CN111492488B - 使用半导体发光元件的显示装置及其制造方法 - Google Patents

使用半导体发光元件的显示装置及其制造方法 Download PDF

Info

Publication number
CN111492488B
CN111492488B CN201880082429.6A CN201880082429A CN111492488B CN 111492488 B CN111492488 B CN 111492488B CN 201880082429 A CN201880082429 A CN 201880082429A CN 111492488 B CN111492488 B CN 111492488B
Authority
CN
China
Prior art keywords
light emitting
semiconductor light
electrode
display device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880082429.6A
Other languages
English (en)
Other versions
CN111492488A (zh
Inventor
朴昶绪
沈奉柱
文成民
全基成
赵贤佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority claimed from PCT/KR2018/011453 external-priority patent/WO2019203404A1/ko
Publication of CN111492488A publication Critical patent/CN111492488A/zh
Application granted granted Critical
Publication of CN111492488B publication Critical patent/CN111492488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95101Supplying the plurality of semiconductor or solid-state bodies in a liquid medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

本发明涉及使用半导体发光元件的显示装置及其制造方法,尤其,本发明的显示装置包括:多个半导体发光元件;第一配线电极和第二配线电极,分别从多个所述半导体发光元件延伸,以向多个所述半导体发光元件提供电信号;多个成对电极,配置在所述基板上并具备第一电极和第二电极,若向所述第一电极和所述第二电极供应电流,则所述第一电极和所述第二电极产生电场;以及介电层,形成为覆盖多个所述成对电极,以所述半导体发光元件为基准,所述第一配线电极和所述第二配线电极形成于多个所述成对电极的相反侧。

Description

使用半导体发光元件的显示装置及其制造方法
技术领域
本发明涉及一种显示装置及其制造方法,尤其,涉及使用半导体发光元件的显示装置。
背景技术
近年来,液晶显示器(LCD)、有机发光元件(OLED)显示器以及微LED显示器等一直争相在显示器的技术领域实现大面积显示器。
然而,在LCD的情况下,存在有响应时间不快以及由背光源所生成的光的效率较低等问题,而在OLED的情况下,存在有寿命短、批量生产率低且效率低的缺点。
另一方面,若在显示器中使用具有100微米以下的直径或截面面积的半导体发光元件(微LED(uLED)),则由于在显示器中不使用偏光板等吸收光,因此能够提供非常高的效率。然而,大型显示器中需要数百万个半导体发光元件,因此与其他技术相比,具有难以转印元件的缺点。
作为转印工艺,目前正在开发着的技术包括拾取和放置(pick&place)、激光剥离法(Laser Lift-off,LLO)或自组装等。其中,自组装方法是半导体发光元件在流体中自主地寻找位置的方法,其是对大屏幕显示装置的实现具有最有利的方法。
近年来,美国授权专利第9,825,202号中公开了适用于自组装的微LED结构,但是针对通过微LED的自组装来制造显示器的技术的研究实际上是并不完善的。由此,本发明提出了一种微LED可以被自组装的新型的显示装置和制造方法。
发明内容
发明所要解决的技术问题
本发明的一目的在于,提供一种在使用具有微米尺寸的半导体发光元件的大屏幕显示器中具有高可靠性的新的制造工艺。
本发明的另一目的在于,提供一种可以直接将半导体发光元件自组装于配线基板的显示器的制造工艺。
解决问题的技术方案
在本发明的显示装置的制造方法中,在流体中利用电场将外延芯片(epitaxialchip)组装到只构成像素的区域,然后,在面板上形成台面(Mesa)并连接配线,从而构成显示器。
更具体而言,所述显示装置的制造方法包括:将基板移送到组装位置,并且将具备第一导电型半导体层和第二导电型半导体层的多个半导体发光元件投入到流体腔室的步骤;通过对多个所述半导体发光元件在所述流体腔室内的移动进行引导,来将多个所述半导体发光元件组装到所述基板的预设位置的步骤;在多个所述半导体发光元件已组装到所述基板的预设位置的状态下,对所述第一导电型半导体层和第二导电型半导体层中的至少一个进行蚀刻而生成多个半导体发光元件的步骤;以及将第一配线电极和第二配线电极相应地连接于多个所述半导体发光元件的步骤。
在实施例中,多个所述半导体发光元件可以具备磁性体,并且可以通过电场和磁场被引导至所述基板的预设位置。
所述组装的步骤可以包括:向多个所述半导体发光元件施加磁场,使得多个所述半导体发光元件在所述流体腔室内沿着磁力进行移动的步骤;以及通过施加所述电场来将多个所述半导体发光元件引导至所述预设位置,使得多个所述半导体发光元件在移动的过程中安置于所述基板的预设位置的步骤。
所述显示装置的制造方法还可以包括用于去除所述磁性体的步骤。所述磁性体可以从所述第一导电型半导体层和第二导电型半导体层中的被蚀刻的半导体层的一表面凸出。
并且,本发明公开一种显示装置的制造方法,其包括:用于形成层叠有磁性体、第一导电型半导体层以及第二导电型半导体层的多个半导体发光元件的步骤;将基板移送到组装位置,并且将多个所述半导体发光元件投入到流体腔室的步骤;利用磁力对多个所述半导体发光元件在所述流体腔室内的移动进行引导,并且利用电场将多个所述半导体发光元件组装到所述基板的预设位置的步骤;在多个所述半导体发光元件组装到所述基板的预设位置的状态下,去除所述磁性体的步骤;通过对所述第一导电型半导体层和第二导电型半导体层中的至少一个进行蚀刻,来生成多个所述半导体发光元件的步骤;以及将第一配线电极和第二配线电极连接于多个所述半导体发光元件的步骤。
并且,根据以上描述的显示装置的制造方法,可以实现新结构的显示装置。更具体而言,所述显示装置包括:多个半导体发光元件;第一配线电极和第二配线电极,其分别从多个所述半导体发光元件延伸,以向多个所述半导体发光元件提供电信号;多个成对电极,其配置在所述基板上,并且具备第一电极和第二电极,若向所述第一电极和第二电极供应电流,则所述第一电极和第二电极产生电场;以及介电层,其形成为覆盖所述成对电极,以所述半导体发光元件为基准,所述第一配线电极和第二配线电极形成于多个所述成对电极的相反侧。
在实施例中,在多个所述半导体发光元件之间填充有钝化层,所述第一配线电极和第二配线电极可以延伸至所述钝化层的一表面。
所述钝化层具有多个单元,多个所述半导体发光元件可以容纳于多个所述单元。
所述钝化层可以由聚合物(polymer)材料或无机材料制成,由多个所述成对电极所产生的电场可以形成在所述单元的内部。多个所述单元可以以矩阵结构排列,多个所述成对电极可以延伸到相邻的多个单元。所述钝化层的一表面可以是与覆盖所述介电层的表面相反的表面。
在实施例中,多个所述半导体发光元件配置在所述第一电极和第二电极之间。所述半导体发光元件包括:第一导电型半导体层;以及第二导电型半导体层,其与所述第一导电型半导体层重叠(overlapping),并且包括用于覆盖所述介电层,所述第二导电型半导体层的一表面可以形成为其一部分被所述第一导电型半导体层覆盖。
发明效果
根据如上所述的构成的本发明,在用微发光二极管形成单个像素的显示装置中,可以一次性地组装大量的半导体发光元件。
如上所述,根据本发明,能够使大量的半导体发光元件在小尺寸的晶片上进行像素化,之后直接将其转印到大面积的基板。并且,在基板上进行半导体发光元件的台面(mesa),从而在不使用临时基板的情况下,能够直接将半导体发光元件转印到配线基板。据此,能够以低廉的费用制造大面积的显示装置。
并且,根据本发明的制造方法和装置,利用溶液中的磁场和电场来同时多次地将半导体发光元件转印到准确位置,从而与部件的尺寸或数量、转印面积无关地能够实现低成本、高效率、高速转印。
此外,由于通过电场进行组装,因此能够通过选择性地施加电来进行选择性组装,而无需额外的附加装置或工艺。由此,可以将红色、绿色以及蓝色的微LED选择性地组装到所需的位置。
附图说明
图1是示出本发明的使用半导体发光元件的显示装置的一实施例的概念图。
图2是图1的显示装置的A部分的部分放大图。
图3是图2的半导体发光元件的放大图。
图4是示出图2的半导体发光元件的另一实施例的放大图。
图5a至图5e是用于说明制造前述的半导体发光元件的新工艺的概念图。
图6是示出本发明的半导体发光元件的自组装装置的一例的概念图。
图7是图6的自组装装置的框图。
图8a至图8g是示出利用图6的自组装装置来将半导体发光元件进行自组装的工艺的概念图。
图9a至图9e是示出利用图6的自组装装置将半导体发光元件自组装到配线基板之后制造显示装置的工艺的概念图。
具体实施方式
下面,将参照附图详细描述本说明书中公开的实施例,无论附图符号如何,相同或相似的构成要素赋予相同的附图标记,并且将省略对此的重复描述。以下描述中使用的构成要素的后缀“模块”和“部”仅出于考虑说明书的容易撰写而赋予或混用,它们本身并不具有彼此区分的含义或作用。并且,在描述本说明书中公开的实施例时,如果判断对相关的公知技术的具体描述可能会混淆本说明书中公开的实施例的主旨,则省略其详细描述。并且,应当理解,附图仅是用于使本说明书中公开的实施例容易理解,本说明书中公开的技术思想并不受附图限制。
并且,当提及诸如层、区域或基板的要素存在于另一构成要素“上(on)”时,应理解为其可以直接存在于另一要素上,或者它们之间还可以存在中间要素。
本说明书中所描述的显示装置可以包括手机、智能电话(smart phone)、笔记本电脑(laptop computer)、数字广播终端、个人数字助理(PDA:personal digitalassistants)、便携式多媒体播放器(PMP:portable multimedia player)、导航仪、触屏平板PC(Slate PC)、平板PC(Tablet PC)、超级本(Ultra Book)、数字TV、数字标牌、头戴式显示器(HMD)、台式计算机等。然而,本技术领域所属技术人员将容易理解,即使是后续开发的新产品形式,本说明书中记载的实施例的构成也可以适用于能够显示的装置。
图1是示出本发明的使用半导体发光元件的显示装置的一实施例的概念图,图2是图1的显示装置的A部分的部分放大图,图3是图2的半导体发光元件的放大图,图4是示出图2的半导体发光元件的另一实施例的放大图。
根据附图,显示装置100的控制部中被处理的信息可以输出于显示模块140。围绕所述显示模块140的边缘的闭环形式的壳体101可以形成所述显示装置100的边框(bezel)。
所述显示模块140包括用于显示图像的面板141,所述面板141可以包括:微米尺寸的半导体发光元件150;和用于安装所述半导体发光元件150的配线基板110。
在所述配线基板110可以形成有配线,由此能够与所述半导体发光元件150的n型电极152和p型电极156连接。据此,所述半导体发光元件150是自主发光的单个像素,可以设置在所述配线基板110上。
显示于所述面板141的图像是视觉信息,通过所述配线独立地进行控制,由此以矩阵形式配置的单位像素(sub-pixel)实现发光。
在本发明中,作为用于使电流转换为光的半导体发光元件150的一个种类示出了微LED(Light Emitting Diode)。所述微LED可以是,形成为具有100微米以下的小尺寸的发光二极管。所述半导体发光元件150在发光区域分别设置有蓝色、红色以及绿色,从而可以通过这些组合来实现单位像素。即,所述单位像素是指用于实现一种颜色的最小单位,在所述单位像素内可以设置有至少三个微LED。
更具体而言,参照图3,所述半导体发光元件150可以是垂直型结构。
例如,所述半导体发光元件150可以由高输出发光元件实现,所述高输出发光元件通过以氮化镓(GaN)为主并将铟(In)和/或铝(Al)一并添加来发出包括蓝色在内的各种光。
这种垂直型半导体发光元件包括:p型电极156;形成在p型电极156上的p型半导体层155;形成在p型半导体层155上的活性层154;形成在活性层154上的n型半导体层153;以及形成在n型半导体层153上的n型电极152。在该情况下,位于下部的p型电极156可以与配线基板的p电极电连接,位于上部的n型电极152可以在半导体发光元件的上侧与n电极电连接。这种垂直型半导体发光元件150可以将电极上/下配置,因此具有能够降低芯片尺寸的较大优点。
作为另一例,参照图4,所述半导体发光元件可以是倒装芯片型(flip chip type)的发光元件。
作为这种例子,所述半导体发光元件250包括:p型电极256;形成有p型电极256的p型半导体层255;形成在p型半导体层255上的活性层254;形成在活性层254上的n型半导体层253;以及在n型半导体层253上与p型电极256沿水平方向隔开配置的n型电极252。在该情况下,p型电极256和n型电极152均可以在半导体发光元件的下部与配线基板的p电极和n电极电连接。
所述垂直型半导体发光元件和水平型半导体发光元件可以分别是,绿色半导体发光元件、蓝色半导体发光元件或红色半导体发光元件。在绿色半导体发光元件和蓝色半导体发光元件的情况下,可以以高输出发光元件实现,所述高输出发光元件通过以氮化镓(GaN)为主并将铟(In)和/或铝(Al)一并添加来发出绿色或蓝色的光。作为这种例子,所述半导体发光元件可以是由n-Gan、p-Gan、AlGaN、InGan等各种层形成的氮化镓薄膜,具体而言,所述p型半导体层可以是P-type GaN,所述n型半导体层可以是N-type GaN。然而,在红色半导体发光元件的情况下,所述p型半导体层可以是P-type GaAs,所述n型半导体层可以是N-type GaAs。
并且,可以是如下所述的情况:所述p型半导体层的p电极侧是掺杂有Mg的P-typeGaN,n型半导体层的n电极侧是掺杂有Si的N-type GaN。在该情况下,前述的半导体发光元件可以是不具有活性层的半导体发光元件。
另外,参照图1至图4,由于所述发光二极管非常小,因此所述显示面板可以由自主发光的单位像素以规定间距排列,由此可以实现高画质的显示装置。
在以上描述的本发明的利用半导体发光元件的显示装置中,将在晶片上生长并通过台面和隔离来形成的半导体发光元件用作单个像素。在该情况下,具有微米尺寸的半导体发光元件150需要被转印到所述显示面板的基板上的预设位置的晶片。作为这种转印技术可以利用拾取和放置(pick and place),但是成功率低且需要很长时间。作为另一例,有着利用印模(stamp)或辊(roll)来一次性地转印多个元件的技术,但是生产率受限,由此不适用于大屏幕的显示器。本发明中提出一种能够解决这种问题的显示装置的新的制造方法和制造装置。
为此,下面,将首先对显示装置的新的制造方法进行描述。图5a至图5e是用于说明制造前述的半导体发光元件的新工艺的概念图。
在本说明书中,示出了使用了无源矩阵(Passive Matrix,PM)方式的半导体发光元件的显示装置。然而,以下描述的示例也可以适用于有源矩阵(Active Matrix,AM)方式的半导体发光元件。并且,示出了利用水平型半导体发光元件的方法,但是,这也适用于将垂直型半导体发光元件进行自组装的方法。
首先,根据制造方法,在生长基板259分别生长第一导电型半导体层253、活性层254、第二导电型半导体层255(图5a)。
若生长第一导电型半导体层253,则接着使活性层254在所述第一导电型半导体层253上生长,然后,使第二导电型半导体层255在所述活性层254上生长。如上所述,若使第一导电型半导体层253、活性层254以及第二导电型半导体层255依次生长,则如图5a所示,第一导电型半导体层253、活性层254以及第二导电型半导体层255形成层叠结构。
在该情况下,所述第一导电型半导体层253可以是n型半导体层,所述第二导电型半导体层255可以是p型半导体层。然而,本发明并不一定限于此,第一导电型可以是p型,第二导电型可以是n型。
并且,在本实施例中示出了存在有所述活性层的情况,但是如上所述,根据不同情况,还可以是不存在所述活性层的结构。作为这种例子,可以是如下所述的情况:所述p型半导体层是掺杂有Mg的P-type GaN,n型半导体层的n电极侧是掺杂有Si的N-type GaN。
生长基板259(晶片)可以由具有透光性质的材料形成,例如,蓝宝石(Al2O3)、GaN、ZnO、AlO中的任意一种,但并不限于此。并且,生长基板259可以由载体晶片形成,所述载体晶片是适合于半导体物质生长的物质。可以由导热性优异的物质形成,包括传导性基板或绝缘性基板,例如,可以使用导热性高于蓝宝石(Al2O3)基板的SiC基板或Si、GaAs、GaP、InP以及Ga2O3中的至少一种。
接着,通过去除第一导电型半导体层253、活性层254以及第二导电型半导体层255的至少一部分,来形成多个半导体发光元件的外延芯片(图5b)。
更具体而言,执行隔离(isolation),使得多个发光元件作为外延芯片而形成阵列。即,在垂直方向上对第一导电型半导体层253、活性层254以及第二导电型半导体层255进行蚀刻,由此形成多个半导体发光元件。
如果在该步骤中形成水平型半导体发光元件,则可以在垂直方向上去除所述活性层254和第二导电型半导体层255的一部分,由此执行用于将所述第一导电型半导体层253露出到外部的台面工艺、以及之后通过蚀刻第一导电型半导体层来形成多个半导体发光元件阵列的隔离(isolation)。但是,在本发明中,在自组装之后执行台面工艺,因此,在本步骤中,在没有执行台面工艺的情况下,先执行隔离。在该情况下,所述半导体发光元件可以被隔离成具有100um以下的直径的圆形尺寸。
接着,在所述第二导电型半导体层255的一表面上形成第二导电型电极256(或p型电极)(图5c)。所述第二导电型电极256可以通过溅射等沉积方法来形成,但是,本发明并不一定限于此。然而,在所述第一导电型半导体层和第二导电型半导体层分别为n型半导体层和p型半导体层的情况下,所述第二导电型电极256还可以为n型电极。
然后,将磁性体257层叠于所述第二导电型电极256。所述磁性体257可以是指在外延芯片上形成的具有磁性的金属。所述磁性体可以是Ni、Sn、Fe、Co等,作为另一例,可以包含与Gd系、La系以及Mn系中的至少一种相对应的物质。
在后续进行自组装时,所述磁性体257可以起到用于上下划分的立柱(post)作用,并且可以具有外延芯片面积的25%至75%的面积和几百纳米至几微米的高度。然而,本发明并不一定限于此,磁性体可以以粒子形式设置于所述第二导电型电极256。并且,与此不同地,在包括磁性体的导电型电极中,导电型电极的一层可以由磁性体构成。作为这种例子,所述第二导电型电极256可以包括内侧的第一层和外侧的第二层。在此,第一层可以构成为包括磁性体,第二层可以包括非磁性体的金属材料。
然后,通过去除所述生长基板259来形成多个半导体发光元件250。例如,可以利用激光剥离法(Laser Lift-off,LLO)或化学剥离法(Chemical Lift-off,CLO)来去除生长基板259(图5d)。
然而,在该步骤中,多个半导体发光元件250在后续工艺中不具有作为外延芯片的完整结构。然后,执行用于将多个半导体发光元件250在填充有流体的腔室安置到基板的步骤(图5e)。
例如,将所述半导体发光元件250a和基板放置到填充有流体的腔室内,并且利用流动、重力、表面张力等来使所述半导体发光元件250自主地组装到所述基板。
在本发明中,所述基板可以是配线基板261。即,将配线基板261放置到流体腔室内,使得所述半导体发光元件250被直接安置到配线基板261。
另外,如果想要将以上描述的自组装方法应用于大屏幕显示器的制造中,则需要提高转印率。本发明提出了一种用于提高转印产量的方法和装置。
在该情况下,在本发明的显示装置中,通过向半导体发光元件中的所述磁性体施加磁力来使半导体发光元件进行移动,并且在移动过程中利用电场将所述半导体发光元件安置到预设位置。下面,将参照附图进一步对这种转印方法和装置进行详细描述。
图6是示出本发明的半导体发光元件的自组装装置的一例的概念图,图7是图6的自组装装置的框图。并且,图8a至图8g是示出利用图6的自组装装置来将半导体发光元件进行自组装的工艺的概念图。
如图6和图7所示,本发明的自组装装置160可以包括流体腔室162、磁体163以及位置控制部164。
所述流体腔室162具有用于容纳多个半导体发光元件的空间。在所述空间中可以填充有流体,所述流体可以包括水等作为组装溶液。因此,所述流体腔室162可以是水箱,并且可以构成为开放型。然而,本发明不限于此,所述流体腔室162可以是所述空间形成为封闭空间的封闭型。
基板261在所述流体腔室162可以配置成用于组装所述半导体发光元件250的组装面朝向下方。例如,所述基板261通过移送部被移送到组装位置,所述移送部可以包括用于安装基板的平台(stage)165。所述平台165通过控制部可进行位置调节,由此,所述基板261可以被移送到所述组装位置。
此时,所述基板261的组装面在所述组装位置上朝向所述流体腔室162的底部。根据图示,所述基板261的组装面被配置成沉浸到所述流体腔室162内的流体。因此,所述半导体发光元件250在所述流体内朝向所述组装面进行移动。
所述基板261即是能够形成电场的组装基板,又是之后形成配线的配线基板,其可以包括基底部261a、介电层261b以及多个电极261c、261d。
所述基底部261a可以由具有绝缘性的材料制成,多个所述电极261c可以是在所述基底部261a的一表面图案化了的薄膜或厚膜双平面(bi-planar)电极。例如,所述电极261c可以由Ti/Cu/Ti的层叠、Ag膏(paste)以及ITO等形成。
更具体而言,所述电极261c可以是,配置在所述基板上,并且具有在供应电流时产生电场的第一电极和第二电极的多个成对电极。
所述介电层261b可以由SiO2、SiNx、SiON、Al2O3、TiO2、HfO2等的无机物质构成。与此不同地,介电层261b作为有机绝缘体,可以由单层或多层构成。介电层261b的厚度可以形成为几十nm~几μm的厚度。
此外,本发明的配线基板261包括被分隔壁分隔的多个单元(cell)261d。
例如,在所述配线基板261可以设置有用于使所述半导体发光元件250插入的多个单元261d,使得半导体发光元件250容易安置于配线基板261。具体而言,在所述配线基板261的、所述半导体发光元件250与配线电极对准(aligned)的位置上形成有多个单元261d,所述半导体发光元件250安置于所述多个单元261d。所述半导体发光元件250在所述流体内进行移动的同时被组装到所述多个单元261d。
多个所述单元261d沿着一个方向依次配置,并且构成多个单元261d的分隔壁261e形成为与相邻的单元261d共享。在该情况下,所述分隔壁261e可以由聚合物(polymer)材料制成。并且,所述分隔壁261e可以从所述基底部261a凸出,多个所述单元261d可以通过所述分隔壁261e沿着一个方向依次配置。更具体而言,多个所述单元261d可以在列和行方向上分别依次配置,并且可以具有矩阵结构。
如图所示,单元261d的内部具有用于容纳半导体发光元件250的槽,所述槽可以是被所述分隔壁261e限定出的空间。所述槽的形状可以与半导体发光元件的形状相同或相似。例如,在半导体发光元件是四边形形状的情况下,槽可以是四边形形状。并且,虽然未图示,在半导体发光元件为圆形的情况下,形成于多个单元内部的槽可以构成为圆形。此外,多个单元中的每一个构成为容纳单个的半导体发光元件。即,在一个单元中容纳一个半导体发光元件。
另外,在本发明中,可以通过后续工艺来将与所述分隔壁261e相同材料的物质填充到所述多个单元261d的内部。因此,所述分隔壁261e可以变形为围绕所述半导体发光元件的钝化层。对此将在后述中进行描述。
另外,多个电极配置在所述基板上,具备在供应电流时产生电场的第一电极和第二电极,所述第一电极和第二电极可以被称为成对电极261c。在本发明中,所述成对电极261c可以设置有多个,并且配置在每个单元261d的底部。所述第一电极和第二电极可以分别由电极线形成,多个所述电极线可以形成为延伸到相邻的单元。
成对电极261c配置于所述多个单元261d的下侧,将不同的极性分别施加到所述成对电极261c,由此在所述多个单元261d内产生电场。为了形成所述电场,所述介电层261b可以覆盖所述成对电极261c,并且所述介电层261b可以形成所述多个单元261d的底部。在这种结构中,若从每个多个单元261d的下侧向成对电极261c施加不同的极性,则形成电场,所述半导体发光元件可以通过所述电场插入到所述多个单元261d的内部。
在所述组装位置上,所述基板261的多个电极与电源供应部171电连接。所述电源供应部171向多个所述电极施加电源,从而执行产生所述电场的功能。
根据图示,所述自组装装置可以包括磁体163,所述磁体163用于向所述半导体发光元件施加磁力。所述磁体163与所述流体腔室162隔开配置,并且向所述半导体发光元件250施加磁力。所述磁体163可以被配置为面向与所述基板261的组装面相反的面,通过与所述磁体163连接的位置控制部164来控制所述磁体的位置。所述半导体发光元件250可以具备磁性体,以在所述流体内通过所述磁体163的磁场进行移动。
参照图6和图7,更具体而言,所述自组装装置可以包括磁体处理器(magnethandler)或马达,所述磁体处理器可以在所述流体腔室的上部沿着x、y、z轴自动或手动的方式进行移动,所述马达能够使所述磁体163进行旋转。所述磁体处理器和马达可以构成所述位置控制部164。由此,所述磁体163沿着相对于所述基板261水平的方向、顺时针方向或逆时针方向进行旋转。
另外,所述流体腔室162可以形成具有透光性的底板166,多个所述半导体发光元件可以被配置在所述底板166和所述基板261之间。图像传感器167可以被配置成面向所述底板166,以经由所述底板166对所述流体腔室162的内部进行监控。所述图像传感器167被控制部172控制,并且可以包括倒置型(inverted type)透镜和CCD(电荷耦合器件)等,以能够观察基板261的组装面。
以上描述的自组装装置构成为将磁场和电场组合利用,当利用这些磁场和电场时,在多个所述半导体发光元件因所述磁体的位置变化而进行移动的过程中,通过电场可以将所述半导体发光元件安置到所述基板的预设位置。这种新的制造方法可以是以上参照图5e描述的自组装方法的详细示例。下面,将进一步对使用以上描述的自组装装置的组装过程进行详细描述。
首先,通过在图5a至图5d中描述的过程,形成具有磁性体的多个半导体发光元件250。在该情况下,在形成图5c中的第二导电型电极的过程中,可以将磁性体沉积到所述半导体发光元件。
接着,将基板261移送到组装位置,将所述半导体发光元件250投入到流体腔室162(图8a)。
如前所述,所述基板261的组装位置可以是,将所述基板261以所述基板261的用于组装所述半导体发光元件250的组装面朝向下方的方式配置于所述流体腔室162的位置。
在该情况下,所述半导体发光元件250中的一部分可以沉到流体腔室162的底部,而一部分可以漂浮在流体中。在具有透光性的底板166设置于所述流体腔室162的情况下,所述半导体发光元件250中的一部分可以沉到底板166。
接着,向所述半导体发光元件250施加磁力,使得所述半导体发光元件250在所述流体腔室162内沿着垂直方向浮起(图8b)。
当所述自组装装置的磁体163从原始位置移动到与所述基板261的组装面相反的面时,所述半导体发光元件250在所述流体中朝向所述基板261浮起。所述原始位置可以是远离所述流体腔室162的位置。作为另一例,所述磁体163可以由电磁体构成。在该情况下,通过向电磁体供应电力来产生初始磁力。
另外,在本示例中,可以通过调节所述磁力的大小来对所述基板261的组装面和所述半导体发光元件250之间的隔开距离进行控制。例如,利用所述半导体发光元件250的重量、浮力以及磁力来控制所述隔开距离。所述隔开距离可以是距所述基板的最外侧边缘的几毫米至几十微米。
接着,向所述半导体发光元件250施加磁力,使得所述半导体发光元件250在所述流体腔室162内沿着一个方向进行移动。例如,所述磁体163沿着相对于所述基板呈水平的方向、顺时针方向或逆时针方向进行移动(图8c)。在该情况下,在所述磁力的作用下,所述半导体发光元件250在与所述基板261隔开的位置上沿着与所述基板261呈水平的方向进行移动。
接着,执行通过施加电场来将所述半导体发光元件250引导至所述预设位置的步骤,使得所述半导体发光元件250在移动的过程中被安置到所述基板261的预设位置(图8d)。例如,在所述半导体发光元件250沿着与所述基板261呈水平的方向进行移动的期间,通过所述电场使所述半导体发光元件250朝向与所述基板261垂直的方向进行移动,由此将其安置到所述基板261的预设位置。
多个所述半导体发光元件通过电场和磁场被引导至所述基板的预设位置。
更具体而言,通过向基板261的成对电极、即bi-planar电极供应电源来产生电场,并且利用该电场来进行引导,以仅在预设位置进行组装。即,利用选择性产生的电场来使半导体发光元件250自主地组装到所述基板261的组装位置。为此,在所述基板261可以设置有用于使所述半导体发光元件250插入的单元。
此时,所述半导体发光元件250的磁性体257起到用于上下划分的立柱(post)作用。具体而言,若具有磁性体257的表面沿着朝向成对电极261c的方向插入到所述单元,则半导体发光元件250因所述磁性体257而无法安置到所述单元的底部(所述介电层的外表面)。
另外,在将所述半导体发光元件250引导至所述预设位置之后,可以将所述磁体163朝向远离所述基板261的方向进行移动,使得残留在所述流体腔室162内的半导体发光元件250掉落到所述流体腔室162的底部(图8e)。作为另一例,在所述磁体163是电磁体的情况下,如果中断电源供应,则残留在所述流体腔室162内的半导体发光元件250掉落到所述流体腔室162的底部。
然后,当回收掉落到所述流体腔室162底部的半导体发光元件250时,能够重复使用所述回收的半导体发光元件250。
在本发明的显示装置使用蓝色半导体发光元件的情况、即所述半导体发光元件都是蓝色半导体发光元件的情况下,蓝色半导体发光元件可以组装到所述基板的所有单元。
另外,根据本示例,红色半导体发光元件、绿色半导体发光元件以及蓝色半导体发光元件中的每一个可以排列在所需的位置。如果前述的半导体发光元件250是蓝色半导体发光元件,则在参照图8a至图8e所描述的组装过程中,只在与蓝色像素相对应的单元中产生电场,由此将蓝色半导体发光元件组装到相应的位置。
然后,使用绿色半导体发光元件250a和红色半导体发光元件250b来分别执行参照图8a至图8e所描述的组装过程(图8f和图8g)。然而,配线基板261已经被装载在组装位置,因此可以省略将基板装载到组装位置的过程。
然后,执行所述配线基板261的卸载过程,并且完成组装工艺。
在以上描述的自组装装置和方法中,为了提高流控组件(fluidic assembly)中的组装率,利用磁场将远距离的部件集中到预设的组装位置附近,并且将单独的电场施加到组装位置,从而仅仅在组装位置选择性地组装部件。此时,使组装基板位于水箱上部,并且使组装面朝向下方,由此使因部件的重量而引起的重力影响最小化,并且防止非特异性结合,从而去除不良。即,为了增加转印率,使组装基板位于上部,从而使重力或摩擦力的影响最小化,并且防止非特异性结合。
并且,可以将蓝色半导体发光元件、绿色半导体发光元件以及红色半导体发光元件分别组装到所期望的位置。
如上所述,根据具有如上所述的构成的本发明,在用半导体发光元件形成单个像素的显示装置中,可以一次性地组装大量的半导体发光元件。
若完成如上所述的组装过程,则可以执行制造显示装置的工艺。下面,将参照附图进一步对这种显示装置的制造工艺进行详细描述。
图9a至图9e是示出利用图6的自组装装置将半导体发光元件自组装到配线基板之后制造显示装置的工艺的概念图。
通过前述的工艺,对半导体发光元件在流体腔室内的移动进行引导,由此将其组装到所述基板的预设位置,然后,在所述半导体发光元件250、250a、250b组装到所述基板261的预设位置的状态下,去除所述半导体发光元件的磁性体257(图9a和图9b)。
如图9a所示,在通过前述的工艺来将蓝色半导体发光元件250、绿色半导体发光元件250a以及红色半导体发光元件250b沿着一个方向依次排列的状态下,如图9b所示,设置在所述蓝色半导体发光元件250、绿色半导体发光元件250a以及红色半导体发光元件250b中的每一个的磁性体257将会被去除。
所述磁性体257的去除可以使用化学方法和物理方法中的任意一种方法,由此,第二导电型电极256(参照图5b)可以露出到单元的外部。另外,半导体发光元件还可以是在未设置有第二导电型电极256的情况下磁性体从第二导电型半导体层255(参照图5b)凸出的形式,在该情况下,所述第二导电型半导体层255可以露出于单元的外部。
接着,台面形成步骤可以在多个所述半导体发光元件组装到所述基板的预设位置的状态下进行(图9c)。
例如,在所述半导体元件组装到所述基板的预设位置的状态下,对所述第一导电型半导体层253和第二导电型半导体层255中的至少一个进行蚀刻,以生成多个半导体发光元件。
更具体而言,对朝向单元外部的第二导电型半导体层255进行蚀刻,在该情况下,第二导电型电极256和活性层254(以下参照图5b)也可以一起被蚀刻。作为另一例,在磁性体直接形成于未设置有第二导电型电极256的导电型半导体层的一表面的情况下,所述磁性体可以从所述第一导电型半导体层253和第二导电型半导体层255中的被蚀刻的半导体层的一表面凸出。
通过所述蚀刻,所述第一导电型半导体层253上的与所述介电层接触的面相反的表面的一部分可以露出于外部。露出于外部的部分可以与所述第二导电型半导体层255的顶面不重叠,并且可以是在水平方向上隔开的部分。通过这种台面工艺,形成倒装芯片型的半导体发光元件。
接着,执行用于形成钝化层,执行平坦化,并且形成接触孔的步骤(图9d)。
根据附图,在多个所述半导体发光元件之间可以填充有钝化层270。更具体而言,如前所述,配线基板261包括被分隔壁分隔的多个单元261d,并且在所述单元和所述半导体发光元件之间存在有间隙(gap)。所述钝化层270与所述分隔壁一起覆盖所述半导体发光元件,并且填充所述间隙。
通过这种工艺,在显示器中可以形成钝化层270围绕所述半导体发光元件的结构。在该情况下,所述钝化层270可以由聚合物(polymer)材料制成,以与所述分隔壁形成一体。
在通过所述工艺实现的图9d中示出的显示装置中,所述钝化层270可以具备多个多个单元,多个所述半导体发光元件可以容纳于所述多个单元。即,在最终的结构中,在自组装步骤中所设置的多个单元变成为所述钝化层270的内部空间。在该情况下,由如上所述的参照图9d描述的成对电极261c所产生的电场可以形成在所述单元的内部。并且,多个所述单元以矩阵结构排列,多个所述成对电极261c具有朝向相邻的单元延伸的结构。
然后,执行平坦化工艺,使得所述钝化层270的顶面变得平坦,并且可以形成用于实施配线的接触孔271、272。所述接触孔271、272可以分别形成于第一导电型半导体层253和第二导电型半导体层255。
最后,将第一配线电极281和第二配线电极282经由所述接触孔271、272连接到多个所述半导体发光元件(图9e)。
如图9e所示,所述第一配线电极281和第二配线电极282可以延伸至所述钝化层270的一表面。此时,所述钝化层270的一表面可以是与覆盖所述介电层261b的面相反的面。例如,所述第一配线电极281经由形成于所述第一导电型半导体层253上侧的第一接触孔271而从所述第一导电型半导体层253延伸到所述钝化层270的顶面。所述第二配线电极282经由形成于所述第二导电型半导体层255上侧的第二接触孔272而延伸到所述钝化层270的顶面。然而,作为另一例,在所述第二导电型半导体层255顶面存在有第二导电型电极256(参照图5d)的情况下,所述第二配线电极282可以从所述第二导电型电极经由所述第二接触孔272而延伸到所述钝化层270的顶面。
根据这种结构,虽然通过自组装来进行转印,但是可以实现倒装芯片型的半导体发光元件的配线。在该情况下,所述钝化层270可以配置于所述显示装置100(以下参照图1)的正面侧,此时,所述第一配线电极281和第二配线电极282可以是透明电极。此时,所述成对电极261c作为金属材料可以被用作反射层。
作为另一例,所述钝化层270可以配置于所述显示装置100的背面侧,此时,所述介电层261b和所述基板261的基底部261a可以由透明材料形成。
根据以上描述的本发明的工艺和装置,可以将大量的半导体发光元件在较小尺寸的晶片上实现像素化,然后将其转印到大面积基板。由此,能够以低廉的费用制造大面积的显示装置。

Claims (11)

1.一种显示装置,其特征在于,包括:
基板,包括基底部;
钝化层,配置于所述基板上,具备多个单元;
多个半导体发光元件,设置于所述基板上,分别容纳于多个所述单元;
第一配线电极和第二配线电极,分别从多个所述半导体发光元件中的一个半导体发光元件延伸,以向所述半导体发光元件提供电信号;
多个成对电极,配置在所述基板的所述基底部上并具备第一电极和第二电极,若向所述第一电极和所述第二电极供应电流,则所述第一电极和所述第二电极产生电场;以及
介电层,形成为覆盖多个所述成对电极,
以所述半导体发光元件为基准,所述第一配线电极和所述第二配线电极形成于多个所述成对电极的相反侧,
多个所述单元以矩阵结构排列,
多个所述成对电极延伸至相邻的多个单元,
多个所述成对电极被设置为,使得在多个所述单元中的待插入所述半导体发光元件的单元选择性地产生电场。
2.根据权利要求1所述的显示装置,其特征在于,
在多个所述半导体发光元件之间填充有所述钝化层,
所述第一配线电极和所述第二配线电极延伸至所述钝化层的一表面。
3.根据权利要求1或2所述的显示装置,其特征在于,
所述钝化层由聚合物材料或无机材料制成,
由多个所述成对电极产生的电场形成于所述单元的内部。
4.根据权利要求2所述显示装置,其特征在于,
所述钝化层的所述一表面是与覆盖所述介电层的面相反的表面。
5.根据权利要求1所述的显示装置,其特征在于,
多个所述半导体发光元件配置在所述第一电极和所述第二电极之间。
6.根据权利要求1所述的显示装置,其特征在于,
所述半导体发光元件包括:
第一导电型半导体层;以及
第二导电型半导体层,与所述第一导电型半导体层重叠,并且覆盖所述介电层,
所述第二导电型半导体层的一表面的一部分被所述第一导电型半导体层覆盖。
7.一种显示装置的制造方法,其特征在于,包括:
将基板移送到组装位置,并且将各自具备第一导电型半导体层和第二导电型半导体层的多个半导体发光元件投入到流体腔室的步骤,
其中,基板包括基底部、被分隔壁分隔的多个单元,在所述基板的所述基底部上配置有多个成对电极,多个所述成对电极具备第一电极和第二电极,若向所述第一电极和所述第二电极供应电流,则所述第一电极和所述第二电极产生电场;
通过对多个所述半导体发光元件在所述流体腔室内的移动进行引导,通过仅在预设位置选择性地产生电场,来将多个所述半导体发光元件组装到所述基板的所述预设位置的步骤,
其中,多个所述成对电极被设置为,使得在多个所述单元中的待插入所述半导体发光元件的单元选择性地产生电场;
在多个所述半导体发光元件组装到所述基板的所述预设位置的状态下,对所述第一导电型半导体层和所述第二导电型半导体层中的至少一个进行蚀刻的步骤;以及
将第一配线电极和第二配线电极分别连接于多个所述半导体发光元件的每一个的步骤。
8.根据权利要求7所述的显示装置的制造方法,其特征在于,
多个所述半导体发光元件各自具备磁性体,通过所述电场和磁场将多个所述半导体发光元件引导至所述基板的所述预设位置。
9.根据权利要求8所述的显示装置的制造方法,其特征在于,
所述组装的步骤包括:
向多个所述半导体发光元件施加所述磁场,使得多个所述半导体发光元件在所述流体腔室内沿着磁力进行移动的步骤;以及
通过施加所述电场来将多个所述半导体发光元件引导至所述预设位置,使得多个所述半导体发光元件在移动的过程中安置于所述基板的所述预设位置的步骤。
10.根据权利要求8所述的显示装置的制造方法,其特征在于,
还包括从多个所述半导体发光元件中的每一个去除所述磁性体的步骤。
11.根据权利要求8所述的显示装置的制造方法,其特征在于,
所述磁性体从所述第一导电型半导体层和所述第二导电型半导体层中的被蚀刻的半导体层的一表面凸出。
CN201880082429.6A 2018-04-19 2018-09-27 使用半导体发光元件的显示装置及其制造方法 Active CN111492488B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180045718 2018-04-19
KR10-2018-0045718 2018-04-19
KR10-2018-0096299 2018-08-17
KR1020180096299A KR102145192B1 (ko) 2018-04-19 2018-08-17 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
PCT/KR2018/011453 WO2019203404A1 (ko) 2018-04-19 2018-09-27 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN111492488A CN111492488A (zh) 2020-08-04
CN111492488B true CN111492488B (zh) 2023-11-24

Family

ID=68423822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880082429.6A Active CN111492488B (zh) 2018-04-19 2018-09-27 使用半导体发光元件的显示装置及其制造方法

Country Status (3)

Country Link
EP (1) EP3731274A4 (zh)
KR (1) KR102145192B1 (zh)
CN (1) CN111492488B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104277A (ko) * 2019-08-20 2019-09-09 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200026768A (ko) * 2019-11-22 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법 및 이에 사용되는 자가조립 장치
KR20200026770A (ko) * 2019-11-25 2020-03-11 엘지전자 주식회사 마이크로 엘이디를 이용한 디스플레이 장치
KR20200005516A (ko) * 2019-12-26 2020-01-15 엘지전자 주식회사 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법
WO2023042926A1 (ko) * 2021-09-14 2023-03-23 엘지전자 주식회사 반도체 발광 소자 및 디스플레이 장치
WO2023191159A1 (ko) * 2022-04-01 2023-10-05 엘지전자 주식회사 반도체 발광소자의 지능형 조립전사 통합 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971873A (zh) * 2010-07-14 2013-03-13 夏普株式会社 微小物体的配置方法、排列装置、照明装置以及显示装置
CN103190004A (zh) * 2010-09-01 2013-07-03 夏普株式会社 发光元件及其制造方法、发光装置的制造方法、照明装置、背光灯、显示装置以及二极管
CN105431940A (zh) * 2013-07-09 2016-03-23 Psi株式会社 利用超小型发光二极管电极组件的发光二极管灯
WO2016186376A1 (ko) * 2015-05-19 2016-11-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
CN106206899A (zh) * 2014-10-08 2016-12-07 美科米尚技术有限公司 微型发光二极管、其操作方法与制造方法
US20170071042A1 (en) * 2015-06-26 2017-03-09 Seoul Semiconductor Co., Ltd. Backlight unit using multi-cell light emitting diode
US20170317228A1 (en) * 2014-11-18 2017-11-02 Psi Co., Ltd. Micro-led element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same
US20170338372A1 (en) * 2014-11-26 2017-11-23 Sharp Kabushiki Kaisha Display device and method of producing display device
US20170345802A1 (en) * 2016-05-31 2017-11-30 Lg Electronics Inc. Display device using semiconductor light emitting device and fabrication method thereof
US20180019426A1 (en) * 2016-07-15 2018-01-18 Samsung Display Co., Ltd. Light emitting device and fabricating method thereof
US20180102492A1 (en) * 2013-03-15 2018-04-12 Apple Inc. Light emitting diode display with redundancy scheme

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780696B1 (en) * 2000-09-12 2004-08-24 Alien Technology Corporation Method and apparatus for self-assembly of functional blocks on a substrate facilitated by electrode pairs
AU2003210652A1 (en) * 2002-01-24 2003-09-02 Massachusetts Institute Of Technology A method and system for magnetically assisted statistical assembly of wafers
US10133426B2 (en) * 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
KR102169274B1 (ko) * 2015-08-21 2020-10-23 엘지전자 주식회사 표시장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971873A (zh) * 2010-07-14 2013-03-13 夏普株式会社 微小物体的配置方法、排列装置、照明装置以及显示装置
CN103190004A (zh) * 2010-09-01 2013-07-03 夏普株式会社 发光元件及其制造方法、发光装置的制造方法、照明装置、背光灯、显示装置以及二极管
US20180102492A1 (en) * 2013-03-15 2018-04-12 Apple Inc. Light emitting diode display with redundancy scheme
CN105431940A (zh) * 2013-07-09 2016-03-23 Psi株式会社 利用超小型发光二极管电极组件的发光二极管灯
CN106206899A (zh) * 2014-10-08 2016-12-07 美科米尚技术有限公司 微型发光二极管、其操作方法与制造方法
US20170317228A1 (en) * 2014-11-18 2017-11-02 Psi Co., Ltd. Micro-led element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same
US20170338372A1 (en) * 2014-11-26 2017-11-23 Sharp Kabushiki Kaisha Display device and method of producing display device
WO2016186376A1 (ko) * 2015-05-19 2016-11-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US20170071042A1 (en) * 2015-06-26 2017-03-09 Seoul Semiconductor Co., Ltd. Backlight unit using multi-cell light emitting diode
US20170345802A1 (en) * 2016-05-31 2017-11-30 Lg Electronics Inc. Display device using semiconductor light emitting device and fabrication method thereof
US20180019426A1 (en) * 2016-07-15 2018-01-18 Samsung Display Co., Ltd. Light emitting device and fabricating method thereof

Also Published As

Publication number Publication date
EP3731274A4 (en) 2021-09-08
KR102145192B1 (ko) 2020-08-19
EP3731274A1 (en) 2020-10-28
CN111492488A (zh) 2020-08-04
KR20190122117A (ko) 2019-10-29

Similar Documents

Publication Publication Date Title
CN111492489B (zh) 半导体发光元件的自组装装置及方法
CN111492488B (zh) 使用半导体发光元件的显示装置及其制造方法
US20230119947A1 (en) A substrate for manufacturing display device and a manufacturing method using the same
US10607515B2 (en) Display device using semiconductor light emitting device and method for manufacturing the same
US10707377B2 (en) Display device using semiconductor light emitting device and method for manufacturing the same
CN113228288B (zh) 使用半导体发光器件的显示装置及其制造方法
CN111492487B (zh) 使用半导体发光元件的显示装置及其制造方法
US20230084381A1 (en) Display device using semiconductor light-emitting devices
KR102147443B1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US11869871B2 (en) Apparatus and method for self-assembling semiconductor light-emitting device
KR20200026669A (ko) 반도체 발광소자의 자가조립 장치 및 방법
KR20200026673A (ko) 디스플레이 장치의 제조방법 및 디스플레이 장치 제조를 위한 기판
KR20200026770A (ko) 마이크로 엘이디를 이용한 디스플레이 장치
EP4030481A1 (en) Display device using semiconductor light-emitting diode
KR20200026780A (ko) 반도체 발광소자 공급 장치 및 공급 방법
EP4092748A1 (en) Display device using semiconductor light-emitting element
KR20200023327A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20200026777A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
CN113380848B (zh) 使用半导体发光元件的显示装置及其制造方法
KR20200026702A (ko) 디스플레이 장치의 제조방법 및 디스플레이 장치 제조를 위한 기판
CN115699291A (zh) 显示装置制造用基板及利用其的显示装置的制造方法
KR20200026661A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant