29.根据EEE 27或EEE 28所述的方法,其中:
所述相位调制SLM包括多个像素;并且
在所述第二时间段期间对所述相位调制SLM的转换状态进行建模的所述步骤包括:对所述多个像素中的像素的各自转换状态进行建模。
EEE 30.根据EEE 29所述的方法,其中:
利用所述第一相位驱动值集来驱动所述相位调制SLM的所述步骤包括:跨所述多个像素确立第一组电压,所述第一组电压中的每个电压由所述第一相位驱动值集中的相关联的值指示;
利用所述第二相位驱动值集来驱动所述相位调制SLM的所述步骤包括:跨所述多个像素确立第二组电压,所述第二组电压中的每个电压由所述第二相位驱动值集中的相关联的值指示;
对所述多个像素的各自转换状态进行建模的所述步骤包括:确定所述多个像素中的每个像素从所述第一组电压中的相对应的电压到所述第二组电压中的相对应的电压的各自转换状态。
EEE 31.根据EEE 30所述的方法,其中,对所述相位调制SLM的转换状态进行建模的所述步骤包括:确定所述多个像素中的每个像素在每个像素的所述各自转换期间的特定时间处的转换状态。
EEE 32.根据EEE 30所述的方法,其中,对所述相位调制SLM的转换状态进行建模的所述步骤包括:确定所述多个像素中的每个像素在所述每个像素的所述各自转换期间的一段时间内的平均状态。
EEE 33.根据EEE 27-32中任一项所述的方法,其中,对所述相位调制SLM的转换状态进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的物理特性来对所述相位调制SLM的转换状态进行建模。
EEE 34.根据EEE 27-33中任一项所述的方法,其中,对所述相位调制SLM的转换状态进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的液晶层的物理特性来对所述相位调制SLM的转换状态进行建模。
EEE 35.根据EEE 27-34中任一项所述的方法,其中,对所述相位调制SLM的转换状态进行建模的所述步骤包括:至少部分地基于入射在所述相位调制SLM上的光场的物理特性来对所述相位调制SLM的转换状态进行建模。
EEE 36.根据EEE 35所述的方法,其中,至少部分地基于入射在所述相位调制SLM上的光场的物理特性来对所述相位调制SLM的转换状态进行建模的所述步骤包括:至少部分地基于所述光场的历史记录来对所述相位调制SLM的转换状态进行建模。
EEE 37.根据EEE 27-36中任一项所述的方法,其中,生成光场模拟集的所述步骤包括:将所述相位调制SLM的多个像素中的每个像素建模为具有相位延迟的球面波源,所述相位延迟是基于所述转换状态中的相对应的一个转换状态来至少部分地确定的。
EEE 38.根据EEE 27-37中任一项所述的方法,其中,生成光场模拟集的所述步骤包括:将所述相位调制SLM的多个像素中的每个像素建模为相对于所述相位调制SLM的表面具有角度的光线的起始点,所述角度是基于所述转换状态中的相对应的一个转换状态来至少部分地确定的。
EEE 39.根据EEE 27-38中任一项所述的方法,其中,所述第一帧和所述第二帧在时间上是顺序的。
EEE 40.根据EEE 39所述的方法,其中,光场模拟的所述第三子集恰好包括一个光场模拟。
EEE 41.根据EEE 39所述的方法,其中,光场模拟的所述第三子集包括多于一个光场模拟。
EEE 42.根据EEE 27-41中任一项所述的方法,其中:
所述第一帧和所述第二帧在时间上不是顺序的;并且
光场模拟的所述第三子集与在时间上位于所述第一帧和所述第二帧之间的至少一个间插帧相对应。
EEE 43.一种用于控制投影系统的控制器,所述控制器包括:
处理单元,所述处理单元被配置为执行代码;
接口,所述接口耦接以接收第一图像帧和第二图像数据帧;以及
存储器,所述存储器电耦接以存储数据和所述代码,所述数据和所述代码包括:
相位驱动模块,所述相位驱动模块被配置为:
生成用于驱动相位调制空间光调制器(SLM)的第一相位驱动值集,所述第一相位驱动值集是至少部分地基于所述第一图像数据帧的,
生成用于驱动所述相位调制SLM的第二相位驱动值集,所述第二相位驱动值集是至少部分地基于所述第二图像数据帧的;
在第一时间段期间利用所述第一相位驱动值集来驱动所述相位调制SLM;并且
在第二时间段期间利用所述第二相位驱动值集来驱动所述相位调制SLM;
时间光场模拟模块,所述时间光场模拟模块被配置为:
在所述第二时间段期间对所述相位调制SLM的转换状态进行建模,所述转换状态是至少部分地基于所述第一相位驱动值和所述第二相位驱动值的,并且
生成由所述相位调制SLM生成并入射在幅度调制SLM上的光场的光场模拟集,所述光场模拟集中的第一子集与所述第一相位驱动值集相对应,所述光场模拟集中的第二子集与所述第二相位驱动值集相对应,并且所述光场模拟集中的第三子集与所述相位调制SLM的所述转换状态中的一个或多个转换状态相对应,以及
幅度驱动模块,所述幅度驱动模块被配置为
生成用于驱动所述幅度调制SLM的幅度驱动值集,所述幅度驱动值集中的每个幅度驱动值集与所述光场模拟集中的一个光场模拟相对应,并且
利用所述幅度驱动值集来驱动所述幅度SLM。
EEE 44.根据EEE 43所述的控制器,其中所述相位驱动模块配置为:
当生成所述第二相位驱动值集时,将所述第一相位驱动值集用作所述第二相位驱动值集的初始近似;并且
基于所述第三图像数据帧改变所述第二相位驱动值集的所述初始近似。
EEE 45.根据EEE 43或EEE 44所述的控制器,其中:
所述相位调制SLM包括多个像素;并且
所述时间光场模拟模块被配置为:对所述多个像素中的像素的各自转换状态进行建模。
EEE 46.根据EEE 45所述的控制器,其中:
所述相位驱动模块被配置为:跨所述多个像素确立第一组电压,所述第一组电压中的每个电压是基于所述第一相位驱动值集的;
所述相位驱动模块被配置为:跨所述多个像素确立第二组电压,所述第二组电压中的每个电压是基于所述第二相位驱动值集的;并且
所述时间光场模拟模块被配置为:确定所述多个像素中的每个像素从所述第一组电压中的相对应的电压到所述第二组电压中的相对应的电压的各自转换。
EEE 47.根据EEE 46所述的控制器,其中所述时间光场模拟模块被配置为:确定所述多个像素中的每个像素在所述各自转换期间的特定时间处的转换状态。
EEE 48.根据EEE 46所述的控制器,其中,所述时间光场模拟模块被配置为:确定所述多个像素中的每个像素在所述各自转换期间的一段时间内的平均转换状态。
EEE 49.根据EEE 43-48中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述相位调制SLM的物理特性来对所述相位调制SLM的转换状态进行建模。
EEE 50.根据EEE 43-49中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述相位调制SLM的液晶层的物理特性来对所述相位调制SLM的转换状态进行建模。
EEE 51.根据EEE 43-50中任一项所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于入射在所述相位调制SLM上的光场的特性来对所述相位调制SLM的转换状态进行建模。
EEE 52.根据EEE 51所述的控制器,其中,所述时间光场模拟模块被配置为:至少部分地基于所述光场的历史记录来对所述相位调制SLM的转换状态进行建模。
EEE 53.根据EEE 43-52中任一项所述的控制器,其中,所述时间光场模拟模块将所述相位调制SLM的多个像素中的每个像素建模为具有相位延迟的球面波源,所述相位延迟是通过所述转换状态中的相对应的一个转换状态来至少部分地确定的。
EEE 54.根据EEE 43-52中任一项所述的方法,其中,所述时间光场模拟模块将所述相位调制SLM的多个像素中的每个像素建模为相对于所述相位调制SLM的表面具有角度的光线的起始点,所述角度是通过所述转换状态中的相对应的一个转换状态来至少部分地确定的。
EEE 55.根据EEE 43-54中任一项所述的控制器,其中,所述第一帧和所述第二帧在时间上是顺序的。
EEE 56.根据EEE 55所述的控制器,其中,光场模拟的所述第三子集恰好包括一个光场模拟。
EEE 57.根据EEE 55所述的控制器,其中,光场模拟的所述第三子集包括多于一个光场模拟。
EEE 58.根据EEE 43-57中任一项所述的控制器,其中:
所述第一帧和所述第二帧在时间上不是顺序的;并且
光场模拟的所述第三子集与在时间上位于所述第一帧和所述第二帧之间的至少一个间插帧相对应。
EEE 59.在投影系统中,一种用于生成图像的方法,所述方法包括:
接收(n个)图像数据帧;
生成(m个)相位驱动值帧,每个相位驱动值帧是至少部分地基于所述相关联的图像数据帧的,并且使得相位调制空间光调制器(SLM)处于相关联的相位状态中,以生成与所述相关联的图像数据帧相对应的光场;
确定所述相位调制SLM的(p个)转换相位状态,其中p>0,所述转换相位状态中的每个转换相位状态指示由所述相位调制SLM在位于与所述相位驱动值相关联的所述相位状态中的顺序相位状态之间的转换期间生成的光场;
基于所述相位驱动值和所述转换相位状态生成光场模拟集,所述光场模拟中的每个光场模拟指示由所述相位调制SLM生成并入射在幅度调制SLM上的光场;并且
基于所述光场模拟集和所述图像数据帧生成幅度驱动值帧集。
EEE 60.根据EEE 59所述的方法,其中,m+p=n。
EEE 61.根据EEE 59所述的方法,其中,m/p=1。
EEE 62.根据EEE 59所述的方法,其中,m/p<1。
EEE 63.根据EEE 59所述的方法,其中,m=n。
EEE 64.根据EEE 63所述的方法,其中,p=n。
EEE 65.根据EEE 63所述的方法,其中,p/m>1。
EEE 66.根据EEE 63所述的方法,其中,p/m=3。
EEE 67.一种非暂态计算机可读介质,所述非暂态计算机可读介质具有包含于其中的代码,所述代码用于使得投影系统执行以下操作:
接收(n个)图像数据帧;
生成(m个)相位驱动值帧,每个相位驱动值帧是至少部分地基于所述相关联的图像数据帧的并且使得相位调制空间光调制器(SLM)处于相关联的相位状态中,以生成与所述图像数据帧中的一帧相对应的光场;
确定所述相位调制SLM的(p个)转换相位状态,其中p>0,所述转换相位状态中的每个转换相位状态指示由所述相位调制SLM在位于与所述相位驱动值相关联的所述相位状态中的顺序相位状态之间的转换期间生成的光场;
基于所述相位驱动值和所述转换相位状态生成光场模拟集,所述光场模拟中的每个指示由所述相位调制SLM生成并入射在幅度调制SLM上的光场;并且
基于所述光场模拟集和所述图像数据帧集生成幅度驱动值帧集。
EEE 68.一种投影系统,包括:
光束调向空间光调制器(SLM),所述光束调向空间光调制器被配置为在第一时间处利用第一光束调向驱动值集来驱动并且在第二时间处利用第二光束调向驱动值集来驱动,所述第一光束调向驱动值集使得所述光束调向SLM处于第一状态中,并且所述第二光束调向驱动值集使得所述光束调向SLM处于第二状态中;以及
装置,所述装置用于对所述光束调向SLM从所述第一状态到所述第二状态的转换进行建模并且至少部分地基于所述光束调向SLM的所述转换的所述模型来确定所述光束调向SLM在第三时间处的第三状态,所述第三时间在所述第一时间和所述第二时间之间发生;以及
光场模拟器,所述光场模拟器被配置为至少部分地基于所述光束调向SLM的所述第三状态来生成由所述光束调向SLM在所述第三时间处生成的光场的光场模拟。

Claims (15)

1.一种用于生成光场模拟的方法,所述方法在用于控制投影系统的控制器中实施,所述方法包括:
利用第一驱动值集来驱动相位调制空间光调制器SLM,以将所述相位调制SLM置于在第一时间处的第一相位状态;
至少部分地基于所述相位调制SLM的所述第一相位状态来生成由所述相位调制SLM在所述第一时间处生成的光场的光场模拟;
利用第二驱动值集来驱动所述相位调制SLM,所述第二驱动值集使得所述相位调制SLM进行从所述相位调制SLM的所述第一相位状态到所述相位调制SLM在第二时间处的第二相位状态的转换;
至少部分地基于所述相位调制SLM的所述第二相位状态来生成由所述相位调制SLM在所述第二时间处生成的光场的光场模拟;
通过生成转换函数来对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模并确定所述转换函数在第三时间处的值,所述转换函数指示时间和由所述相位调制SLM的像素赋予入射光场的相位延迟之间的关系;
至少部分地基于所述相位调制SLM的所述转换的模型来确定所述相位调制SLM在所述第三时间处的第三相位状态,所述第三时间在所述第一时间和所述第二时间之间发生;并且
至少部分地基于所述相位调制SLM的所述第三相位状态来生成由所述相位调制SLM在所述第三时间处生成的光场的光场模拟。
2.根据权利要求1所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的龄值来对所述相位调制SLM的所述转换进行建模。
3.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的所述第一相位状态和所述第二相位状态来对所述相位调制SLM的所述转换进行建模。
4.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的液晶层的物理特性来对所述相位调制SLM的所述转换进行建模。
5.根据权利要求1或2所述的方法,其中,
所述相位调制SLM包括多个像素;并且
对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:以逐像素的方式对所述相位调制SLM的所述转换进行建模。
6.根据权利要求1或2所述的方法,其中,
所述相位调制SLM包括多个像素;并且
对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于所述多个像素中的像素之间的串扰来对所述相位调制SLM的所述转换进行建模。
7.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于所述相位调制SLM的温度来对所述相位调制SLM的所述转换进行建模。
8.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于入射在所述相位调制SLM上的光场的强度来对所述相位调制SLM的所述转换进行建模。
9.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于入射在所述相位调制SLM上的光场的物理属性来对所述相位调制SLM的所述转换进行建模。
10.根据权利要求1或2所述的方法,其中,对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模的所述步骤包括:至少部分地基于在所述相位调制SLM的寿命期内入射在所述相位调制SLM上的光的总量来对所述相位调制SLM的所述转换进行建模。
11.根据权利要求1或2所述的方法,其中,确定所述转换函数在所述第三时间处的值的所述步骤包括确定所述转换函数在包括所述第三时间的时间段内的平均值。
12.根据权利要求1或2所述的方法,还包括:至少部分地基于所述相位调制SLM的所述转换的所述模型来确定所述相位调制SLM在多个时间处的多个相位状态,所述多个时间中的每个时间在所述第一时间和所述第二时间之间发生。
13.一种用于控制投影系统的控制器,所述控制器包括:
处理单元,所述处理单元被配置为执行代码;
接口,所述接口耦接以接收指示要显示的至少一个图像的图像数据;以及
存储器,所述存储器电耦接以存储数据和所述代码,所述数据和所述代码包括:
光束调向驱动模块,所述光束调向驱动模块被配置为:
利用第一驱动值集来驱动相位调制空间光调制器SLM,以将所述相位调制SLM置于在第一时间处的第一相位状态中,并且
利用第二驱动值集来驱动所述相位调制SLM,所述第二驱动值集使得所述相位调制SLM进行从所述相位调制SLM的所述第一相位状态转换为所述相位调制SLM在第二时间处的第二相位状态,以及
时间光场模拟模块,所述时间光场模拟模块被配置为:
对所述相位调制SLM从所述第一相位状态到所述第二相位状态的所述转换进行建模;
至少部分地基于所述相位调制SLM的所述转换的所述模型来确定所述相位调制SLM在第三时间处的第三相位状态,所述第三时间在所述第一时间与所述第二时间之间发生;并且
至少部分地基于所述相位调制SLM的所述第三相位状态来生成由所述相位调制SLM在所述第三时间处生成的光场的光场模拟;
其中,所述控制器被配置为执行根据权利要求1-12中任一项所述的方法。
14.一种投影系统,包括:
相位调制空间光调制器SLM,所述相位调制空间光调制器被配置为在第一时间处利用第一驱动值集被驱动并且在第二时间处利用第二驱动值集被驱动,所述第一驱动值集使得所述相位调制SLM处于第一相位状态,并且所述第二驱动值集使得所述相位调制SLM处于第二相位状态;以及
根据权利要求13所述的控制器。
15.一种计算机可读介质,所述计算机可读介质存储计算机程序,当所述计算机程序被用于控制投影系统的控制器的处理单元执行时,使得执行根据权利要求1-12中任一项所述的方法。
CN201880082541.XA 2017-12-22 2018-12-17 用于生成光场模拟的方法和介质、投影系统及其控制器 Active CN111492652B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762609635P 2017-12-22 2017-12-22
US62/609,635 2017-12-22
EP18166944 2018-04-12
EP18166944.1 2018-04-12
PCT/US2018/066080 WO2019126075A1 (en) 2017-12-22 2018-12-17 Temporal modeling of phase modulators in multi-modulation projection

Publications (2)

Publication Number Publication Date
CN111492652A CN111492652A (zh) 2020-08-04
CN111492652B true CN111492652B (zh) 2022-05-24

Family

ID=64901676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880082541.XA Active CN111492652B (zh) 2017-12-22 2018-12-17 用于生成光场模拟的方法和介质、投影系统及其控制器

Country Status (5)

Country Link
US (3) US11070774B2 (zh)
EP (2) EP3729800B1 (zh)
CN (1) CN111492652B (zh)
ES (1) ES2902066T3 (zh)
WO (1) WO2019126075A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147836B (zh) * 2015-05-06 2022-08-05 杜比实验室特许公司 图像投影中的热补偿
EP4120678A1 (en) * 2016-09-30 2023-01-18 Dolby Laboratories Licensing Corporation Beam combining for highlight projection
ES2902066T3 (es) * 2017-12-22 2022-03-24 Dolby Laboratories Licensing Corp Modelación temporal de moduladores de fase en proyección multi-modulación
GB201807461D0 (en) * 2018-05-08 2018-06-20 Barco Nv Closed loop driving of a highlighter type projector
CN110082960B (zh) * 2019-05-15 2020-08-04 合肥工业大学 一种基于高亮分区背光的光场显示装置及其光场优化算法
US10880528B1 (en) * 2019-10-31 2020-12-29 Christie Digital Systems Usa, Inc. Device, system and method for modulating light using a phase light modulator and a spatial light modulator
US11880124B2 (en) * 2020-12-17 2024-01-23 Texas Instruments Incorporated Scrolling laser illumination with a phase light modulator
CN112802154A (zh) * 2021-03-09 2021-05-14 西安中科微星光电科技有限公司 用于获取空间光调制器相位调制曲线的测试方法及测试系统

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034307A1 (en) * 1995-04-28 1996-10-31 Forskningscenter Risø Phase contrast imaging
US6243156B1 (en) 1999-05-03 2001-06-05 Robert C. Weisgerber Method for exhibiting motion picture films at frame rates higher than that in which the films were originally produced
DE10297383B4 (de) * 2001-10-25 2016-07-28 Hamamatsu Photonics K.K. Phasenmodulationseinrichtung und Phasenmodulationsverfahren
US8182099B2 (en) 2005-12-21 2012-05-22 International Business Machines Corporation Noise immune optical encoder for high ambient light projection imaging systems
JP4957162B2 (ja) * 2006-10-06 2012-06-20 セイコーエプソン株式会社 投写表示装置および投写表示方法
JP2008102379A (ja) * 2006-10-20 2008-05-01 Hitachi Ltd 画像表示装置及び画像表示方法
GB2448132B (en) * 2007-03-30 2012-10-10 Light Blue Optics Ltd Optical Systems
US20080273044A1 (en) 2007-05-02 2008-11-06 Govorkov Sergei V Semiconductor light-emitting device illuminated projection display with high grayscale resolution
US8400385B2 (en) * 2007-12-21 2013-03-19 Hong Kong Applied Science and Technology Research Institute Company Limited Method for enhancing an image displayed on an LCD device
GB2461894B (en) * 2008-07-16 2010-06-23 Light Blue Optics Ltd Holographic image display systems
US8605015B2 (en) 2009-12-23 2013-12-10 Syndiant, Inc. Spatial light modulator with masking-comparators
FR2958157B1 (fr) 2010-04-02 2012-06-29 Libragen Composition cosmetique et pharmaceutique comprenant du n-acetyl-glucosamine-6-phosphate
US8842222B2 (en) 2010-04-18 2014-09-23 Imax Corporation Double stacked projection
GB201011830D0 (en) * 2010-07-14 2010-09-01 Two Trees Photonics Ltd Imaging
US8444275B2 (en) 2010-08-12 2013-05-21 Eastman Kodak Company Light source control for projector with multiple pulse-width modulated light sources
US20140043352A1 (en) 2011-04-19 2014-02-13 Dolby Laboratories Licensing Corporation High Luminance Projection Displays And Associated Methods
GB2493517B (en) * 2011-08-05 2013-06-26 Two Trees Photonics Ltd A projector
GB201115807D0 (en) * 2011-09-13 2011-10-26 Univ St Andrews Controlling light transmission through a medium
CN104272728B (zh) 2012-04-13 2017-12-01 Red.Com有限责任公司 视频投影器系统
RU2503050C1 (ru) 2012-05-30 2013-12-27 Игорь Николаевич Компанец Видеопроектор
US9146452B2 (en) 2013-03-12 2015-09-29 Christie Digital Systems Usa, Inc. Multi-color illumination apparatus
CN103217818B (zh) * 2013-03-19 2014-01-01 清华大学 一种提高相控硅基液晶器件响应速度的方法
US9232172B2 (en) * 2013-11-04 2016-01-05 Christie Digital Systems Usa, Inc. Two-stage light modulation for high dynamic range
EP2976878B1 (en) * 2014-03-03 2018-12-05 Photoneo S.R.O Method and apparatus for superpixel modulation
KR101803320B1 (ko) * 2014-05-12 2017-12-05 한국전자통신연구원 복소 공간 광 변조기의 제조 방법
CA2950958A1 (en) * 2014-06-03 2015-12-10 Mtt Innovation Incorporated Dynamic, high contrast lensing with applications to imaging, illumination and projection
WO2015188872A1 (en) * 2014-06-13 2015-12-17 Huawei Technologies Co., Ltd. An apparatus for determining a signal distortion of an optical signal
WO2016015163A1 (en) 2014-07-31 2016-02-04 Mtt Innovation Incorporated Numerical approaches for free-form lensing: area parameterization free-form lensing
WO2016023133A1 (en) 2014-08-14 2016-02-18 Mtt Innovation Incorporated Multiple-laser light source
ES2604684B2 (es) * 2015-09-08 2018-01-09 Universidad Miguel Hernández Procedimiento de calibración de moduladores espaciales de luz
CN108141574B (zh) 2015-10-06 2021-07-27 Mtt创新公司 用于投影彩色图像的方法、控制系统及设备
WO2017223100A1 (en) * 2016-06-21 2017-12-28 Dolby Laboratories Licensing Corporation Compensation for liquid crystal display response variations under high brightness light fields
US10416539B2 (en) * 2017-06-21 2019-09-17 Dolby Laboratories Licensing Corporation Spatial light modulator for reduction of certain order light
WO2019060802A1 (en) * 2017-09-25 2019-03-28 Dolby Laboratories Licensing Corporation SYSTEM AND METHOD FOR DISPLAYING HIGH QUALITY IMAGES IN A DUAL MODULATION PROJECTION SYSTEM
ES2902066T3 (es) * 2017-12-22 2022-03-24 Dolby Laboratories Licensing Corp Modelación temporal de moduladores de fase en proyección multi-modulación

Also Published As

Publication number Publication date
WO2019126075A1 (en) 2019-06-27
ES2902066T3 (es) 2022-03-24
CN111492652A (zh) 2020-08-04
US11070774B2 (en) 2021-07-20
EP3729800B1 (en) 2021-10-20
US20220006984A1 (en) 2022-01-06
US11659146B2 (en) 2023-05-23
EP3729800A1 (en) 2020-10-28
US20230276030A1 (en) 2023-08-31
US20200336713A1 (en) 2020-10-22
EP3975555A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
CN111492652B (zh) 用于生成光场模拟的方法和介质、投影系统及其控制器
US20240073357A1 (en) Multiple stage modulation projector display systems having efficient light utilization
JP5084948B2 (ja) バックライト装置
JP7203758B2 (ja) 画像を形成するべく光を投影する画像投影システム及び画像投影方法
JP2023104969A (ja) マルチハーフトーンのイメージングおよび二重変調投影または二重変調レーザ投影
CN112005547B (zh) 光学相位控制装置和显示装置
EP3939255B1 (en) Projection system and method of driving a projection system
US11252383B2 (en) System, apparatus and method for displaying image data
EP1244304A2 (en) Control timing for spatial light modulator
CN116965013A (zh) 投影系统和利用场映射驱动投影系统的方法
JP2024512054A (ja) フィールドマッピングを備えた投影システム及び投影システムの駆動方法
WO2010089937A1 (ja) 画像表示制御装置、及び、画像表示制御方法
JP2010181695A (ja) 画像表示制御装置、及び、画像表示制御方法
JP2008076971A (ja) 光変調装置、光源装置、光変調素子制御回路および光源装置制御回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40035109

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant